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Abstract: Although short-time Fourier Analysis
based features such as LPCC and MFCC have been
widely used in state-of-the-art speech recognizers, the
short-time analysis technique suffers from the well-
known trade-off between time and frequency resolution
and works under the assumption that speech signal is
short-time stationary. This paper investigates an
approach to use Cohen’s class bilinear time-frequency
distributions representing speech signal for speech
recognition. Preliminary experiments show that the
new feature can better represent speech signal and can
improve the accuracy of a speech recognizer.

1. INTRODUCTION

Time-trequency (TF) representations have been
used extensively for speech analysis and speech
recognition.  State-of-the-art systems for speech
recognition segment the speech signal into short
intervals on the order of tens of milliseconds. Short-
time analysis 1s then used to estimate the parameters of
cach segment under the implicit assumption that the
signal is quasi-stationary over the intervals. However,
short-time analysis, so far the most common tool for
analyzing the speech signals, suffers from the well-

known trade-oft between time and frequency resolution.

If one specifies the instant at which the frequencies
occur, one needs to shorten the time window. However,
if one decreases the time window, namely, if one
locates the events in time, the frequency resolution is
reduced. In addition, too short a window produces a
poor spectral representation of the speech, is sensitive
to temporal effects of voicing, and performs poorly in
noise. While a longer window alleviates these effect
somewhat, the quasi-stationary assumption is often
violated, particularly for the segment which transits
from consonant to vowel. Hence, these fast time-
varying segments of speech are often misclassified. '

Recently, there has been a surge of interest in the
application of TF distributions to speech processing
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[101[11], which seeks a way to accurately represent the
energy of a signal jointly in time and frequency. The
Wigner distribution (WD) is the first TF distribution.
In 1966, a generalized time-frequency representation
named Cohen’s class of time-frequency distribution is
proposed by L. Cohen[l]. Cohen’s class TF
distribution is a kind of bilinear transform which
makes no implicit short-time stationary assumption
and can get very high time and frequency resolution
simultaneously.

This paper investigates a new technique which
uses Cohen’s class bilinear TF distribution to represent
speech signal in the front-end processing of speech
recognition. Experimental results show that,
comparing with the LPCC and MFCC, the new
technique can improve the accuracy of a speech
recognizer.

The remainder of this paper is arranged as
follows: In section 2, the definition and some kernels
of Cohen’s class TF representation are introduced.
And a new kind of feature based on the Cohen’s class
TF representation is described in section 3. Section 4
presents some experimental results on a speaker-
dependent speech recognizer. And some important
conclusions are presented in section 5.

2. Cohen’s class TF distribution
Cohen’s class of distribution, by definition, is
Py =— [[[ 0. 0w+ Dyt -5
O e ’ 2/ Ty
- @00 4 dTd 0 1)
Where f(u) is the time signal, f'(x) its complex
conjugate and @(0,T) the kernel defining a particular
distribution. This process can be seen more clcarly by
rewritten the above formula as[2]

1 - jor- joot
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where A(@,7) is called the symmetrical AF and is
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given by
T v, T a
= — — e’ 3
A(0,7) _ff(f+2)f (t 2)6 dt (3)

(2) and (3) indicate that Cohen’s class of
distribution: can be interpreted as the 2-D Fourier
Transform of a weighted version of the ambiguity
function (AF) of the signal to be analyzed.

The kernel ¢(6,7) may depend on the signal
f(t), butif it is independent of the signal, the TFD is
said to have a bilinear structure of the signal. Different
choices for the kernel function ¢(0,7) yields different
TFD’s. For example, if a kernel is taking a constant
value, say 1, i. e.

$(6,7)=1 @
With this choice of kernel, a well-known TFD called
Wigner distribution (WD) is yielded. The WD satisfies
a long list of desirable properties [3], such as it meets
marginal conditions, 1. e.

