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Abstract: Although short-time Fourier Analysis 
based features such as LPCC and MFCC have been 
widely used in state-of-the-art speech recognizers, the 
short-time analysis technique suffers from the well- 
known trade-off between time and frequency resolution 
and works under the assumption that speech signal is 
short-time stationary. This paper investigates an 
approach to use Cohen's class bilinear time-frequency 
distributions representing speech signal for speech 
recognition. Preliminary experiments show that the 
new feature can better represent speech signal and can 
improve the accuracy of a speech recognizer. 

1. INTRODUCTION 
Time-frequency (TF) representations have been 

used extensively for speech analysis and speech 
recognition. State-of-the-art systems for speech 
recognition segment the speech signal into short 
intervals on the order of tens of milliseconds. Short- 
time analysis is then used to estimate the parameters of 
each segment under the implicit assumption that the 
signal is quasi-stationary over the intervals. However, 
short-time analysis, so far the most common tool for 
analyzing the speech signals, suffers from the well- 
known trade-off between time and frequency resolution. 
11' one specifics the instant at which the frequencies 
(xcur, one needs to shorten the time window. However, 
it' one decreases the time window, namely, if one 
locates the events in time, the frequency resolution is 
reduced. In addition, too short a window produces a 
poor spectral representation of the speech, is sensitive 
to temporal effects of voicing, and performs poorly in 
noise. While a longer window alleviates these effect 
somewhat, the quasi-stationary assumption is often 
violated, particularly lor the segment which transits 
from consonant to vowel. Hence, these fast time- 
varying segments of speech are often misclassified. 

Recently, there has been a surge of interest in the 
application of TF distributions to speech processing 

[lO][ll], which seeks a way to accurately represent the 
energy of a signal jointly in time and frequency. The 
Wigner distribution (WD) is the first TF distribution. 
In 1966, a generalized time-frequency representation 
named Cohen's class of time-frequency distribution is 
proposed by L. Cohen[ll. Cohen's class TF 
distribution is a kind of bilinear transform which 
makes no implicit short-time stationary assumption 
and can get very high time and frequency resolution 
simultaneously. 

This paper investigates a new technique which 
uses Cohen's class bilinear TF distribution to represent 
speech signal in the front-end processing of speech 
recognition. Experimental results show that, 
comparing with the LPCC and MFCC, the new 
technique can improve the accuracy of a speech 
recognizer. 

The remainder of this paper is arranged as 
follows: In section 2, the definition and some kernels 
of Cohen's class TF representation are introduced. 
And a new kind of feature based on the Cohen's class 
W representation is described in section 3. Section 4 
presents some experimental results on a speaker- 
dependent speech recognizer. And some important 
conclusions are presented in section 5 .  

2. Cohen's class TF distribution 
Cohen's class of distribution, by definition, is 

P ( r . o ) = - - S l l s ( H , z ) / . ( U + l ) f ' ( U - I )  1 z 
4x2 2 

dudzd6 (1) e ) B - ~ & - l ~ r  

Where f ( u )  is the time signal, f * ( u )  its complex 

conjugate and @(e, Z) the kernel defining a particular 
distribution. This procehs can be seen more clcarly by 
rewritten the above formula as[2] 
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given by 
z z 
2 2 ~ ( 8 ,  z) = f ( t  + - - ) f * ( t  - -)e’@dt (3) 

(2 )  and ( 3 )  indicate that Cohen’s class of 
distribution can be interpreted as the 2-D Fourier 
Transform of a weighted version of the ambiguity 
function (AF) of the signal to be analyzed. 

The kernel @ ( e , T )  may depend on the signal 
f ( 1 )  , but if it is independent of the signal, the TFD is 
said to have a bilinear structure of the signal. Different 
choices for the kernel function @(O,z) yields different 
TFD’s. For example, if a kernel is taking a constant 
value, say 1, i. e. 

With this choice of kernel, a well-known TFD called 
Wigner distribution (WD) is yielded. The WD satisfies 
a long list of desirable properties [ 3 ] ,  such as it meets 
marginal conditions, i. e. 

