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ABSTRACT 

Noise robust speech recognition has become an important 
area of research in recent years. The fact that human listeners 

can recognize speech in the presence of strong noise inspires 

researchers to imitate some aspects of human auditory 

perception in automatic speech recognition. This has led to 

sub-band based speech recognition in which the full-band 

speech is split into several sub-bands and where each sub-band 

is processed separately. The resulting multi-band features can 

be combined in various ways for carrying out speech 

recognition task. Reported results have shown the superiority 

of this technique for speech recognition in strong noise 

conditions. In this paper, we will briefly review the multi-band 

feature extraction. We will then propose a block discrete 

cosine transform (BDCT) with its kernel transformation matrix 

being derived from the decomposition of the kernel of the 

discrete cosine transform (DCT). We show that the BDCT 

approximates the DCT in keeping information in decorrelating 

a sequence. When the BDCT is applied to the mel frequency 

filter bank energies (FBEs) to replace the DCT to convert them 

to cepstral coefficients, a new kind of MFCCs is yielded. We 

call these new features Block discrete cosine transform based 

MFCCs (BMFCCs) and show that a sub-band processing idea 

is implicit in the BMFCCs since the BDCT automatically 

divides the mel frequency FBEs into two sub-bands. We will 
report various speech recognition results using the BMFCCs as 

well as the comparison with the multi-band MFCCs and full-
band MFCCs to elaborate the properties of the BMFCCs. 

1. INTRODUCTION 

Significant advances have been made in recent years in the 

area of automatic speech recognition. It is now possible to use 

a speech recognition successfully in a controlled environment. 
However, the performance of a speech recognizer suffers 

dramatic degradation when there is a mismatch between 

training and testing environments [1-3]. There are many 

factors that contribute to this mismatch. The main factor, that 
causes the mismatch, is the presence of ambient background 

noise in the speech signal. Maintaining good recognition 

accuracy in noisy conditions has become one of the 

challenging areas of research currently. 

The fact that human listeners can achieve and secure very 

high recognition accuracy even in the conditions in which the 

signal to noise ratio becomes extremely low inspires 

researchers to mimic some aspects of human auditory 

perception in automatic speech recognition. Psychoacoustic 

evidence shows that human beings process speech on a narrow 

band basis. An intuitive way to imitate the auditory system is 

to split the full-band speech into several sub-bands and 

represent each sub-band individually. This has led to a 

technique called sub-band based speech recognition.  

One straightforward way to achieve sub-band representation 

is to divide the full-band speech signal into several sub-bands 
and convert each sub-band spectrum into several cepstral 
features. These sub-band features are then concatenated 

together as a single feature vector and used for speech 

recognition [4-7,12-14]. Results reported in the literature have 

shown the advantages of these multi-band features for noisy 

speech recognition. However, the performance for clean 

speech is often poorer as the features from different sub-bands 
may be correlated.  Furthermore, the number of sub-bands and 

the boundaries for each sub-band are empirical values which 

have to be manually adjusted to gain good performance for a 

given recognition task. 

An alternative is to model the sub-band features 

independently and to combine the likelihood score at some 

segmental level [8-10]. Such a combination may enable a more 

flexible way to manipulate the sub-band features to permit 
further enhancement in performance. An unsolved problem 

with this approach is how to determine the weighting function 

to guarantee at least a sub-optimal combination of sub-band 

features. 

In this paper, we will firstly review the extraction of multi-
band MFCCs. We will then propose a block discrete cosine 

transform (BDCT) with its kernel transformation matrix being 

derived from the decomposition of the kernel of the discrete 

cosine transform (DCT). We show that the proposed new 

transform behaves similarly with the DCT in keeping 

information in decorrelating a sequence.  

When the BDCT is applied to the representation of the mel 
frequency cepstrum in replacing the DCT, a new type of MFCCs 

is obtained. We call these new MFCCs Block discrete cosine 

transform based MFCCs (BMFCC). It is found that the BDCT 

automatically divide the power spectrum into two sub-bands, 
hence a sub-band processing idea is implicit in the new cepstral 
features.  

Various speech recognition experiments are carried out to 

test the properties of the BDCT and the BMFCCs. We will 
report some results as well the comparison with the multi-band 

and full-band MFCCs to elaborate the properties of these new 

features. 

