
 Eurospeech 2001 - Scandinavia

Sub-Band Based Additive Noise Removal for Robust Speech 
Recognition 

J. Chen*�, K. K. Paliwal�* and S. Nakamura* 
* ATR Spoken Language Translation Research Laboratories 

Kyoto, 619-0288, Japan 
� School of Microelectronic Engineering, Griffith University 

Brisbane, QLD 4111, Australia 

E-mail: jingdong.chen@slt.atr.co.jp 

Abstract 

To make an automatic speech recognition system robust with 
respect to noise, we will probably have to solve two problems. 
One is the detection and identification of noise. Another is the 
consideration of noise effect during recognition process. In 
this paper, we will investigate several noise estimation 
approaches, such as moving average, long-term average, long-
term Fourier analysis, etc. We will then introduce a sub-band 
based scheme to remove the noise effect from corrupted 
speech to make recognition system immune to additive noise. 
We will report on experiments on TI digits database and 
NOISEX database to justify the proposed approach. 

1. Introduction 

There are many sources of acoustical distortion that can 
degrade the performance of speech recognition systems. For 
many speech recognition applications, the most important 
source of acoustical distortion is the additive noise. How to 
maintain good accuracy in the presence of noise has become 
one of the most challenging areas of the speech recognition 
research currently.  
There have been considerable interests in dealing with noise.  
The efforts include representing speech features which are 
robust to noise such as sub-band based features [1], and 
perception inspired features [2], filtering noise or estimating 
the parameters of the clean speech from corrupted speech 
signal such as Wiener filtering [3], Kalman filtering [4], 
spectral subtraction [5], RASTA [6], Cepstral mean removal 
[7], signal bias removal [8], and microphone array based 
front-end processing [9], and compensation of HMM model 
parameters to include the effects of noise or adaptation of 
HMM model parameters to take into account the 
environmental changes, such as  Parallel model compensation 
(PMC) in log spectral or cepstral domain [10], vector Taylor 
series approximation based model compensation in log 
spectral domain [11], Jacobian approach [12] , MLLR [13], 
transfer vector interpolation [14], etc.  
Although these techniques were experimented in speech 
recognition with certain success, there remains a great need to 
investigate new techniques that can accurately recognize 
speech in degradation environments. 

To make an automatic speech recognition system robust with 
respect to noise, we will probably have to solve two problems. 
The first one is the detection and identification of noise. 
Many noise robust recognition approaches require noise or 
noise parameters. For example, spectral subtraction needs to 
know the power spectrum of the noise. PMC requires an 
accurate noise model. Most speech enhancement methods 
need to know the SNR or noise parameters. Currently, 
majority of methods estimate noise during the period of 

absence of speech. They operate under the assumption that 
noise is stationary as opposed to the time-variant speech 
signal and that noise has same statistics during speech or 
absence of speech. This noise estimation approach often 
needs a front-end point detector which can distinguish noise 
segments from speech segments. 
The second problem with which we will have to face is the 
consideration of the effect of noise during recognition. This 
can be achieved through two ways which are: i) Removing 
noise from corrupted speech to recover clean speech 
parameters. ii) Compensating clean speech parameters to 
match the noise conditions. Spectral subtraction belongs to 
the first kind. It assumes that speech and noise are additive in 
spectral domain. Hence directly subtracting the spectrum of 
noise from that of the corrupted speech will recover the 
spectrum of clean speech signal. PMC, on the other hand, 
transforms the HMM model parameters trained in a noise-free 
speech environment to a noisy speech environment using an 
estimated noise model.  
In this paper, we will introduce an approach called sub-band 
based spectral subtraction to make recognition system robust 
to noise. We will address two issues. One is the estimation of 
noise effect. To accomplish this task, we will investigate 
several approaches such as the moving average method, long-
term average method, long-term Fourier analysis method, etc. 
Another is the removal of noise. To circumvent this problem, 
we will introduce a sub-band based subtraction strategy. We 
will report on experiments to justify our approach. 

