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ABSTRACT 

The implementation of existing methods for blind identification of 
single-input multiple-output (SIMO) systems is limited in practice 
since they are difficult to execute in an adaptive mode and are in 
general computationally intensive. We extend our previous study 
into the frequency domain and propose an unconstrained normal- 
ized multi-channel frequency-domain LMS (UNMCFLMS) algo- 
rithm. Numerical simulations show that the UNMCFLMS algo- 
rithm performs as well as (for a SIMO system with relatively short 
channel impulse responses) or better than (for a SIMO system with 
long channel impulse responses) its time-domain counterpart and 
the cross-relation (CR) batch method in practical situations. 

1. INTRODUCTION 

Blind identification of single-input multiple-output (SIMO) sys- 
tems has attracted considerable attention recently because of its 
extensive applications in signal processing and communications. 
Approaches based on second-order statistics (SOS) of system's 
outputs [ I ] ,  121, [3],  [41, [SI are deemed more attractive, because of 
their fast convergence, than higher-order statistics (HOS) methods 
[6] .  However, existing SOS methods are not satisfactory because 
they are difficult to implement in an adaptive mode and are in gen- 
eral computationally intensive [71. 

In an earlier study [SI, we found a systematic way to con- 
struct an error signal exploiting the cross relations between differ- 
ent channels and proposed two time-domain adaptive algorithms. 
It was shown that they converge in the mean to the real channel 
impulse responses. But they are either slow in convergence or  
complicated in computation. In this paper, we continue our explo- 
ration of this problem in the frequency domain and try to develop 
an improved efficient adaptive filter. An unconstrained normalized 
multi-channel frequency-domain LMS (UNMCFLMS) algorithm 
is proposed and experimental results show some promise for its 
success. 

2. SIGNAL MODEL AND PROBLEM FORMULATION 

In an FIR SlMO linear system, the i-th channel output signal xi (n) 
is the result of a linear convolution between the source signal s(n) 
and the corresponding true (subscript t) channel impulse response 
ht.;, corrupted by an additive background noise bi(n): 

xi (n)  = ht,; : s(n) + bi (n) ,  i = 1,2,  ..., M ,  ( I )  

where * stands for linear convolution and M is the number of 
channels. In vector form, ( I )  can be expressed as: 

xi(.) = Ht,i . ~ ( n )  + bi(n), (2 )  

where 

xi(n) = [x;(n) x i ( n - 1 )  . "  z ; (n-L+l) ]T ,  

0 1 ,  ht.i.0 . . . ht.i.L-1 . . . 
Ht,i = [ i '.. 

0 . . .  ht,i.o . . .  h t j . L - 1  

s(n) = [s(n) s(n - 1) , . . s (n  - 2L + Z)]', 

b;(n) = [b;(n) b i ( n - 1 )  . . .  b i ( n - L + l ) ] ' ,  

L is set to the length of the longest channel impulse response by 
assumption, and (.)T denotes vectorlmatrix transpose. The chan- 
nel parameter matrix €It,, is of dimension L x (2L - 1) and is 
constructed from the channel's impulse response: 

(3) ht,i = [ht.i.o ht.i.1 . . h t . i , ~ - ~ ] ~ .  
Moreover, the additive noise components in different channels are 
assumed to be uncorrelated with the source signal even though they 
might be mutually dependent. 

A blind system identification algorithm is to estimate the chan- 
nel impulse responses h, (i = 1 , 2 ,  ..., M )  from the observations 
xi without utilizing the source signal s(n). The following two 
assumptions are made throughout this paper to guarantee an iden- 
tifiable system using only the second-order statistics [41: 

1. The polynomials formed from ht,i, i = 1,2, ... M ,  are co- 
prime, i.e., the channel transfer functions Ht,i(z) do not 
share any common zeros; 

2. The autocorrelation matrix R,, = E {s(n)s'(n)} of the 
source signal is of full rank. 

3. THE PRINCIPLE OF ADAPTIVE BLIND SYSTEM 
IDENTIFICATION 

Basically, a multi-channel system can be blindly identified because 
of the channel diversity which makes the outputs of different chan- 
nels distinct though related. By following the fact that 

xi(n) * ht,j = s (n)  * ht,i I ht,j = xj(n) * ht,i, (4) 
a cross-relation between the i-th and j-th channel outputs, in the 
absence of noise, can be formulated as 

xT(n)ht,j = xT(n)ht,i, i , j  = 1,2 ,  ..., M ,  i # j .  

