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ABSTRACT

The minimum variance distortionless response (MVDR),
originally developed by Capon for frequency-wavenumber
analysis, is a very well established method in array process-
ing. It is also used in spectral estimation. The aim of this
paper is to show how the MVDR method can be used to es-
timate the magnitude squared coherence (MSC) function,
which is very useful in so many applications but so few
methods exist to estimate it. Simulations show that our al-
gorithm gives much more reliable results than the one based
on the popular Welch’s method.

1. INTRODUCTION

Spectral estimation plays a major role in signal processing.
It has numerous applications in diversified fields such as
radar, sonar, speech, communications, biomedical, etc [1],
[2], [3]. There are basically two broad categories of tech-
niques for spectral estimation. One is the non-parametric
approach, which is based on the concept of bandpass fil-
tering. The other is the parametric method, which assumes
a model for the data, and the spectral estimation then be-
comes a problem of estimating the parameters in the as-
sumed model. If the model fits the data well, the latter may
yield more accurate spectral estimate than the former. How-
ever, in the case that the model does not satisfy the data, the
parametric model will suffer significant performance degra-
dation and lead to a biased estimate. Therefore, a great deal
of research efforts are still devoted to the nonparametric ap-
proaches.

One of the most well-known non-parametric spectral
estimation algorithms is the Capon’s approach, which is
also known as minimum variance distortionless response
(MVDR) [4], [5]. This technique was extensively stud-
ied in the literature and is considered as a high-resolution

method. The MVDR spectrum can be viewed as the output
of a bank of filters, with each filter centered at one of the
analysis frequencies. Its bandpass filters are both data and
frequency dependent which is the main difference with a
periodogram-based approach where its bandpass filters are
a discrete Fourier matrix, which is both data and frequency
independent [3], [6].

The objective of this paper is to generalize the concept
of the MVDR spectrum to cross-spectrum estimation and
most importantly, to show how to use this approach to es-
timate the magnitude squared coherence (MSC) function as
an alternative to the popular Welch’s method [7], [8].

2. THE MVDR SPECTRUM

Capon’s method for spectral estimation is based on a filter-
bank decomposition: the spectrum of a signal is estimated
in each band by a simple filter design subject to some con-
straints [4], [5].

Let x(n) be a zero-mean stationary random process
which is the input of K filters of length L,

gk =
[

gk,0 gk,1 · · · gk,L−1

]T
,

k = 0, 1, · · · ,K − 1,

where superscript T denotes transposition.
If we denote by yk(n) the output signal of the filter gk,

its power is:

E
{
|yk(n)|2

}
= E

{∣∣gH
k x(n)

∣∣2}

= gH
k Rxxgk, (1)

where E{·} is the mathematical expectation, superscript H

denotes transpose conjugate of a vector or a matrix,

Rxx = E
{
x(n)xH(n)

}
(2)
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is the covariance matrix of the input signal x(n), and

x(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]T

.

In the rest of this paper, we always assume that Rxx is pos-
itive definite.

Consider the (L × K) matrix,

F =
[

f0 f1 · · · fK−1

]
,

where

fk =
1√
L

[
1 exp(jωk) · · · exp(jωk(L − 1))

]T

and ωk = 2πk/K, k = 0, 1, · · · ,K − 1. For K = L, F is
called the Fourier matrix and is unitary, i.e. FHF = FFH =
I. In the MVDR spectrum, the filter coefficients are chosen
so as to minimize the variance of the filter output, subject to
the constraint:

gH
k fk = fHk gk = 1. (3)

Under this constraint, the process x(n) is passed through
the filter gk with no distortion at frequency ωk and signals
at other frequencies than ωk tend to be attenuated. Math-
ematically, this is equivalent to minimizing the following
cost function:

Jk = gH
k Rxxgk + µ

[
1 − gH

k fk
]
, (4)

where µ is a Lagrange multiplier. The minimization of (4)
leads to the following solution:

gk =
R−1

xx fk
fHk R−1

xx fk
. (5)