2. Estimation of Noise Effect 
If )(ts  is the original clean speech signal, the received speech 
signal )(ty is modeled as 

)()()()(*)()( tntxtnthtsty +=+=                     (1) 

where )(th is the impulse response of channel distortion and 
)(tn the ambient noise. *  denotes the convolution operation, 

and )(tx  the noise-free speech. 
Speech signal is time-variant and non-stationary. It is usually 
analyzed on the frame-by-frame basis. For one frame of speech 
signal, the Eq. (1) is written as 

),(),())1(()(),( tkntkxktwtytky +=−−= τ          (2) 

where k denotes the frame index. )(tw is a window function 
which only has non-zero values when t is in [0,T]. T is length 
of the window.τ is the window shift. Assume that the noise in 
(2) is uncorrelated with speech signal, the power spectrum of 
the above received speech signal is  

),(),(),( fkNfkXfkY +=                               (3) 
There have been considerable efforts to estimate and to filter 
the noise term in the right hand side of Eq. (3). In this paper, 
we investigate and compare several noise estimation 
approaches shown below.  
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2.1 Estimation of noise from non-speech segments 

Intuitively, noise effect can be estimated during the absence of 
speech. This is the way to achieve noise estimates in the 
spectral subtraction [15]. We call this noise estimation 
approach ENS (Estimation from Non-Speech segments) for 
short. Obviously, this approach assumes that the noise 
estimate achieved in the absence of speech can represent the 
noise in the presence of speech. In addition, a good speech 
signal detector which can distinguish speech segments from 
non-speech segments is necessary for the method. 

2.2 Moving average method 

To avoid a speech signal detector, a continuous spectral 
subtraction (CSS) was proposed [15]. This method was 
shown to have advantages over spectral subtraction. In this 
approach, the average of M consecutive frames of short-term 
power spectra is used as a noise estimate, i. e.,  

    ∑
+−=

=
k

Mki

fiY
M

fkN
1

),(
1

),(ˆ                                 (4)  

where ),(ˆ fkN is the noise power spectrum at the kth frame. 
We call this estimation approach moving average and 
abbreviate to MA. 

2.3 Sequential estimation 

Inspired from CSS and sequential signal bias removal [8], we 
introduce a sequential way to achieve noise estimates, i.e., 

),(),1(ˆ)1(),(ˆ fkYfkNfkN γγ +−−=             (5) 
where ),1(ˆ fkN −  is the noise estimate at the (k-1)th frame 
and γ an updating factor. This method is called SE for short.  

2.4 Long-term average 

 For some recognition systems, all frames of speech for a test 
utterance are available simultaneously. In this case, after the 
MA approach, we can use the average of the short-term power 
spectra over all frames as the noise estimate for a certain test 
utterance. Namely, 
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Note that in this approach, all frames in one utterance share a 
single noise estimate. This method is shortened for LTA. 

2.5 Long-term Fourier analysis method 

It was found that phonetic information of speech is encoded in 
the changes of the speech spectrum over time. Relatively less 
phonetic information is encapsulated in the long-term speech 
spectrum. Noise, however, can be treated as a stationary 
process. Long-term spectrum will provide a good estimate of 
noise. Based on this fact, we propose to estimate noise using 
long-term Fourier analysis, i.e., 
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where ][⋅F denotes Fourier Transform, )(ly  is the discrete 
version of speech signal shown in Eq. (1), )(lw  is a window 
function, �  a normalization factor which is defined as 

∑=
l

lw )(Lζ , and  L  is  the  length  of  the  Fourier  Transform.  

Noting that the noise effect estimated from Eq. (7) has a much 
longer length than that of short-term power spectrum, we 
therefore need to warp it to have a same length as the power 
spectrum of each frame. We should also point out that the 
short-term power spectra should be normalized in a similar 
way as in Eq. (7) before one subtract this noise estimate from 
them. 