@(e, = 1 (4) 

m 

P1. j P( t ,  0)clw = Is( t f  (5 )  

P2. j P( t ,  o)dt = Is( @)I2 
-N 

T 

(6) 

The WD has the ability to provide simultaneous high 
resolutions in time and frequency axes which exceeds 
that of the short time Fourier method, thus avoid the 
TF resolution tradeoff that post on the short-time 
analysis technique. However. When the WD is used to 
analyze speech signal or some other kinds of 
multicomponent signals, it produces cross-terms 
between two frequency components at different 
locations in the time-frequency plane, which are 
difficult to interpret. To suppress cross-terms, many 
other kinds of kernels are proposed, such as Choi- 
wi 1 liaun s kernel [4]. 

-a 

@(e, q = e-@’72/0 (7) 
Where 0 is a free parameter that is used to control the 
mounts of cross-terms. If this parameter is chosen 
appropriately, die cross-terms may reduce to some 
extent, but it can not eliminate the problem entirely. 

In addition to the time and frequency marginal 
conditions and cross-terms, it is desired that the TFR 
meets some otlier desired properties. Some of these 
properties are: 

P3. Energy conservation 
P4. Real-valued 
PS. Translation covariance 
P6. Dilation covariance 
P7. Wide-sense support conservation 

P8. Instantaneous frequency concentration 
p9. Perfect localization on linear chirp signals 
PIO. Nonnegative 

About the details, readers may refer to [l]. Many 
works have shown that a Cohen’s class distribution 
with bilinear structure does not simultaneously satisfy 
the properties described above. For example, if it meets 
the property of nonnegative (PlO), it will not satisfy 
the two marginal conditions (Pl, E), which means 
that the Cohen’s class bilinear distribution are not true 
distributions. But we still use “distribution” as 
commonly used in the literature. 

In this paper, besides the Wigner and Choi- 
williams distributions, several other distributions are 
also selected to provide better representation of speech 
signal and improve the accuracy of the speech 
recognition system. They are: 
1. Margenau-Hill distribution (MH) [5] 

@(e, Z) = cos(neq (8) 
2.  Compound distribution [6] 

2 2 2  @(e,q = exp(-2n e z / o ~ ) ) c o s ( ~ ~ ~ & )  (9) 
where cT and p are two free parameters used to 
control the cross-terms of the distribution. 
3 .  Bessel distribution [’?I 

Where J ,  (.) is the first kind Bessel function of order 
one, 
4. XY distribution [8] 

is a positive scaling factor. 

Where g(6, Z) is a radially non-increasing function 
and a is a free parameter which controls the spread 
of the kernel function. 
S. Gaussian distribution [8] 

Where g ( 8 , T )  is also a radially non-increasing 

function and a and p are free parameters which 
control the spread of the kernel function, and n 
controls the flatness of the kernel along the axes. 

3. Temporal cepstrum 

For the use of Cohen’s class of Bilinear TF 
diwibution in speech recognition, a new feature called 
tmporal cepstrum is introduced in this section. The 
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proc:ctlrire 01. thc iicw tcaturc is shown as follows. 

I Bcsscl I 8.4% 

I Tc ni pc i r  a1 

MH 
Compound 

Bcsscl 

Fig. I Temporal ccpstrum 
For input speech signal. wc lirst estimated its 

t3iline;ir TF distrihutioii by using thc kcrncls rlcscrihctl 
iihovc. Aiitl li)r cuch time 01' interest. i i  incl-scale 
trimglc lilterhiink is used to srnwth ii slicc of thc TFD 
estiin:itcd. The log opcration ix  thcn applied to the 
iniigriitiidc 01' the TFD. which h;is hccn rcvcaled to 
Ii;ivc ; i t  least two clii.cts. one is for compressing the 
dyiiiunic range 0 1 .  the TFD, iintl anothcr is to  ch:inge 
the niiiltiplic;itivc coinponcnts i n  the spectral domain 
into iitlditivc o~ics  i n  the log-spcctriil domain. And 
tinally. scvcral sliccs 01' TFD combinctl togcthcr, ii two 
tliincnsiond tliscrctc cosine tr:insli)rm (TDCT) is usctl 
to dccorreliitc thc log-TFD to i i l l o w  the subsequent 
xtatixt ic i i !  rntwlcl to usc tliiigonid Inatrix, and it also has 
the cl'li.ct 01' cornprcssing the log-TFD into lowcr-order 
cocl~liciciits. 