We define the spectrum of x(n) at ωk as,

Sxx(ωk) = E
{
|yk(n)|2

}
= gH

k Rxxgk. (6)

Therefore, plugging (5) into (6), we find that:

Sxx(ωk) =
1

fHk R−1
xx fk

. (7)

Replacing the previous equation in (5), we get:

Rxxgk = Sxx(ωk)fk. (8)

Taking into account all vectors fk, k = 0, 1, · · · ,K − 1, (8)
has the general form:

RxxG = FSxx(ω), (9)

where

G =
[

g0 g1 · · · gK−1

]
and

Sxx(ω) = diag {Sxx(ω0), Sxx(ω1), · · · , Sxx(ωK−1)}
is a diagonal matrix.

3. APPLICATION TO THE CROSS-SPECTRUM
AND MAGNITUDE SQUARED COHERENCE

FUNCTION

In this section, we show how to use the MVDR approach
for the estimation of the cross-spectrum and the magnitude
squared coherence function.

3.1. An MVDR Cross-Spectrum

We assume here that we have two zero-mean stationary
random signals x1(n) and x2(n) with respective spectra
Sx1x1(ωk) and Sx2x2(ωk). As explained in Section 2, we
can design two filters,

gp,k =
R−1

xpxp
fk

fHk R−1
xpxp

fk
, p = 1, 2, (10)

to find the spectra of x1(n) and x2(n) at frequency ωk:

Sxpxp
(ωk) =

1
fHk R−1

xpxp
fk

, p = 1, 2, (11)

where

Rxpxp
= E

{
xp(n)xH

p (n)
}

(12)

is the covariance matrix of the signal xp(n) and

xp(n) =
[

xp(n) xp(n − 1) · · · xp(n − L + 1)
]T

.

Let y1,k(n) and y2,k(n) be the respective outputs of the
filters g1,k and g2,k. We define the cross-spectrum between
x1(n) and x2(n) at frequency ωk as,

Sx1x2(ωk) = E
{
y1,k(n)y∗

2,k(n)
}

, (13)

where the superscript ∗ is the complex conjugate operator.
Similarly,

Sx2x1(ωk) = E
{
y2,k(n)y∗

1,k(n)
}

= S∗
x1x2

(ωk). (14)

Now if we develop (13), we get:

Sx1x2(ωk) = gH
1,kRx1x2g2,k, (15)

where

Rx1x2 = E
{
x1(n)xH

2 (n)
}

(16)

is the cross-correlation matrix between x1(n) and x2(n).
Replacing (10) in (15), we obtain the cross-spectrum:

Sx1x2(ωk) =
fHk R−1

x1x1
Rx1x2R

−1
x2x2

fk[
fHk R−1

x1x1
fk

] [
fHk R−1

x2x2
fk

] . (17)
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3.2. An MVDR Magnitude Squared Coherence Func-
tion

We define the magnitude squared coherence (MSC) func-
tion between two signals x1(n) and x2(n) as,

γ2
x1x2

(ωk) =
|Sx1x2(ωk)|2

Sx1x1(ωk)Sx2x2(ωk)
. (18)

From (17), we deduce the magnitude squared cross-
spectrum:

|Sx1x2(ωk)|2 =

∣∣∣fHk R−1
x1x1

Rx1x2R
−1
x2x2

fk
∣∣∣2[

fHk R−1
x1x1

fk
]2 [

fHk R−1
x2x2

fk
]2 . (19)

Using expressions (11) and (19) in (18), the MSC becomes:

γ2
x1x2

(ωk) =

∣∣∣fHk R−1
x1x1

Rx1x2R
−1
x2x2

fk
∣∣∣2[

fHk R−1
x1x1

fk
] [

fHk R−1
x2x2

fk
] . (20)