3. Noise Effect Removal 
Once we get the estimates of noise, the next step would be 
how to remove noise effect from corrupted speech signal to 
recover clean speech spectra or parameters. This can be done 
by spectral subtraction which is defined as follows [15] 
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where ),( fkYss is the power spectrum of the enhanced speech 
after spectral subtraction, α  is an over-estimation factor, and 
β is to define the spectral flooring.  
In this paper, rather than directly using Eq. (7), we introduce a 
sub-band based subtraction scheme. Suppose we divide the 
speech signal into B sub-bands, and two cutoff frequencies of 
the ith sub-band are denoted as i

Lf  and i
Uf , the sub-band 

based spectral subtraction is defined as 
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where ),( fkY i , ),(ˆ fkNi  and ),( fkY i
sbs

are power spectrum of 
corrupted speech, noise estimate and power spectrum of  the 
enhanced speech for the ith sub-band, and iα  and iβ  are sub-
band dependent over-estimation factor and spectral flooring 
respectively.  As it will become clear soon, this sub-band 
based subtraction scheme has advantages over the spectrum 
subtraction for noisy speech recognition.  
 In this paper, we divide full-band into 24 sub-bands on the 
mel-scale.  The cutoff frequencies of each sub-band are set to 
be same as what adopted in the mel-scale triangle filter banks. 
In such circumstance, Eq. (8) can be alternatively expressed as 
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where )(kEi
Y  is the output of the ith triangle filter when 

),( fkY  is passed through the triangle filter bank, and )(ˆ kEi
N

 
the output of the same filter with its input being ),(ˆ fkN . 
In this paper, a same α  is used across all sub-bands. So is the 
β . The selection of sub-band dependent α  and β  is 
currently under investigation.  

4. Experiments 
We performed quite a few experiments for connected digit 
speech recognition in various noise conditions to evaluate the 
introduced approaches. Results from some of the experiments 
are reported in this paper. 

4.1 Speech and noise database 

The speech database used is the TI connected digits database 
[16]. This database contains digit strings uttered by adult 
speakers and children as well. However, only digit strings 
from 225 adult talkers are used in our experiments. These 
strings are originally divided into training set and test set for 
consistency of comparison of results among different 
researchers.  
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The vocabulary in this database consists of 11 words which 
include 10 digits and an “oh”. Each talker uttered 77 
sequences of these words, consisting of 2 tokens of each of the 
11 words in isolation, and 11 strings of each of 2, 3, 4, 5, and 
7 digits. The digit strings were recorded in an acoustically 
treated sound room with a sampling frequency being 20 kHz.  
For the comparison with the recognition results reported, we 
downsampled speech to 8 kHz using Matlab downsampling 
function.  
To test the robustness of different approaches with respect to 
noise, we directly add some noise to the speech signal in the 
test set. The training speech is kept clean. The noise signals 
used are from NOISEX database [17]. The noise signal 
provided in this database is sampled at 16kHz. To match its 
bandwidth to the speech signal, we downsampled the noise 
signal to 8 kHz. 

4.2 Recognition system 

In our experiments, the HTK speech recognition system is 
used to perform the recognition task. This was configured as a 
gender-independent mixture Gaussian HMM system. The 
model set consists of 11 word-models, a silence model and a 
short pause model. Except the short pause, each model has 6 
emitting states. The short pause model has only one emitting 
state. A mixture of 8 multivariate Gaussian distributions with 
diagonal covariance matrices is used for each emitting state to 
approximate its probability density function. 

4.3 Spectral subtraction vs. sub-band based subtraction    

The first experiment is performed to compare the subtraction 
strategy defined in the spectral subtraction (Eq.7) with the 
sub-band based subtraction shown in Eq. 8. The noise effect, 
in this experiment, is estimated from non-speech segments 
(ENS method). Three feature sets are investigated. They are 
traditional MFCCs, MFCCs computed after spectral 
subtraction (denoted as SSMFCC), and the MFCCs computed 
after sub-band based spectral subtraction (denoted as 
SBSMFCC). Each feature vector consists of 39 coefficients 
which include 12 MFCCs, normalized frame energy and their 
first and second order differentials. In both spectral subtraction 
and sub-band based subtraction, β  and iβ  are fixed to 0.1, 
and α  and iα  are set to 0.6. The recognition results are 
shown in Table 1. 

