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Abstract—Bell Laboratories layered space-time (BLAST)
wireless systems are multiple-antenna communication schemes
that can achieve very high spectral efficiencies in scattering en-
vironments with no increase in bandwidth or transmitted power.
The most popular and, by far, the most practical architecture is
the so-called vertical BLAST (V-BLAST). The signal detection
algorithm of a V-BLAST system is computationally very intensive.
If the number of transmitters is and is equal to the number
of receivers, this complexity is proportional to 4 at each
sample time. In this paper, we propose a very simple and efficient
algorithm that reduces the complexity by a factor of .

Index Terms—Antenna array processing, Bell Laboratories lay-
ered space-time (BLAST) architecture, multiple-input–multiple-
output (MIMO) systems.

I. INTRODUCTION

T ELATAR [1] and Foschini [2] showed that the multipath
wireless channel is capable of huge capacities, provided

that the multipath scattering is sufficiently rich and is properly
exploited through the use of an appropriate processing archi-
tecture and multiple antennas (both at transmission and recep-
tion). The original architecture proposed in [2], which is called
the diagonal Bell Laboratories layered space-time (D-BLAST),
is theoretically capable of approaching the Shannon capacity
for multiple transmitters and receivers, but it is very complex
to implement. A simplified version known as vertical BLAST
(V-BLAST) was proposed in [3] and [5] and can still achieve a
substantial portion of that capacity. For example, the authors in
[3] have demonstrated, using a laboratory prototype and in an
indoor environment, spectral efficiencies of 20–40 b/s/Hz at av-
erage signal-to-noise ratios (SNRs) ranging from 24 to 34 dB.
In the rest, we will focus on signal detection algorithms in the
V-BLAST systems.

In a V-BLAST system, a data stream is split into un-
correlated substreams, each of which is transmitted by one of
the transmitting antennas. The substreams are picked up
by receiving antennas after being perturbed by a channel
matrix . The substream signal with the highest SNR is de-
tected first, and this involves the calculation of the pseudo-in-
verse of using the zero-forcing algorithm or the calculation
of a minimum mean-square error filter. The effect of the de-
tected symbol as well as the effect of the corresponding channel
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is subtracted from the received antennas. This process repeats
with the next strongest substream signal among the remaining
undetected signals. Thus, this algorithm detects thesymbols
in iterations, and it is proven in [3] that this decoding order
is optimal from a performance point of view. However, as will
be shown later, the complexity required to achieve this perfor-
mance is very high, which makes it difficult to be implemented
in real-time systems. Hassibi proposed a square root method for
V-BLAST signal detection, which reduces the computational
complexity by an order of magnitude when the number of an-
tennas is large [4]. Thus far, however, the quite small number of
antennas (e.g., four or eight) is more interesting in practice, and
a real-time implementation cannot benefit from the square-root
method. In this paper, we are going to develop a fast V-BLAST
algorithm that is more efficient than the existing methods for
any number of transmitting/receiving antennas.

This paper is organized as follows. Section II defines the
signal model and gives the channel capacity. In Section III, we
explain in detail the V-BLAST algorithm. In Section IV, we
show how to derive a fast algorithm for BLAST. Section V eval-
uates the complexity of different algorithms. Finally, we give
our conclusions in Section VI.

II. SIGNAL MODEL AND CHANNEL CAPACITY

The BLAST architecture is a multiple-input multiple-output
(MIMO) channel where a single user uses a communication
link comprising transmitting antennas and receiving an-
tennas in a flat-fading environment (meaning that the signals are
narrow-band). At the receivers, at sample time, we have

(1)

where we have the equation at the bottom of the next page,
which is the -dimensional received vector

...
...

. . .
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is an complex matrix assumed to be constant for
symbol periods, vectors and are, respectively, of length

and

is the -dimensional transmitted vector

is a zero-mean complex additive white Gaussian noise (AWGN)
vector with covariance

(2)

and and denote, respectively, transpose and conjugate trans-
pose of a matrix or a vector.

The transmitted vector has a total power . This power
is held constant, regardless of the number of transmitting an-
tennas , and corresponds to the trace of the covariance matrix
of the transmitted vector

tr Constant

(3)

In the rest of this paper, we suppose that all the antennas transmit
with the same power

so that

(4)

We now define a parameter that relatesand as

(5)

This parameter corresponds to the average receive SNR per an-
tenna when the average power of channel coefficients is 1 as
assumed in the flat-fading channel model.

An original information sequence for wireless transmission
is demultiplexed into data sequences ,
(called substreams), and each one of them is sent through a
transmitting antenna. These substreams are assumed to be
uncorrelated, which implies that the covariance matrix of the
transmitted vector is diagonal:

(6)

We also suppose the following:

• .
• has full column rank, i.e., rank .