10.5% 9.0%) 
8.Y% 23.3 % 
8.4% 27.6'7, 

4. experiments 

MH 
Coinnound 

The cxpcrimcnts have hccn pcrformcd to cv:iluate 
the rcc.ognition pcrlimnancc by using thc new acoustic 
p;ir;iinctcr. For compauixon. thc recognition results 
bawd on the hlFCC iuc iilso prcscntccl. 

Thc tl;it;ihasc r i ~ c d  is spoken i n  ~niinclauin. I t  
c'oiisis~s ot' 100 isolatsd \vorcls spokcii by live male 

spc;ikcrs ( i n  I .m7.1n3.rnl,inS) and onc lcrnulc spcakcr 
I 1.1  ) .  For eiich apcikcr. c x h  word is uttcrcd scvcn 
I I I I I C .  The ilirt;ihaSe is origin;illy recorded through a 
t L ~ l ~ . p l i o n c  h w i t c +  ;incl is sampled ;it XKH/. For the 
I I I  tL*i-iiiiccs 01- c x h  Lvortl. thc lirxt liw oiics are rccortlccl 
v i t 1 1  ; I  tclcphonc channcl. m c l  mother two uttcranccs 
itr-c \;trnplctl with two othcr tlilfcrcnt tclcphonc 
ch~ir~riels. I n  our cxpcrirncnts. thc tirst livc utteriinccs 
ot ~.,icIi yortl arc usctl lor training the HMM motlcls, 
;mtl ;uiothcr (\YO iiitcritriccx ;ire for lexting. 

The speech recognii.cr is il ~pc;~cr-clcpeiideiit one 
Nhich  IS based o n  continuous ttcnsity HMM using 
i\holc word rnodcls. Motlcls iuc left-to-right with no 
stirtc triinsitioris. Eight states iuc usctl fix each Incxlel. 
The tr;iiiiing itcriition hcgins with unilbrmly 
pr( )hi i hi I i xt i c In ()de IS. 

To extiinate the MFCC, the speech is scgmcntcd 
into li;uiics ol.4Xins (384 samples) with 24ms overlap. 

I 10.5% I 9.0%) 
I X.Y% 23 3 %  

The tlata is preprocessed using ii 4Xms Hamming 
window m t l  prccmphasixd with a factor of 0.97. In 
temporal ccpstrum estimation. we still segment the 
spccch signal into frames of 4Xms hut with 42ms 
overlap. A slicc of TFD is estimated every 6ms. And 
Four sliccs of TFD combined together, we use ii  TDCT 
to tlccorrclatc thc log-TFD into 12 cepstral cwfficicnts. 

The cxpcritncntal results iue shown in Tahle I, 
Tiihlc I t ,  Tiihlc I l l  and Tiihlc IV rcspcctivcly. 

I 27.6% -1 

Bascl ine I Word error rate 
M FCC I I -6% 

XY 

Tahlc 1. The hasclinc pcrformance of the recognizer 
(Spcakcr is ml )  

8.4% I 27.6% 

I Distribution I Word crror ratc 1Error rctluctionl 

Wipner 
Choi-Wtlliaun\ 

MH 
Compound 

Wigncr I 11.1% I 4.3%) 
Choi-Wilharns I 10.0% 13 nq, 

7.9% 6.0%) 
6.X% 19.0% 
6.8% 19.0% 
6.3% 25.0%) 

Table ! I .  The pcrformancc for different kernels 
(Speaker is m l )  

1 I Word error rate ~ 1 Baseline 

I Gaussian I S.X% 1 
Tiiblc IV. Thc pcrl0rmancc lor different kernels 

(Thc spcakcr is 11) 
From the rcsults, i t  c m  hccn seen that the use of 

Cohcn's class of hilinear TF distrihution can improve 
rhc accuracy of' the speech rccognizer. However, for 
different kcrncls. the improvements iuc cliffcrent. Up- 
to-date, wc haw not 1i)uncl thcorctical rulcs that C a n  hc 
used to dctcrminc which kernel is hcttcr. Perhaps, this 
is one of thc most important conccntration in our 
rcccnt luturc work. 