-. 

( 5 )  
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When noise is present or the channel impulse responses are im- 
properly modeled. the left and right hand sides of ( 5 )  are generally 
not equal and the inequality can be used to define an a priori error 
signal as follows 181: 

xT(n + l)hj(n) -xF(n + l)hi(n) 
, (6) 

Ilh(n)ll 
ei j (n + 1) = 

where hi(n) is the model filter for the i-th channel at time n and 

h(n) = [ hr(n) hT(n) . . .  hf(n) 1' 
The model filter is normalized in order to avoid a trivial solution 
whose elements are all zeros. Based on the error signal defined 
here, a cost function at time n + 1 is given by 

An adaptive algorithm is then derived to efficiently determine the 
model filter hi that minimizes this cost function and therefore 
would beagoodestimateofht,;/llhtl/ (i = 1 , 2 ,  ..., M). 

4. A FREQUENCY-DOMAIN ADAPTIVE ALGORITHM 

The time-domain adaptive algorithms proposed in IS] are either 
slow in convergence (the multi-channel LMS algorithm) or ineffi- 
cient (the multi-channel Newton algorithm). Here, we will develop 
an adaptive blind channel identification algorithm in the frequency 
domain to seek for a good balance between fast convergence and 
low computational complexity. In the following derivation, matri- 
ces and vectors in the frequency domain are represented respec- 
tively by uppercase calligraphic and lowercase hold italic letters, 
and a vector is further emphasized by an underhar. 

To begin, we define an intermediate signal yij = xi * hj, the 
convolution result of the a-th channel output xi and the j-th model 
filter h j .  In vector form. a block of such a signal can be expressed 
in the frequency domain as 

'5 

" 2  y . ( m + l )  = WOL~~zLP~~(m+l)W:OL*L~j(m), (8) 

F L ~ L  and F,kL are respectively the Fourier and inverse Fourier 
matrices of size L x L, and m is the block time index. Then a 
block of the error signal based on the cross-relation between the 
i-th and the j-th channel in the frequency domain is determined 
as: 

S j ( m + 1 )  = -J ar . . (m+l) - l l j ; (m+l)  

= W k Z L  [D&+ l)wExLhj(m)- 

Pzj(m+1)W:OLXLhi(m)]. (10) 

Continuing, we constmct a (frequency-domain) Cost function at 
the (m  + 1)-th block as follows: 

where (.)H denotes Hermitian transpose. Therefore, by minimiz- 
ing the mean value of Jr(m + 1). the model filter in the frequency 
domain can he updated as: 

where (.)* stands for complex conjugate and pr is a small positive 
step size. It can be shown that 

M 

[ W ~ ~ : L D ~ ~ ( ~ + ~ ) W : ~ , L I ~ ~ ~ ( ~ + ~ ) ,  (13) 
i=l 

Substituting (13) into (12) yields a multi-channel frequency-domain 
LMS (MCFLMS) algorithm: 

hdm + 1) = hdm)-  
M 

p r w ~ a ~ Z L C P l r i ( m + l ) W ~ Z x L l k ( m + l ) ,  (14) 
;=I 

where 

Wiaxz~  = F L X L  [ ILXL O L Y L  ] F ; i X z L ,  

W;ixr. = F Z L X Z L  [ O L X L  ILYL I T F L : ~ ,  

The constraint ensuring that the adaptive algorithm would not con- 
verge to a trivial solution with all zero elements will he applied 
after every step of updation. 

The MCFLMS is computationally more efficient compared to 
a multi-channel time-domain block LMS algorithm. However, the 
convergence of the MCFLMS algorithm is still slow because of 
nonuniform convergence rates of the filter coefficients and cross- 
coupling between them. To accelerate convergence, we will use 
Newton's method to develop a normalized MCFLMS (NMCFLMS) 
method. 

