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ABSTRACT

Sparse impulse responses are encountered in many acoustic and
wireless channels. Recently, a class of exponentiated gradient
(EG) algorithms has been proposed. One of the algorithms be-
longing to this class, the so-called EG � algorithm, converges and
tracks much better than the classical stochastic gradient, or LMS,
algorithm for sparse impulse responses. In this paper, we apply
this technique to blind identification of a sparse SIMO system
and develop the multichannel EG � algorithm. A simple experi-
ment demonstrates its advantage in convergence compared to the
MCLMS algorithm.

1. INTRODUCTION

Blind channel identification (BCI) is an important technique with
extensive applications in signal processing and communications.
For a real-time implementation in practice, an adaptive BCI algo-
rithm is apparently desirable. In [1], we found a systematic way to
design adaptive algorithms for BCI and proposed the multichannel
LMS (MCLMS) method. But such an LMS-based method con-
verges slowly particularly when the single-input multiple-output
(SIMO) system to be identified has long impulse responses, which
is a common drawback of the LMS algorithm [2].

Recently, another variant of the LMS algorithm, called the ex-
ponentiated gradient algorithm with positive and negative weights
(EG � algorithm), was proposed by Kivinen and Warmuth [3].
This new algorithm converges much faster than the LMS algorithm
when the impulse response that we need to identify is sparse [4],
which is often the case in acoustic and wireless channels. The
EG � algorithm has the nice feature that its update rule takes ad-
vantage of the sparseness of an impulse response to speed up its
initial convergence and to improve its tracking abilities compared
to LMS. In this paper, we intend to apply this idea to the BCI prob-
lem and will propose a multi-channel EG � (MCEG � ) algorithm.

2. GENERAL DERIVATION OF ADAPTIVE
ALGORITHMS FOR SYSTEM IDENTIFICATION

In designing a gradient-based adaptive algorithm for system identi-
fication, there are different ways to define the distance between the
old and new weight vectors which lead to different update rules.
Here we present a general derivation of these adaptive algorithms.

We begin with defining the a priori error signal � � � � � � at

time � � � as:

� � � � � � 	 
 � � � � � � �
 � � � � �  (1)

where 
 � � � � � 	 � �� � � � � � � (2)

is the system output,

h � 	 � � � � � � � � � � � � � � � � � � � � (3)

is the true (subscript t) impulse response of the system, � � � � de-
notes transpose of a vector or a matrix,

x � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � �
is a vector containing the last � samples of the input signal � ,

�
 � � � � � 	 � � � � � � � � � � � (4)

is the model filter output, and

h � � � 	 � � � � � � � � � � � � � � � � � � � � � � � (5)

is the model filter.
One easy way to find adaptive algorithms that adjust the new

weight vector h � � � � � from the old one h � � � is to minimize the
following function [3]:

� � h � � � � � � 	 � � h � � � � �  h � � � � �  ! " � � � � �  (6)

where � � h � � � � �  h � � � � is a measure of distance from the old to
the new weight vector,

! � � � � � 	 
 � � � � � � h � � � � � � x � � � � � (7)

is the a posteriori error signal, and  is a positive constant. The
magnitude of  represents the importance of correctiveness com-
pared to the importance of conservativeness [3]. If  is very small,
minimizing

� � h � � � � � � is close to minimizing � � h � � � � �  h � � � � ,
so that the algorithm makes very small updates. On the other hand,
if  is very large, the minimization of

� � h � � � � � � is almost equiv-
alent to minimizing � � h � � � � �  h � � � � subject to the constraint! � � � � � 	 # .

To minimize
� � h � � � � � � , we need to set its � partial deriva-

tives $ � � h � � � � � � % $ � & � � � � � to zero. Hence, the different
weight coefficients � & � � � � � , ' 	 #  �  � � �  � � � , will be found
by solving the equations:

$ � � h � � � � �  h � � � �
$ � & � � � � � � �  � � � � � � ' � ! � � � � � 	 # ( (8)



Solving (8) is in general very difficult. However, if the new weight
vector h � � � � � is close to the old weight vector h � � � , replacing
the a posteriori error signal � � � � � � in (8) with the a priori error
signal � � � � � � is a reasonable approximation and the equation