2. MULTI-BAND MFCC 

Let ],,,[ 21 NeeeE �=  denote a sequence of log filter bank 

energies, where N is the number of filters in the filter bank, 

then the full-band cepstrum is computed from a DCT,  

ECX F ][=                                                        (1) 

Suppose we divide the speech signal into M sub-bands. In 

order to compute cepstral coefficients for the mth sub-band, we 

process each sub-band signal with a filter bank having mN  

filters. Thus these filter bank energies are given as 



  ,  ,} , , ,{  }, , , ,[{]  ,  ,  ,[
21 222211121121 ���� NNM eeeeeeEEEE ==

}] , , ,{ 21 MMNMM eee � . The cepstral coefficients for the mth 

sub-band can be computed through a DCT as follows: 

[ ] mm
m
S ECX =                                                     (2) 

Various ways can be used to merge the sub-band cepstral 

vectors. If these vectors are directly concatenated together as a 

single feature vector, i.e., ],,,[ 21 M
SSSS XXXX �= , this 

merging strategy is called feature combination (FB) [5] and the 

resulting cepstra are called multi-band features.  

3. BLOCK DISCRETE COSINE 
TRANSFORM 

The DCT, which has been found to be asymptotically 

equivalent to the optimal Karhunen-Loeve transform (KLT) in 

decorrelating a signal sequence, has shown its special 
applicability in cepstral analysis of speech signal. For a vector 
X containing N sample data points, its DCT is a vector 

cX given by  

XCX c ][=                                                               (5) 

where ][C  is a N  by N  kernel conversion matrix of the DCT. 
The (m,n)  element of this matrix is defined as [15] 
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Because of the symmetrical properties of the cosine 

function, ][C  can be decomposed into sparse matrices. We 

show, in what follows, that if N is an even number, ][C  can be 

decomposed as: 
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where ][ 2/NI is an 2/N  by 2/N identity matrix, ]
~

[ 2/NI is an 

2/N by 2/N opposite identity matrix, ][D  is an N  by N  

conversion matrix and ][B  is an N  by N  butterfly matrix. 

If ][D  is used as a kernel transform matrix, a new discrete 

transform is formed. Since ][D  is block matrix, we call this 

new transform the block  discrete cosine transform (BDCT).  

4. PROPERTIES AND PERFORMANCE 
OF THE BDCT 

A. The unitarity property 

Let md denote the ith column vector in the matrix ][D , then 

it can be shown that the inner product of two such vectors is 
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where 

N
mg  denotes the mth column vector of the N  by N  

matrix ][C , 2/NP = , and 
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Combining (5), (6) and (7), we can now represent the unitarity 

property of the BDCT by  

mkkm dd δ=,                                                      (13) 

B. Energy packing efficiency 

The energy packing efficiency (EPE) is used as a criterion 

that measures the effectiveness of a transform in data 

compression. It is defined as the energy proportion contained 

in the first M of N transform coefficients. Rao and Yip [16] 
showed that the EPE is equivalent to the ratio of the sum of the 

first M diagonal elements to the sum of all the N diagonal 
elements of the auto-covariance matrix in the transform 

domain. Let ][A  be the data covariance matrix and ][T be the 

transform. Then, the covariance matrix in the transform 

domain ][ TA  is given by 

1]][][[][ −= TATAT
                                           (14) 

Thus, the EPE for the transform, by definition, is 
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One standard comparison the EPE for different transforms 

is based on the assumption that the random sequence is 

governed by a first-order Markov process with the adjacent 
correlation coefficient ρ  specified. In Figure 1, comparisons 

are shown for the EPEs of the BDCT and DCT based on a 

Markov-1 signal of 9.0=ρ  and N=24. 
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Figure 1. EPEs for DCT and BDCT  
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An inspection of Figure 1 reveals that the EPE of the BDCT 

is extremely close to that of the DCT when 10≥M , which 

indicates the effectiveness of the BDCT in data compression. 

In cepstral analysis used for speech recognition, the first 

cepstral coefficient (
0C ) is often neglected, and the succeeding 

M  coefficients are used as features. For this reason, we show 

in Figure 2, the EPE for both the BDCT and the DCT. One can 

see the efficiency of the BDCT in keeping information in 

cepstral analysis. 
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Figure 2. EPEs after removing the first coefficient 

5. MEL FREQUENCY CEPSTRA USING 
THE BDCT 

Mel frequency cepstrum coefficients (MFCCs) are perhaps 

the most widely used features for speech recognition. 

Conventionally, the MFCCs are computed by applying a DCT 

to the log mel filter bank energies. In this paper, we proposed 

to use the BDCT to replace the DCT in the estimation of the 

MFCCs. The resulting new MFCCs are called Block discrete 

cosine transform based MFCCs (BMFCCs). The BMFCCs 

haven been shown to have the following properties: 

1. They may contain more information than the traditional 

MFCCs as the BDCT is shown to be able to preserve more 

information than DCT in cepstral analysis. 