Here, we assume that the transmitter has no knowledge of the
channel. In this case, the mutual information between the inputs
and outputs of the ( ) flat-fading channel is given by the
familiar formula [1], [2]

bps
Hz

(7)

One very important observation that can be made from (7) is
that, for rich scattering channels (meaning that the elements of
the channel matrix are independent of one another), the MIMO
channel capacity grows roughly proportionally to [6].

III. V-BLAST A LGORITHM

In order to detect the transmitted symbols at the receivers, the
complex channel matrix needs to be known. In practice, is
identified by sending a training sequence (known at the recep-
tion) at the beginning of each burst [7]. The length of this burst
is equal to symbols, where the symbols
are used for training, and the symbols are the data informa-
tion. The propagation coefficients are assumed to be constant
during a whole burst, after which they change to new indepen-
dent random values, which they maintain for anothersym-
bols, and so on. Since channel estimation is out of the scope of
the present paper, in the remainder, we will make no distinction
between and its estimate.

The first step of the V-BLAST algorithm [3] makes use of
the pseudo-inverse of the channel matrixor the minimum
mean-square error (MMSE) filter .

Define the error vector signal at timebetween the input
and its estimate

(8)

Now, let us define the error criterion

tr (9)

The minimization of (9) leads to the Wiener-Hopf equation

(10)

where

(11)

is the output signal covariance matrix, and

(12)

is the cross-correlation matrix between the input and output sig-
nals.
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From (10), we find that the MMSE filter is

(13)

where

(14)

It can easily be seen that (13) is equivalent to

(15)

The second form [see (15)] is more useful and more efficient in
practice since and the size of the matrix to invert in
(15) is smaller or equal than the size of the matrix to invert in
(13).

Instead of the MMSE filter, we can use directly the pseudo-
inverse of , which is

(16)

The only difference between the expressionsand is that
the first one is “regularized” by a diagonal matrix ,
whereas the second one is not. This regularization introduces a
bias, but (15) gives a much more reliable result than (16) when
the matrix is ill-conditioned and the estimation of the
channel is noisy. In practice, depending on the condition number
of the matrix , we can take a different value for than
the one given in (14). For example, if this condition number is
very high and the SNR is also high, it will be better to take a
higher value for . Thus, the MMSE filter can be seen as a bi-
ased pseudo-inverse of.

In the V-BLAST algorithm, the detection of the sym-
bols is done in iterations. The order in which the
components of are detected is important to the overall
performance of the system. Let the ordered set

(17)

be a permutation of the integers specifying the order
in which components of the transmitted symbol vector are
extracted. The first iteration, which is also the initialization, is
performed in three steps (as well as the other iterations).

Step 1) Using the MMSE filter or the pseudo-inverse, we
compute

(18)

Step 2) The element of with the highest SNR is de-
tected. This element is associated with the smallest
diagonal entry of for the MMSE filter (as ex-
plained in the next section) or the column of
having the smallest norm for the pseudo-inverse
(zero-forcing) [3]. If such a column is , we get

(19)

with indicating the slicing or quantization pro-
cedure according to the constellation in use.

Step 3) Assuming that , we cancel
from the received vector , resulting in a modi-
fied received vector

(20)

where is an matrix derived
from by removing its th column, and
is a vector of length obtained from by
removing its th component.

Steps 1–3 are then performed for components by
operating in turn on the progression of modified received vectors

. Note that at the th iteration, we will obtain
the matrix , which can be derived from

by removing of its columns: . As shown in [3],
this ordering (choosing the best SNR at each iteration in the
detection process) is optimal among all possible orderings.

Since the MMSE filter is more advantageous than the zero-
forcing algorithm from a performance point of view, we will
focus on only the MMSE implementation of the V-BLAST in
the rest of this paper. Table I summarizes the V-BLAST algo-
rithm using the MMSE filter.

IV. FAST V-BLAST ALGORITHM

The arithmetic complexity of the V-BLAST algorithm is very
high. The complexity of computing the inverse of an
matrix is approximately in the order of . In addition, the ma-
trix is the product of a rectangular matrix of size and
a square matrix of size , and the complexity of such
a product is proportional to at each iteration. The algo-
rithm requires iterations; therefore, the overall complexity
is in for each sample time, even if the matrices are
deflated by 1 at each iteration. A more detailed complexity eval-
uation will be given in Section V.