� � 	 h � � � � � 
 h � � � �
� �  � � � � � � � � � � � � � � � � � � � � � � � � (9)

is much easier to solve for all distance measures � .
The LMS algorithm is easily obtained from (9) by using the

squared Euclidean distance

� � 	 h � � � � � 
 h � � � � � �
h � � � � � � h � � � � �� � (10)

The EG algorithm with positive weights results from using for �
the relative entropy, also known as Kullback-Leibler divergence,

� � � 	 h � � � � � 
 h � � � � �
� � ��

 � �
�  � � � � � � � �  � � � � �

�  � � � 
 (11)

with the constraint �  �  � � � � � � � , so that (9) becomes:

� � � � 	 h � � � � � 
 h � � � �
� �  � � � � � � � � � � � � � � � � � � � � � � � 	 � � 
 (12)

where 	 is the Lagrange multiplier. Actually, the appropriate con-
straint should be �  �  � � � � � � �  � � �  but �  � � �  is not
known in practice, so we take the arbitrary value 1 instead. This
will have an effect on the adaptation step of the resulting adaptive
algorithm.

The algorithm derived from (12) is valid for positive weights
only. To deal with both positive and negative coefficients, we can
always find two vectors h 
 � � � � � and h

�
� � � � � with positive

coefficients, in such a way that the vector

h � � � � � � h 
 � � � � � � h
�

� � � � � (13)

can have positive and negative components. In this case, the a
posteriori error signal can be written as:

� � � � � � � � � � � � � � 	 h 
 � � � � � � h
�

� � � � � � � x � � � � � (14)

and the function (6) will change to:
� �

h 
 � � � � � 
 h
�

� � � � � �
� � 	 h 
 � � � � � 
 h 
 � � � � � � 	 h

�
� � � � � 
 h

�
� � � �

� � � � � � � � � 
 (15)

where  is a positive scaling constant. Using the same approxima-
tion as before and choosing the Kullback-Leibler divergence plus
the constraint �  	 � 
 � � � � � � �

�
 � � � � � � �  , the solutions of

the equations

� � � � �
h 
 � � � � � 
 h 
 � � � �

� � 
 � � � � �
� � � � � � � � � � � � � � � � � � 	 � � 
 (16)

� � � � �
h

�
� � � � � 
 h

�
� � � �

� �
�

 � � � � �
� � � � � � � � � � � � � � � � � � 	 � � 
 (17)

give the so-called EG  algorithm [3], where

� � � � � � � � � � � � � � �
h 
 � � � � h

�
� � � � � x � � � � � � (18)
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Figure 1: Illustration of the relationships between the input � � � �
and the observations � � � � � in an FIR SIMO system.

3. THE PRINCIPLE OF ADAPTIVE BLIND
IDENTIFICATION OF A SIMO SYSTEM

In an FIR SIMO system as shown in Fig. 1, the � -th channel output
� � � � � is the result of a linear convolution between the source signal� � � � and the corresponding true channel impulse response � � � � ,
corrupted by the additive background noise � � � � � :

� � � � � � � � � � � � � � � � � � � � � 
 � � � 
 � 
 � � � 
  
 (19)

where � stands for linear convolution and  is the number of
channels. In a vector form, (19) can be expressed as:

! � � � � � ! � � � " " � � � � # � � � � 
 (20)

where

! � � � � � 	 � � � � � � � � � � � � " " " � � � � � # � � � � � 


! � � � �

$% � � � � � � " " " � � � � � � � � " " " �
...

. . .
...

. . .
...

� " " " � � � � � � " " " � � � � � � � �

&'



" � � � � 	 � � � � � � � � � � " " " � � � � � # � � � � � 
# � � � � � 	 � � � � � � � � � � � � " " " � � � � � # � � � � � 


# is set to the length of the longest channel impulse response by
assumption. The channel parameter matrix ! � � � is of dimension

# ( � � # � � � and is constructed from the channel’s impulse re-
sponse:

$ � � � � 	 � � � � � � � � � � � � " " " � � � � � � � � � � � (21)

The noise signals in the different channels are assumed to be white,
independent of each other, and uncorrelated with the source signal.