2. A sub-band processing strategy is implicit in the BMFCCs. 

To see this more clearly, the NM ×  conversion matrix 

which transforms the FEBs to cepstral coefficients can be 

written as follows without losing any information. (We 

assume M and N are even numbers).  
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We can see that [D] is a block diagonal matrix. When it is 

applied to the FEBs, [D] automatically divides them into two 

sub-bands. 

6. SPEECH RECOGNITION 
EXPERIMENTS 

In this paper, we investigate the use of different features 

for speaker independent isolated speech recognition. The 

speech database used for this task is the ISOLET spoken letter 
database from OGI [11]. Here, the vocabulary consists of 26 

English letters (A-Z). From this database, we take 90 

utterances for each word from 45 male and 45 female talkers 

for training and 30 utterances for each word from 15 male and 

15 female talkers (different from training talkers) for testing. 
The original speech was sampled at 16 kHz. We down-sample 

the speech to 8 kHz using a lowpass filter with a cutoff 
frequency of 3.5 kHz. The speech signal is analyzed every 12.5 

ms with a frame width of 25 ms (with Hamming window and 

preemphasis).  

To test the robustness of different feature sets with respect 
to noise, we directly add some noise to the speech signal in the 

test set. The training speech is kept clean. The noise signals 

used are from NOISEX database [17]. We down-sample the 

noise signal from 16 kHz to 8 kHz. 

The recognition system uses a multi-mixture continuous 

density HMM framework. We use a 6-state continuous density 

HMM recognizer with probability density function 

approximated by a mixture of 5 multivariate normal 
distributions with diagonal covariance matrices.  

The feature sets investigated include: 

• FB MFCC (full-band MFCC): 12 MFCCs + 12 

∆ MFCCs. The Mel frequency filter bank consists of 24 

triangular filters. 
• MB MFCC (multi-band MFCC): 12 multi-band MFCCs + 

12 ∆  multi-band MFCCs. We divide the full-band 

spectrum into 2 sub-bands: (0-1257 Hz) (1104-4000 Hz). 
Each subband is passed though a filter bank which 

contains 12 mel-scale triangle filters. The resulting 12 

FBEs are converted to 6 MFCCs. We then concatenate 

these two sub-band MFCC vectors into a 12 dimensional 
sub-band MFCC vector. 

• BMFCC: 12 BMFCCs + 12 ∆ BMFCCs. The BMFCCs 

are computed from applying the BDCT to 24 mel 
frequency FBEs. 

The recognition results for this experiment under three 

different noise conditions are shown in Tables 1, 2 and 3.  

Feature set Clean speech 30dB 20dB 15dB 10dB 

FB MFCC 88.0 87.7 84.9 67.1 31.3 

MB MFCC 87.8 87.5 87.1 77.4 41.7 

BMFCC 89.5 89.6 88.0 75.4 35.1 

Table 1. Speech recognition accuracy (in %) in speech 

noise condition (Average speech spectrum). 

Feature set Clean speech 30dB 20dB 15dB 10dB 

FB MFCC 88.0 87.8 85.7 78.7 68.0 

MB MFCC 87.8 87.8 86.9 80.0 69.1 

BMFCC 89.5 89.4 89.4 82.6 73.5 

Table 2. Speech recognition accuracy (%) in machine 

gun noise condition (Calibre 0.50, repeated). 



Feature set Clean speech 30dB 20dB 15dB 10dB 

FB MFCC 88.0 88.0 87.6 87.1 84.7 

MB MFCC 87.8 87.8 87.7 87.3 84.6 

BMFCC 89.5 89.5 89.5 89.4 87.8 

Table 3. Speech recognition accuracy (%) in car noise 

condition ( Car-Volvo-340 120 km/h, 4th
 gear). 

From these experiment results, we can make following 

observations: 
1. The BMFCCs yield the best performance in clean speech 

and high SNR conditions. This demonstrates the 

superiority of the BDCT to the DCT in cepstral analysis 

for speech recognition. 
2. All sub-band based features are more robust than the full-

band MFCCs to three types of noise investigated.  
3. BMFCCs are more robust to the machine gun noise and car 

noise than the multi-band MFCCs. While its robustness to 

speech noise is slightly poorer than that of the multi-band 

MFCCs. Tthe reason for this is not clear.  We will perform 

further experiments with various speech databases and 

with more kinds of real noise before we draw a conclusion.  
 