Here, the matrix is not computed directly. Recall that

(21)

where

(22)

The covariance matrix of the error signal
is

(23)

Clearly, the element of with the highest SNR is the one
with the smallest error variance so that

(24)

where are the diagonal elements of the matrix .
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TABLE I
V-BLAST ALGORITHM USING THE MMSE FILTER

The matrix can be rewritten as follows:

(25)

which means that can be computed recursively initerations
as

(26)

and

(27)

Using the Sherman–Morrison formula,can also be computed
recursively as

(28)

With the initialization , we obtain
, which is of dimension

. Note that if we start the process at iteration
with the initialization , we obtain

. Before going further, it is important to
comment on (28). Indeed, it is well known that the computation
of any recursion introduces numerical instabilities because
of the finite precision of the processor units. This instability
occurs only after a very large number of iterations. Fortunately
in this application, the number of iterations to computeis
limited by the number of receiving antennas (), which is
rather small; therefore, in principle, we should not expect any
particular problem here. In any case, the numerical stability can
be improved by increasing at the initialization. Furthermore,
as it will become clearer in the following, we can use any
method to compute and still have a very efficient algorithm.

In the proposed algorithm, is computed only once at
the first iteration using (28). The complexity to compute
is in . Once is computed, it is easy to determine

from (24). Continuing the process for this first iteration, the
input estimate is computed as follows:

(29)

and

(30)

The last step (Step 3) is the same as the one for the V-BLAST
algorithm.
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For the following iterations, the process is different. We show
that the matrix can be deflated recursively. We have

...
...

.. .
...

(31)

After corresponding to the element with the smallest
variance is determined, we can interchange theth and th
entries of the transmitted signal such that the th signal is
currently the best estimate. Of course, the indices of the trans-
mitted signals will be tracked after the reordering. Accordingly,
the th and th columns of the channel matrix should be
interchanged, which can be easily done by post-multiplying
with a permutation matrix , which is given by

...
...

...

...
. . .

...

Since

(32)

it follows that the rows and columns and of the matrix
should be permuted. Equivalently, we can permute the rows and
columns and of the matrix , which can be easily seen
from

(33)
For easy presentation and without much confusion, we
still use to denote the matrix after permutation, i.e.,

. These permutations will allow us to
remove the effect of the channel easily. In this case, we
have

...
...

...
...

(34)

where

and

It can easily be shown that

(35)

where

(36)

is the Schur complement of in . Furthermore, from (36),
we deduce that

(37)

and using the Sherman–Morrison formula, we obtain

(38)

Clearly, (38) shows that the matrix can be deflated recursively
in at each iteration. In the general case, we have

(39)

(40)

(41)

Note that is not computed but rather easily determined
from by removing its last row and column. Only

is calculated at the first iteration. Similarly,
is obtained without additional calculation. Table II summarizes
the proposed fast V-BLAST algorithm. The complexity of this
algorithm is in . For , the complexity
is reduced by a factor of compared with the V-BLAST algo-
rithm.

V. COMPLEXITY EVALUATION

We now look at the computational complexity of the proposed
fast V-BLAST algorithm and compare it with the traditional
V-BLAST and the square-root algorithms [4]. Since the trans-
mitted and received signals as well as the channel matrix are
complex, all processing is conducted on complex values. There-
fore, unless otherwise specified, multiplications, divisions, and
additions refer to complex operations throughout this section.
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TABLE II
FAST V-BLAST ALGORITHM

The computational complexity of the traditional V-BLAST
method can be evaluated as follows.

• Using the traditional V-BLAST algorithm, we need to di-
rectly invert the complex matrix

(42)

with dimensions at the th step
of the recursion. With Gauss–Jordan, computing such an
inverse requires multiplications/divisions and

additions. In spite
of the efficiency of the Gauss–Jordan method, it is barely
used especially in a fixed-point implementation because of
its poor stability. The most numerically stable way to com-
pute is via singular value decomposition (SVD) of

, which is given by

(43)

where and
are unitary matrices, and has the
form

diag

Substituting (43) into (42) yields

(44)
where

diag

Taking the inverse of (44) produces

(45)

where

and is the th column vector of matrix .
Using the Golub–Reinsch algorithm, the complexity of

performing an SVD of to compute only
and is , which im-
plies approximately equal numbers of multiplications and
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additions [8]. After and are determined,
forming according to (45) requires

multiplications and addi-
tions. Therefore, computing needs

multiplications and
additions.

• In order to compute following Step (e) in Table I,
multiplications and

additions are necessary.
• Nulling out the effect of source on the received signal

requires multiplications and additions.
Collecting these results, since there is a one-step initialization

and ( ) steps in the recursion with the traditional V-BLAST
algorithm, the total number of multiplications is as shown in the
first equation at the bottom of the page, and the total number
of additions is as shown in the second equation at the bottom of
the page. If the numbers of transmitting and receiving antennas
are the same, i.e., , then the total numbers of multipli-
cations and additions are
and , respectively.