P1. jP(x,w)dco = |s(r)f )

P2. jp(r,w)dr = |s(o)|" ©)

The WD has the ability to provide simultaneous high
resolutions in time and frequency axes which exceeds
that ot the short time Fourier method, thus avoid the
TF resolution tradeoft that post on the short-time
analysis technique. However, When the WD is used to
analyze speech signal or some other kinds of
multicomponent signals, it produces cross-terms
between two frequency components at different
locations in the time-frequency plane, which are
difficult to interpret. To suppress cross-terms, many
other kinds of kernels are proposed, such as Choi-
williams kernel[4].

¢(0,7)= e 7
Where O is a free parameter that is used to control the
amounts of cross-terms. If this parameter is chosen
appropriately, the cross-terms may reduce to some
extent, but it can not eliminate the problem entirely.

In addition to the time and frequency marginal
conditions and cross-terms, it is desired that the TFR
meets some other desired properties. Some of these
properties are:

P3. Energy conservation

P4. Real-valued

PS. Translation covariance

P6. Dilation covariance

P7. Wide-sense support conservation
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P8. Instantaneous frequency concentration
P9. Perfect localization on linear chirp signals
P10. Nonnegative

About the details, readers may refer to [1]. Many
works have shown that a Cohen’s class distribution
with bilinear structure does not simultaneously satisfy
the properties described above. For example, if it meets
the property of nonnegative (P10), it will not satisfy
the two marginal conditions (P1, P2), which means
that the Cohen’s class bilinear distribution are not true
distributions. But we still use “distribution” as
commonly used in the literature.

In this paper, besides the Wigner and Choi-
williams distributions, several other distributions are
also selected to provide better representation of speech
signal and improve the accuracy of the speech
recognition system. They are:

1. Margenau-Hill distribution (MH) [5]

&(8,7) = cos(nO7) ®)
2. Compound distribution [6]

#(0,7) = exp(-21°0°1* / 6% )cos(2nPOT) (9)
where 0 and 3 are two free parameters used to
control the cross-terms of the distribution.

3.  Bessel distribution [7]

_ J,(2rabr)
96.7)= 2r0t (10)
Where J () is the first kind Bessel function of order
one, & is a positive scaling factor.
4. XY distribution [8]

8(6,7)

(P(Q,T) = 2.2
1+ab°t

Where £(8,7) is a radially non-increasing function

an

and & is a free parameter which controls the spread
of the kernel function.
5. Gaussian distribution [§]

9(6.7)= g(6. 7)™ +e " (12)
Where g£(6,7) is also a radially non-increasing
function and o and f§ are free parameters which

control the spread of the kernel function, and n
controls the flatness of the kernel along the axes.

3. Temporal cepstrum

For the use of Cohen’s class of Bilinear TF
distribution in speech recognition, a new feature called
temporal cepstrum is introduced in this section. The
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For mput speech signal. we first estimated its
Bilineur TF distribution by using the kernels described
And time of interest, a mel-scale
triangle filterbank is used to smooth a slice of the TFD
estimated. The log operation 1s then applied to the
magnitude of the TFD, which has heen revealed to
have at least two cffects, one is for compressing the

Log
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dynamic range of the TFD, and another is to change
the multiplicative components in the spectral domain
into additive ones in the log-spectral domain. And
finally. several slices of TFD combined together, a two
dimensional discrete cosine transtorm (TDCT) is used
to decorrelate the log-TFD to allow the subsequent
statistical model 1o use diagonal matrix, and it also has
the effect of compressing the log-TFD into lower-order
coetticients.

4. experiments

The experiments have been performed to evaluate
the recognition performance by using the new acoustic
parameter. For comparison, the recognition results
based on the MFCC are also presented.

The database used is spoken in mandarin. It
consists of 190 1solated words spoken by tive male
speakers (ml.m2.m3.m4.m5) and one temale speaker
tfh). For cach speaker, cach word is uttered seven
tumes. The database is originally recorded through a
telephone switch and is sampled at 8KHz. For the
utterances of cach word. the first five ones are recorded
with a telephone channel, and another two utterances
sampled with two other different telephone
chimnels. In our experiments, the first five utterances
ot cach word are used for training the HMM models,
and another two utterances are for testing.

are

The speech recognizer is a speaker-dependent one
which 18 based on continuous density HMM  using
whole word models. Models are feft-to-right with no
state transitions. Eight states are used for cach model.