A BCI algorithm is to estimate the channel impulse responses
$ � ( � � � 
 � 
 " " " 
  ) from the observations � � � � � without utiliz-
ing the source signal � � � � . The following two assumptions are
made in the remainder of this paper to guarantee an identifiable
system using only the second-order statistics [5]:

1. The polynomials formed from $ � � � 
 � � � 
 � 
 " " " 
  
 are
co-prime, i.e., the channel transfer functions ) � � � � * � do not
share any common zeros;

2. The autocorrelation matrix + , , � - . " � � � " � � � � / of the
source signal is of full rank.

The adaptive algorithms including the multichannel LMS and
Newton methods proposed by the authors in an earlier study [1]



blindly identifies a SIMO system by exploiting the cross relations
among system outputs. By following the fact that

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (22)

a cross-relation between the � -th and � -th channel outputs, in the
absence of noise, can be formulated as

	 
� � � � � � � � � 	 
� � � � � � � � � � � � � � �  � � � � � � � � �� � � (23)

Then similar to (1) and (7), we can define respectively the a priori
error

� � � � � � � � � 	 
� � � � � � � � � � � � 	 
� � � � � � � � � � � � (24)

and the a posteriori error

� � � � � � � � � 	 
� � � � � � � � � � � � � � 	 
� � � � � � � � � � � � � � (25)

where � � � � � is the model filter for the � -th channel at time � and

� � � � � � � 
 � � � � � 
 � � � � � � � � 
 � � � � � 
 �
Following (6), we have the cost function for such a multichan-

nel (subscript mc below) system:

� � � � � � � � � � � � � � h � � � � � � h � � � � � �� � � � � � � � (26)

where � and � again are positive constants, and

� � � � � � ��
� � �� � 	 �

��
� 	 � 
 �

� �� � � � � � � � (27)

Using the squared Euclidean distance and enforcing a unit-
norm constraint on the model filter (to avoid a trivial solution with
all zero elements), we deduced the multichannel LMS algorithm
and showed that the model filter � � converges to � � � � � � � � �

( � �
� �  � � � � � � ) [1].

4. THE MULTICHANNEL EG � ALGORITHM FOR BCI

In the previous section, we have briefly reviewed the process of de-
veloping an adaptive algorithm for blind identification of a SIMO
system. In this section, we will demonstrate how to apply the con-
cept of exponentiated gradient presented in Section 2 to BCI and
will propose a multichannel EG � algorithm with appropriate con-
straints.

Taking the derivative of (26) produces

� � � h � � � � � � h � � � �
� h � � � � � � �� � � � � � � � � 0 � (28)

It can be shown that [1]:

� � � � � � � �  	� � � � � � � � � � � � � (29)

where

	� � � � �



�

� � �	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � �	 �
� � � � � � � � � � � � � � � � � � � �

...
...

. . .
...� � � � � � � � � � � � � � � � � � � � � � � �	 � � � � � � � � �

�
����

�

and 	� � � � � � � � � 	 � � � � 	 
� � � � � � � � � � �  � � � � � � �
For positive weights, we can use the Kullback-Leibler divergence
as before. With the constraint � � � � � � � � � � � (note that this
is different from the unit-norm constraint used in the multichannel
LMS algorithm) and substituting (29) into (28), we get

� � � � � h � � � � � � h � � � �
� h � � � � � �  �� 	R � � � � � h � � � � � � � 1 � 0 � (30)

where � is again a Lagrange multiplier and 1 � � � � � � � � � 
 is
a vector of ones. For simplicity in solving (30), we approximate
h � � � � � in the second term of (30) with h � � � and deduce the
multichannel EG algorithm:

� � � � � � � � � � � � � � � � � � � � �� �  � �� 	 ! � � � � � � � � � � � �
� (31)

" � # � � � � � � � � $ � � �

where � � � � � � � � � � � �
�  ��  � � � � � � ! �

and  � � � � � � is the " -th element of the vector

f � � � � � � 	R � � � � � h � � � � (32)

For a system with both positive and negative filter coefficients,
we can decompose the model filter impulse responses h � � � � �
into two components h 
 � � � � � and h

�
� � � � � with positive co-

efficients, as used in Section 2. Therefore the cost function (26)
becomes:

� � � �
h 
 � � � � � � h

�
� � � � � �

� � � � �
h 
 � � � � � � h 
 � � � � � � � � �

h
�

� � � � � � h
�

� � � �
� �� � � �

� " � � � � � � (33)

where � � and �
� are two positive constants. Since h � � � � � � 0

is an undesired solution, it is necessary to ensure that h 
 � � � � �
and h

�
� � � � � would not be equal to each other from initialization

and throughout the process of adaptation. Among many methods
that can be used to enforce that h 
 � � � � � and h

� � � � � � would
not be identical, we propose the following constraints:�  � ��

� 	 !
� 
� � � � � � � � � � # �

h � � � � (34)

�  � ��
� 	 !

�
�

� � � � � � � �
� � � � � # � �

h � � � � (35)

where # $ # $ � and # �� � �  . Utilizing these constraints and
taking derivatives of (33) with respect to h 
 � � � � � and h

� � � � � �
respectively gives

� � � 
� � � � � �
� 
� � � � � � �  �� � � �

�
 � � � � � � � � � � # � (36)

� � �
�

� � � � � �
�

�
� � � � � � �  �� � � �

�
 � � � � � � � � � � # � (37)



where � � and � � are two Lagrange multipliers. Solving (36) and
(37) for � �� � � � � � and �

	
� � � � � � respectively leads to the mul-

tichannel EG 
 algorithm:

� �� � � � � � � � � � �� � � � � �� � � � � �
� � � 	 �� �  � �� � � � � �� � � � � �

� (38)

�
	

� � � � � � � �
�

�
	

� � � � � 	
� � � � � �

� � � 	 �� �  �
	� � � � � 	� � � � � �

� (39)

where

� �� � � � � � � � � � �
� � �� � � �

�
� � � � � � � � �

� 	
� � � � � � � � � � � � �� � � �

�
� � � � � � � �

� �� �� � � � � �
�

5. SIMULATIONS

In this section, we compare by way of simulation, the multichannel
LMS and EG 
 algorithms for blindly identifying a sparse SIMO
system. The system consists of � � � channel and the impulse
response of each channel has � � � � taps. Figure 2 shows the
three impulse responses. In each channel, a dominant component
makes the impulse response sparse. A white Gaussian random
sequence is used as source signal to excite the system. The channel
output is intentionally corrupted by additive white Gaussian noise
at 50 dB SNR. In the problem of BCI, a properly aligned vector is
still a valid solution to the impulse response h � even though their
gains may differ. Therefore, normalized projection misalignment
(NPM) is used as the performance measure and is given at time �
by

NPM � � � 	�
� �

� � �
�

��
h � �

�
� (40)

where
�

� � � � h � � h �� h � � �
h � � � � h � � �

h � � �

is the projection misalignment vector [6]. By projecting h � onto
h � � � and defining a projection error, we take into account only
the intrinsic misalignment of the channel estimate, disregarding
an arbitrary gain factor. A comparison of the MCEG 
 and the
MCLMS algorithm is given in Fig. 3. For the MCLMS algo-
rithm, the step size � � � � � � � �

	 �
. For the MCEG 
 algorithm,

� � � � � � � �
	

� and 
 � � � � � . As clearly shown in the results,
both the MCEG 
 and the MCLMS algorithm are able to deter-
mine the channel impulse responses while the MCEG 
 algorithm
converges much faster than the MCLMS algorithm.

6. CONCLUSION

Sparsity in a channel impulse response can be exploited in adap-
tive algorithms to accelerate their convergence. In this paper, we
developed the multichannel exponentiated gradient algorithm with
positive and negative weights (MCEG 
 algorithm) for blind iden-
tification of a sparse SIMO system. A feasible constraint on the de-
composed positive components of the channel impulse responses
was proposed to avoid a trivial solution with all zero elements. It
was shown with a simulation that the proposed MCEG 
 algorithm
converges faster than the MCLMS algorithm for sparse impulse re-
sponses.
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Figure 2: Impulse responses of a single-input three-output system
used in the simulation for blind identification.
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Figure 3: Normalized projection misalignment of the MCLMS and
MCEG 
 algorithms for identifying the single-input three-output
system excited by a white Gaussian source and with additive white
Gaussian noise at 50 dB SNR.
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