In the square-root algorithm for V-BLAST decoding, the
square-root matrix of is recursively computed
by using Householder transformations. Applying a House-
holder transformation to a given matrix with respect to one of
its column/row vector requires equal numbers of multiplica-
tions and additions. As given in [4], the square-root algorithm
requires
multiplications and additions. If , then these numbers
turn to . Indeed, square-root operations
were omitted in the evaluation.

Let us compute the computational complexity of the proposed
fast V-BLAST algorithm:

• In the initialization, we need to determine , , and
. The computational cost of these operations are

given as follows.
• Determining using the recursive method has no

computational advantage over the direct matrix mul-
tiplication. The numbers of necessary multiplica-

tions and additions are and
, respectively.

• On the other hand, it is efficient to compute
recursively using (28). At each step of the recur-
sion, at least multiplications and

additions are necessary. Since there
are steps to determine , the total numbers
of multiplications and additions are
and , respectively.

• Computing according to (29) requires
multiplications and

additions. Thus, the initialization takes
( ) multiplications and
( ) additions.

• Consider the th ( , ) step of the
recursion.

• It takes multiplications and additions to null
out the effect of the source on the received sig-
nals.

• Computing using (41) needs
multiplications and

additions.
• To estimate according to Step (h) in

Table II, multiplications and
( ) additions are necessary.

Hence, in the recursion, the number of multiplications is

and the number of additions is
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Fig. 1. Comparison of computational complexity among the V-BLAST, the
square-root V-BLAST, and the proposed fast V-BLAST algorithms for different
numbers of antennas.

Summing up the complexity in the initialization and recur-
sion, we get the total number of multiplications

and the total number of additions

If , then the proposed fast V-BLAST algorithm requires
multiplications and ad-

ditions. Therefore, the speedups of the proposed algorithm over
the traditional V-BLAST in the number of multiplications and
additions are and

, respectively. Compared with the square-root al-
gorithm, the proposed algorithm is also more efficient, and the
speedups in the number of multiplications and additions are

and , respectively.
Note that one complex multiplication/division takes six

floating-point operations (flops) and one complex addi-
tion/subtraction needs two flops. Therefore, the flop counts
of the traditional V-BLAST and the square-root algorithms
are approximately times
and times, respectively, more than that of the
proposed algorithm in the case of .

In order to justify the complexity analysis presented in this
section, we carried out some numerical experiments to count the
floating-point operations (flops) per data sample for the studied
V-BLAST algorithms for different numbers of transmitting/re-
ceiving antennas. It is well known that for a common floating-
point implementation of an algorithm, the flops dominate the
calculation, and the number of flops is a consistent measure of

the algorithm’s computational complexity, independent of what
machine it runs on. Although the absolute number of flops for
the studied algorithms are not particularly meaningful, their rel-
ative values illustrate the great efficiency of the proposed fast
V-BLAST method. The result is shown in Fig. 1. As can be
clearly seen, the square-root V-BLAST algorithm is more ef-
ficient than the traditional V-BLAST only when the number of
antennas is large, in particular whenis greater than 10, but so
far, only four or eight antennas are interesting in practice, and
the square-root V-BLAST algorithm is not advantageous. The
proposed fast V-BLAST has the least flops for all numbers of
transmitting/receiving antennas.

VI. CONCLUSIONS

A general V-BLAST system with transmitting antennas
and receiving antennas was studied, and an efficient al-
gorithm with low computational complexity was developed
for optimum sequential nulling and cancellation detection
scheme. The proposed algorithm avoids directly inverting
a matrix and finds the minimum mean-square error filter
coefficients via induction with the help of the inverse of a
block partitioned matrix and the Sherman–Morrison formula.
Compared with complex operations that
are required to determine the optimum detection order and
estimate the transmitted signals using the traditional direct
matrix-inversion method, the proposed algorithm requires

operations, which is a complexity reduction
by a factor of . To be exact, when , the proposed
algorithm reduces the flop counts over the traditional method
by a factor of . A comparison between the proposed
algorithm and the square-root method whose computational
complexity is also on the order of reveals that
the proposed algorithm is still more efficient with a speedup
of 2.76 in flops when . This paper addressed the
computational complexity of V-BLAST algorithms in a rather
simple flat-fading environment. Further work will extend to the
spatio-temporal BLAST systems with more practical and more
general frequency-selective wireless channels.
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