By using Newton's method, we update the model filter coeffi- 
cients according to: 

h,(m + 1) = h,(m)- 

where the Hessian matrix can be evaluated as 
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and 

F;L!,ZL, 1 O L X L  O L X L  
O L Y L  ILYL = FZLXZL 

whose elements on its main diagonal dominate as shown in (91. 
When L is large, 2W'&,2L can be well appmximated by the iden- 
tity matrix 

Thereafter, Eq. (16) becomes 
Z W ~ Z ~ Z L  z 1 2 ~ x 2 ~ .  (17) 

where 

M 

'Pk(m+l)= D:,(m+l)DZi(m+l), k = 1 , 2  ,..., M .  
i = l . i # k  

Substituting (13) and (18) into (15) and multiplying by W:",,, 
produces the constrained NMCFLMS algorithm: 

b:"(m + 1) =/&:"(Ti- 

M 

2psW:;,2~P;'(m + 1) x D ; * ( m +  l)&(m + 1),(19) 
i=1 

where 

/&:O(m) = w Y X L / & k ( m ) ,  

& m + l )  = w'&xLeik(m+l) ,  
- w : O , x * ,  = w : L w ' x * ' .  10 

and the relation 

W:; x L { Wiox 2 L P k  (m f 1)W:: x L } - l  Wiox 2L 

= W:OLxZLP;'(m + 1) 

can be justified by post-multiplying both sides of the expression 
by %(m+ l)W:;, and recognizing that W:",,,,W:",,, = 
W Z L ~ L .  

If the matrix 2W:eXzL is approximated by the identity matrix 
similar to (17). we finally deduce the unconstrained NMCFLMS 
algorithm: 

b:"(m + 1) = b:o(m)- 
M 

pr'P;'(m+ l ) c P : < ( m +  l )&(m+l ) ,  (20) 
- i=, 

where the normalization matrix Pk(m + 1) is diagonal and it is 
straightfonvard to find its inverse. Again, the unit-norm constraint 
will be enforced on the model filter coefficients after every step of 
updation. 

In the MCFLMS algorithm, the correction applied to the model 
filter in each update is approximately proportional to the power 
spectrum Pk(m + 1); this can be seen by substituting (10) into 
(13) and using the approximation (17). When the channel outputs 
are large, gradient noise amplification may be experienced. With 

the normalization of the MCFLMS correction by Pk(m + 1) in 
the NMCFLMS algorithm, this noise amplification problem is di- 
minished and the variability of the convergence rates due to the 
change of signal level is eliminated. In order to estimate a more 
stable power spectrum, a recursive scheme is employed in imple- 
mentation: 

Pk(m + 1) = XPr(m)+ 
M 

(1-A) D:<(m+l )D,<(m+l ) ,  (21) 
i = l , i # k  

k = 1 , 2  ,..., M ,  

where X is a forgetting factor that may appropriately be set as 
X = [l - 1/(3L)IL for the NMCFLMS algorithm. Although 
the NMCFLMS algorithm bypasses the problem of noise ampli- 
fication, we face a similar problem that occurs when the channel 
outputs becomes too small. An altemative, therefore, is to insert 
a small positive number 6 into the normalization which leads to 
the following modification to the unconstrained NMCFLMS algo- 
rithm: 

!$(m + 1) = hF(m) - pf [Pk(m) + ~ I z L ~ z L ] - ' .  
M 

~ D D , i ( m + l ) & ( m + l ) ,  k = l , 2  ,._., M.  (22) 
.=I 

5. SIMULATIONS 

To evaluate the performance of the proposed algorithm, we carried 
out Monte Carlo simulations for blind identification of a random 
three-channel SIMO system of order L = 16. For comparison, the 
cross relation (CR) batch method [4] and the time-domain multi- 
channel Newton (MCN) algorithm [E] are also studied. 