For cach kernel, if thc lrcc parameter is changecl, 
the recognition perforinancc iniiy hc different. For 
Choi-williams kernel, the lice parameter is tested with 
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a value of 1.0, 5.0, and 10.0 respectively, the 
recognition rates are about the same. The result 
presented in the Table I1 and Table IV are for d = 1. 
For compound kernel, t h e 0  is tested with a value of 
0.5, 1.0,2.0and 5.0, the p is tested with a value of 1/3, 
1/2 and 1 respectively, we find that when d = 2.0 
and p = 1 / 2 ,  the result is the best one which is 
shown in the Tables above. The Bessel kernel is tested 
with a of a value of 0.4, 0.45 md  0.5, the difference 
of a makes very little difference in the error rate. For 
the XY kemel, the free parameter a is tested with a 
value of 0.5, 0.6, 0.7, and 0.8. The g(8,Z) is talung 
a constant value, say 1. The results shown in Table I1 
and Table IV are for a = 0.7. These results are 
significantly better than that for a = 0.5, a = 0.6 
and a = 0.8 . For Gaussian kernel, the g(8,Z) is 

also taking a value of 1 for all 6 andZ . The free 

parameter a is tested with a value of lo4, lo5 and 

lo6, and p with lo4, 10’ and lo6. n is set to 1. 

The results shown are for a = lo5 and p = lo5 

5. Conclusion 
This paper introduces a new feature of speech 

signal called temporal cepstrum which is based on the 
Cohen’s class bilinear time-frequency distribution. 
Experiments show that, comparing with the LPCC and 
MFCC which are based on the traditional short-time 
Fourier analysis technique, the temporal cepstrum can 
improve the recognition accuracy. However, for 
dil-ferent kernels, the improvements are different. So 
far, there are no mathematical rules for determining 
which kernel is better for speech recognition. Our 
further work may concentrate on the following two 
aspect, one is to seek kernels which can accurately 
represent the speech signal, another is to find more 
effective numerical implementation algorithms for the 
Cohen’s class of Time-frequency distribution. 

Reference 
[ 11 Leon Cohen, “Time-Frequency Distributions - 

A Review”, Proceedings of the IEEE, Vol. 77, 
No. 7, July, 1989. 
Douglas L. Jones and kchard G. Baraniuk, “An 
Adaptive Optimal-Kernel Time-Frequency 
Representation,” IEEE Transactions on Signal 
Processing, Vol. 43, No. 10, October 1995. 

[3] W. Martin and P. Flandrin, “Wigner-Ville 
Spectral Analysis of Nonststionary Processes”, 

[2]  

BEE Transactions on Acoustics , Speech and 
Signal Processing, Vol. ASSP-33, No. 6, 
December 1985. 
H. I. Choi and W. Williams, “Improved Time- 
Frequency Representation of Multicomponent 
Signals Using Exponential Kernels,” IEEE 
Transactions on Acoustic, Speech and Signal 
Processing, Vol. 37, June 1989. 

[4] 

[71 

[91 , 

H. Margenau and R. N. H111, “Correlation 
Between Measurements in Quantum Theory,” 
Prog. Theor. Phys., Vol. 26, 1961, PP. 722-738. 
Bilin Zhang and Shunsuke, “A Time-Frequency 
Distribution of Cohen’s Class with a Compound 
Kernel and its Application to Speech Signal 
Processing”, IEEE Transaction on Signal 
Processing, Vol. 42, No. 1, January 1994. 
Zhenyu Guo, Louise-Gilles and Howard C. Lee, 
“The Time-Frequency Distributions of 
Nonstationary Signals Based on a Bessel 
Kernel,” IEEE Transactions on Signal 
Processing, Vol. 42, No. 7, July 1994, PP. 1700- 

1707. 
Adam B. Fineberg and Kevin C. Yu, “Time- 
Frequency Representation Based Cepstral 
Processing for Speech Recognition,” In 
Proceeding of ICASSP96, Atlanta, Georgia, 
USA, May 1996, PP. 25-28. 
Richard N. Czerwinski and Douglas L. Jones, 
“Adaptive Cone-Kernel Time-Frequency 
Analysis,” E E E  Transaction on Signal 
Processing, Vol. 43, No. 7, July 1995. 
James W. Pitton, Les E. Atlas and Patrick J. 
Loughlin, “Application of Positive Time- 
Frequency Distributions to Speech Processing,” 
IEEE Transactions on Speech and Audio 
Processing, Vol. 2, No. 4, October 1994. 
James W. Pitton, Kuansan Wang and Biing- 
Hwang Juang, “Time-Frequency Analysis and 
Auditory Modeling for Automatic Recognition 
of Speech”, Proceedings of the IEEE, Vol. 84, 
No. 9, Spetember 1996. 

677 