Table 1 a: Word accuracy in speech noise condition 
SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 

MFCC 18.8 41.3 72.6 91.6 97.2 98.7 99.0 
SSMFCC 21.9 47.1 75.9 92.8 97.4 98.8 98.9 

SBSMFCC 26.1 52.6 78.4 92.7 97.3 98.8 99.0 
Table 1 b: Word accuracy in machine-gun noise condition 
SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 

MFCC 80.2 87.6 93.6 97.3 98.4 98.9 99.0 
SSMFCC 81.0 87.8 93.3 96.6 98.2 98.9 98.9 

SBSMFCC 83.0 90.1 95.0 97.7 98.6 99.0 99.0 
Table 1 c: Word accuracy in Lynx noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 28.6 56.8 82.1 93.9 97.5 98.7 99.0 

SSMFCC 39.4 66.6 87.0 95.4 97.9 98.8 98.9 
SBSMFCC 42.3 68.8 87.8 95.7 98.1 98.9 99.0 

An inspection of Table 1 reveals that: 1) Both spectral 
subtraction and sub-band based noise removal approach are 
helpful to improve the robustness of the recognition system. 2) 
Sub-band based subtraction scheme consistently performs 
better than the spectral subtraction approach in both noisy and 
clean speech environments.  
Since the sub-band based subtraction scheme has shown its 
superiority, we fix the subtraction process to sub-band based 
subtraction in the subsequent experiments.  
4.4 Different noise estimation approaches    
The second experiment is carried to test the effects of different 
noise estimation approaches on the recognition performance.  
The features used are MFCCs computed after sub-band based 
spectral subtraction. Each feature vector contains 39 
coefficients as described before. Since we have 5 different 
ways to estimate noise, we have 5 different types of MFCCs 
after noise removal. They are denoted as ENS, MA, SE, LTA, 
and LTF without leading any confusion.  
For noise estimation, the M parameter in the MA approach is 
chosen to be 30 frames and the γ  factor in the SE method is 
set to 0.04. We should point out that, for different noise 
estimation approaches, the parameters used in the sub-band 
based subtraction should be optimized separately. This is done 
by performing a group of recognition experiments. We fix the 
β  parameter to 0.1 and change α  from 0.2 to 0.8 with an 
increment of 0.1.  We observed that when 6.0=α , the ENS 
method yields its best performance. The MA, SE and LTA 
approaches generate the highest accuracy at 5.0=α . While 
LTF shows its best performance when 4.0=α .  Hence in the 
following comparison experiments, we fix β  to 0.1, and set 

6.0=α for the ENS, 5.0=α  for the MA, SE and LTA 
methods, and 4.0=α for LTF approach.  
The recognition accuracies for the whole test set of TI 
database in different noise conditions are shown in Table 2.  

Table 2 a: Word accuracy in speech noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 18.8 41.3 72.6 91.6 97.2 98.7 99.0 
ENS 26.1 52.6 78.4 92.7 97.3 98.8 99.0 
MA 21.36 46.82 76.9 93.6 97.7 98.7 99.0 
SE 20.8 42.9 71.3 90.6 97.2 98.5 99.0 

LTA 34.8 59.8 84.3 95.2 97.9 98.8 99.1 
LTF 30.3 55.3 82.3 95.1 97.9 98.9 99.2 

Table 2 b: Word accuracy in machine-gun noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 80.2 87.6 93.6 97.3 98.4 98.9 99.0 
ENS 83.0 90.1 95.0 97.7 98.6 99.0 99.0 
MA 85.2 91.9 96.3 98.2 98.9 99.1 99.0 
SE 82.3 89.2 94.8 97.7 98.7 99.0 99.0 