The normalized root mean square projection misalignment 
(NRMSPM) in dB is used as a performance measure of estimation 
accuracy in this paper and is given by 

NRMSPM a 2010g,o 

where N is the number of Monte-Carlo runs, (.)(i) denotes a value 
obtained for the i-th run, and z = ht - [(hTh)/(hTh)]h is apro- 
jection error vector. By projecting ht onto h a n d  defining a projec- 
tion error, we take only the misalignment of the channel estimate 
into account [IO]. 

For a common floating-point implementation of an algorithm, 
the floating-point operations (flops) dominate the calculation and 
the number of flops is a consistent measure of the algorithm's com- 
putational complexity, independent of what machine it runs on. 
The flops per set of multi-channel outputs are counted. The ab- 
solute number of flops for the studied adaptive algorithms are not 
particularly meaningful, but their relative values illustrate the great 
efficiency of the frequency-domain approaches. 

In the simulations, the sou~cc  signal is an uncorrelated binary 
phase-shift-keying (BPSK) sequence. The additive noiseis i.i.d. 
zero-mean Gaussian and the specified SNR is defined as S N R  = 
10log ,o[u~~/h ,~~Z/(Mu~)] ,  where uf and ut are the signal and 
noise powers, respectively. 

a 
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A simple initialization was employed for all conducted exper- 
iments. In the time domain, the channel impulse response of the k- 
th channel is set as h k ( 0 )  = [ l / a  0 . . . O I T ,  k = 1 , 2 ,  ..., M .  
Since the initial channel estimates are identical, a non-zero error 
signal can be guaranteed and hence the channel filter coefficients 
will he properly adapted. 

For the CR method, 120 samples of observations from each 
channel were utilized. For the MCN and MCFLMS algorithms, the 
step size p = 0.95 and fif  = 4 x W4 were fixed, respectively. 
For the NMCFLMS algorithm, the step size fif = 0.8 was used 
and the regularization factor 6 was initially set as one fifth of the 
total power over all channels at the first block. For each specified 
SNR value, the NRMSPM was calculated by averaging the results, 
after convergence, of N = 200 Monte Carlo runs. 

As seen in Fig. I ,  the NRMSPMs of all studied algorithms de- 
crease steadily as the SNR increases. Fig. 2 shows the learning 
curves of these adaptive algorithms, among which the MCN algo- 
rithm converges fastest hut, on the other hand, the variance of its 
cost function is also the largest after convergence. Although both 
the MCFLMS and NMCFLMS algorithms converge steadily to the 
desired channel impulse responses, apparently the NMCFLMS al- 
gorithm performs better, achieving a good compromise between 
fast convergence speed and low estimate variance. Fig. 3 gives a 
comparison of computational complexity among the investigated 
algorithms. Clearly, the frequency-domain approaches are much 
more efficient. 

I 
/o 1" 30 4 54 

t o ' ' , '  
SNR 1dB) 

Figure 1: Comparison of converged NRMSPM vs. SNR among the 
CR, MCN, MCFLMS, and NMCFLMS algorithms for the random 
three-channel system excited by a random BPSK sequence. 

n m c n ( ~ 1 0 4  TU"n(Y10 'SrmQk)  

(4 (b) 

Figure 2: Comparison of convergence among the MCN (- + -), 
MCFLMS (-A-), and NMCFLMS (-0-) algorithms for the 
random three-channel system, excited by a random BPSK se- 
quence. Trajectories of (a) the cost function J(n), and (b) the 
normalized projection misalignment (NPM) /lc(n)ll/ilhll vs. time 
n are shown for one typical run of the three algorithms. 

P i k ,  ordrr L lrmplc, 

Figure 3: Comparison of computational complexity per set of 
multi-channel outputs among the MCLMS, MCN, MCFLMS, and 
NMCFLMS algorithms for the random three-channel system of 
different order (L), excited by a random BPSK sequence. 

6. CONCLUSIONS 

Blind identification of SlMO systems is examined and the issues of 
convergence, adaptivity, and efficiency of a satisfactoly approach 
are addressed from a practical point of view. An adaptive al- 
gorithm using channel cross-relation is implemented in the fre- 
quency domain. As the experimental results supported, the pro- 
posed method achieves both fast convergence and great efficiency. 
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