7. CONCLUSION 

In this paper, we proposed a block DCT and applied it to 

the mel frequency cepstral analysis in speech recognition. We 

showed that a sub-band processing idea is implicit in the new 

features (BMFCCs). Experiment results based on a continuous 
density isolated speech recognizer revealed that the new 

MFCCs yield better recognition accuracy than full-band 

MFCCs in noise as well as in clean speech conditions.  
BMFCCs were also compared with the multi-band MFCCs 

in terms of their recognition performance. The results showed 

that the BMFCCs were able to yield better performance in 

clean speech and various noisy speech environments.  Thus, 
BMFCCs are more robust than the multi-band MFCCs under 
various noise conditions.  

In this paper, experiments are only performed for small 
vocabulary isolated speech recognition tasks. Work is in 

progress to test the BMFCCs and various sub-band based 

front-ends for large vocabulary continuous speech recognition 

in clean as well as noise conditions. 
 

REFERENCE 

[1] D. S. Pallett, et al, “1996 Preliminary Broadcast News 

Benchmark”, Proceedings of the 1997 DARPA Speech 

Recognition Workshop, International Conference Center 
Chantilly, Virginia, February 2-5, 1997 

[2] D. S. Pallett, et al, “1997 Broadcast News Benchmark 

Test Results: English and Non-English”, Proceedings of 
the DARPA Broadcast News Transcription and 

Understanding Workshop, Lansdowne Conference 

Resort, Lansdowne, Virginia, February 8-11, 1998. 
[3] D. S. Pallett, et al “1998 Broadcast News Benchmark 

Test Results: English and Non-English Word Error Rate 

Performance Measures”, Proceedings of the DARPA 

Broadcast News Workshop, Hilton at Washington Dulles 

Airport Herndon, Virginia, February 28-March 3, 1999. 
[4] P. McCourt, S. Vaseghi and N. Harte, “Multi-Resolution 

Cepstral Features for Phoneme Recognition Across 

Speech Sub-bands,” ICASSP’98, Seattle, USA, PP.557-
560. 

[5] S. Okawa, E. Bocchieri and A. Potamianos, “Multi-Band 

Speech Recognition in Noisy Environments,” 

ICASSP’98, Seattle, USA, PP.641-644. 
[6] A. Chen, S. Vaseghi and P. McCourt, “Transformation 

of Full-Band to Sub-band HMMS for Speech 

Recognition in Noisy Car Environments,” ARSU’99, 
Keystone, Colorado, December 1999, Vol. 1, PP. 31-34. 

[7] B. Doherty, S. Vaseghi and P. McCourt, “Linear 
Transformations in Sub-band Groups for Speech 

Recognition,” EUROSPEECH’99, Budapest, Hungary, 
September, 1999, PP. 1359-1366. 

[8] H. Bourlard and S. Dupont, “A mew ASR Approach 

Based on Independent Processing and Recombination of 
Partial Frequency Bands,” ICSLP’96, Philadelphia, 
October 1996. 

[9] H. Bourlard and S. Dupont, “Subband-based Speech 

Recognition,” ICASSP’97, PP. 1251-1254. 
[10] S. Okawa, T. Nakajima and K. Shiria, “A Recombination 

Strategy for Multi-band Speech Recognition Based on 

Mutual Information Criterion,” EUROSPEECH’99, PP. 
603-606. 

[11] K. K. Paliwal, “Decorrelated and Liftered Filter-Bank 

Energies for Robust Speech Recogntion,” 

EUROSPEECH’99, PP. 85-88. 
[12] R. Chengalvarayan, “Hierarchical Subband Linear 

Prediction Cepstral (HSLPC) Features for HMM-Based 

Speech Recognition,” ICASSP’99, PP. 409-412. 
[13] K. Yoshida K. Takagi and K. Ozeki, “Speaker 

Identification Using Subband HMMS,” 

EUROSPEECH’99, PP. 1019-1022. 
[14] S. Rao and W. A. Pearlman, “Analysis of Linear 

Prediction, Coding, and Spectral Estimation from 

Subbands,” IEEE Trans. on Information Theory, Vol. 42, 
No. 4, 1996, PP. 1160-1178. 

[15] A. D. Poularikas, “The Transforms and Applications 
Handbook,” IEEE Press, 1995. 

 [16] K. R. Rao and R. Yip, “Discrete Cosine Transform: 
Algorithm, Advantages, Application,” Academic Press, 
Inc, 1990. 

[17] A. Varga, et al, “The Moise-92 Study on the Effect of 
Additive Noise on Automatic Speech Recognition,” 

DRA Speech Research Unit, St. Andrew’s Rd., Malvern, 
Worcestershire, WR14 3PS UK. 

 