LTA 86.2 92.7 96.8 98.5 98.9 99.1 99.1 
LTF 84.5 92.0 96.6 98.5 98.9 99.1 99.2 

Table 2 c: Word accuracy in Lynx noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 28.6 56.8 82.1 93.9 97.5 98.7 99.0 
ENS 42.3 68.8 87.8 95.7 98.1 98.9 99.0 
MA 30.2 59.3 84.5 95.5 98.2 98.7 99.0 
SE 27.4 52.4 79.3 94.2 97.9 98.5 99.0 

LTA 44.1 68.6 87.7 95.8 97.9 98.8 99.1 
LTF 40.1 65.8 86.8 95.8 98.0 98.8 99.2 
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From the above experiment, we can make following 
observations. 1) Subtraction of noise estimates achieved from 
each approach is able to improve the robustness of the system. 
2) LTA yields the highest robustness with respect to noise 
among the approaches investigated. 3) While the robustness of 
the LTF approach is slightly inferior to that of the LTA, it 
yields a little better performance in high SNR conditions.  

4.5 Combination of noise removal and CMR  

Cepstral mean removal (CMR) is shown to be an effective yet 
simple way to deal with convolution distortions. In contrast, 
the noise removal approach aims at coping with additive noise. 
This experiment is performed to combine these two methods 
to further improve recognition performance. The feature sets 
investigated include the MFCC and the MFCC computed after 
sub-band based noise removal followed by a CMR processing. 
The configuration of features and parameters used in the 
subtraction are same as that in section 4.4. The recognition 
results are shown in Figure 3, where * denotes the CMR 
processing.  

Table 3 a: Word accuracy in speech noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 18.8 41.3 72.6 91.6 97.2 98.7 99.0 
MFCC* 20.7 46.7 77.2 92.7 96.8 98.1 98.8 
ENS* 31.7 57.5 81.0 93.4 97.4 98.8 99.1 
LTA* 42.3 71.8 89.7 96.0 97.6 98.6 99.1 
LTF* 38.1 68.9 89.3 96.0 97.8 98.7 99.1 

Table 3 b: Word accuracy in machine-gun noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 80.2 87.6 93.6 97.3 98.4 98.9 99.0 
MFCC* 81.9 88.8 94.2 97.4 98.5 98.8 98.8 
ENS* 87.0 93.1 96.9 98.4 98.8 99.0 99.1 
LTA* 90.6 95.5 97.8 98.7 99.0 99.1 99.1 
LTF* 89.9 95.1 97.7 98.7 99.0 99.2 99.1 

Table 3 c: Word accuracy in Lynx noise condition 

SNR 0dB 5dB 10dB 15dB 20dB 30dB ∞ 
MFCC 28.6 56.8 82.1 93.9 97.5 98.7 99.0 
MFCC* 26.9 57.0 83.9 94.6 97.1 98.2 98.8 
ENS* 42.4 67.5 86.8 95.3 97.9 98.8 99.1 
LTA* 53.1 79.5 92.5 96.6 97.8 98.6 99.1 
LTF* 50.0 78.1 92.3 96.7 98.0 98.8 99.1 

From this experiment, we observed that: 1) In most cases, the 
CMR can improve the speech recognition performance. 2) The 
combination of CMR and noise removal approach and yield 
further improvement. 3) Not surprisingly, the LTA, combined 
with a CMR process, yields the best performance. 

5. Summary 
Several approaches were investigated to estimate the noise 
effects. These included estimation of noise from non-speech 
segments, moving average approach, sequential estimation 
method, long-term average method and an approach based on 
long-term Fourier analysis.  
A sub-band based noise removal approach was proposed and 
verified. Experiments showed that removing noise effect 
estimated using the LTA and LTF methods from corrupted 
speech could effectively improve recognition performance in 
noisy conditions, while maintaining the same or even yielding 
slightly better recognition accuracies in clean speech 

environment.  
The combination of noise removal approaches and cepstral 
mean removal led to further improvement of recognition 
performance.  
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