The training  iteration  begins  with  uniformly
probibilistic models. s

To estimate the MFCC, the speech is segmented
into frames of 48ms (384 samples) with 24ms overlap.

The data is preprocessed using a 48ms Hamming
window and preemphasized with a factor of 0.97. In
temporal cepstrum estimation, we still segment the
speech signal into frames of 48ms but with 42ms
overlap. A slice of TFD is estimated every 6ms. And
Four slices of TFD combined together, we use a TDCT
to decorrelate the log-TFD into 12 cepstral coetticients.

The experimental results are shown in Table [,
Table 11, Table IIT and Table IV respectively.

Bascline Word error rate
MFCC 11.6%

Table 1. The bascline performance of the recognizer
(Speaker is m1)

Distribution Word crror rate  |Error reduction
Wigner 11.1% 4.3%
Choi-Williams 10.0% 13.8%
MH 10.5% 9.9%
Compound 8.9% 23.3%
Bessel 8.4%. 27.6%
XY 8.4%. 27.6%
Gaussian 8.9% 23.3%
Table I1. The performance for difterent kernels
(Speaker is m1)
Baseline Word error rate
MFCC 8.4%

Table III. The bascline performance of the recognizer
(The speaker is t1)

Distribution Word crror rate  |Error reduction
Wigner 7.9% 6.0%
Choi-Williams 6.8% 19.0%.
MH 6.8% 19.0%
Compound 6.3% 25.0%
Bessel 5.8% 31.0%
XY 5.3% 36.9%
Gaussian 5.8% 31.0%
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Table 1V. The performance for difterent kernels
(The speaker is f1)

From the results, it can been seen that the use of
Cohen’s class of bilincar TF distribution can improve
the accuracy of the speech recognizer. However, for
different kernels, the improvements arc different. Up-
to-date, we have not found theoretical rules that ¢an be
used to determine which kernel is better. Perhaps, this
is onc of the most important concentration in our
recent future work.

For cach kernel, if the free parameter is changed,
the recognition performance may be ditferent. For
Choi-williams kernel, the free parameter is tested with



a value of 1.0, 5.0, and 10.0 respectively, the
recognition rates are about the same. The result
presented in the Table I1.and Table IV.are for ¢ =1.
For compound kernel, theO is tested with a value of
0.5, 1.0, 2.0and 5.0, the f3 is tested with a value of 1/3,
1/2 and 1 respectively, we find that when & =2.0
and 3=1/2, the result is the best one which is
shown in the Tables above. The Bessel kernel is tested
with & of a value of 0.4, 0.45 and 0.5, the difference
of ¢ makes very little difference in the error rate. For
the XY kernel, the free parameter - & 1is tested with a
value of 0.5, 0.6, 0.7, and 0.8. The g(6,T) is taking
a constant value, say 1. The results shown in Table II
and Table IV are for o =0.7. These results are
significantly better than that for & =05, a=0.6
and o =0.8. For Gaussian kernel, the g(8,T) is

also taking a value of 1 for all @ and7T. The free

parameter O is tested with a value of 10*, 10° and
10°, and B with 10*, 10° and 10°. nissetto 1.

The results shown are for o =10° and S =10’.

5. Conclusion

This paper introduces a new feature of speech
signal called temporal cepstrum which is based on the
Cohen’s class bilinear time-frequency distribution.
Experiments show that, comparing with the LPCC and
MFCC which are based on the traditional short-time
Fourier analysis technique, the temporal cepstrum can
improve the recognition accuracy. However, for
different kernels, the improvements are different. So
far, there are no mathematical rules for determining
which kernel is better for speech recognition. Our
further work may concentrate on the following two
aspect, one is to seek kernels which can accurately
represent the speech signal, another is to find more
effective numerical implementation algorithms for the
Cohen’s class of Time-frequency distribution.
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