Property: We have,

0 ≤ γ2
x1x2

(ωk) ≤ 1, ∀fk. (21)

Proof: Since matrices Rx1x1 and Rx2x2 are assumed to be
positive definite, it is clear that γ2

x1x2
(ωk) ≥ 0. To prove

that γ2
x1x2

(ωk) ≤ 1, we need to rewrite the MSC function.
Define the vectors,

fp,k = R−1/2
xpxp

fk, p = 1, 2, (22)

and the normalized cross-correlation matrix,

Rn,x1x2 = R−1/2
x1x1

Rx1x2R
−1/2
x2x2

. (23)

Using the previous definitions in (20), the MSC is now:

γ2
x1x2

(ωk) =

∣∣∣fH1,kRn,x1x2f2,k

∣∣∣2[
fH1,kf1,k

] [
fH2,kf2,k

] . (24)

Consider the Hermitian positive semi-definite matrix,

M =
[

I Rn,x1x2

RH
n,x1x2

I

]
, (25)

and the vectors

f′1,k =
[

f1,k

0

]
, (26)

f′2,k =
[

0
f2,k

]
. (27)

We can easily check that,
∣∣∣f′H1,kMf′2,k

∣∣∣2 =
∣∣∣fH1,kRn,x1x2f2,k

∣∣∣2 , (28)

f′Hp,kMf′p,k = fHp,kfp,k, p = 1, 2. (29)
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Fig. 1. Estimation of the magnitude squared coherence function.
(a) MATLAB function ‘cohere’ with a window length of 100. (b)
Proposed algorithm with K = L = 100. Conditions of simula-
tions: 2 coherent frequencies at ν0 = 0.15 and ν1 = 0.18.

Inserting these expressions in the Cauchy-Schwartz in-
equality,

∣∣∣f′H1,kMf′2,k

∣∣∣2 ≤
[
f′H1,kMf′1,k

] [
f′H2,kMf′2,k

]
, (30)

we see that γ2
x1x2

(ωk) ≤ 1, ∀fk.
This property was, of course, expected in order that the

definition (20) of the MSC could have a sense.

4. SIMULATIONS

In this section, we compare by way of simulations, the
performance of the MSC function estimated with our ap-
proach and with the MATLAB function ‘cohere’ which uses
the Welch’s averaged periodogram method [7], [8]. We
consider the illustrative example of two signals x1(n) and
x2(n) which don’t have that much in common except for
Nf sinusoids at frequencies ν0, ν1, · · · , νNf−1,

x1(n) = w1(n) +
Nf−1∑
i=0

cos (2πνin) , (31)

x2(n) = w2(n) +
Nf−1∑
i=0

cos [2π (νin + φi)] , (32)

where w1(n) and w2(n) are two independent zero-mean
(real) white Gaussian random processes with unit variance.
The phases φ0, φ1, · · · , φNf−1, in the signal x2(n) are ran-
dom. In this example, the theoretical coherence should be
equal to 1 at frequencies ν0, ν1, · · · , νNf−1, and 0 at the oth-
ers. For both algorithms, we worked on 1024 time samples.
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Fig. 2. Estimation of the magnitude squared coherence function.
(a) MATLAB function ‘cohere’ with a window length of 100. (b)
Proposed algorithm with K = L = 100. Conditions of simula-
tions: 5 coherent frequencies at ν0 = 0.05, ν1 = 0.06, ν2 = 0.07,
ν3 = 0.08, and ν4 = 0.09.

In a first example, we took Nf = 2 with ν0 = 0.15
and ν1 = 0.18. Figure 1 compares the two algorithms. For
the ‘cohere’ function, a Hanning window of length 100 was
chosen with 50% overlap, while for the proposed algorithm
the parameter settings were K = L = 100 and the correla-
tion matrices were estimated (with 1024 samples) by simple
averaging. Clearly, the proposed algorithm is much closer
to the theoretical values of the MSC function than the ‘co-
here’ function.

In a second example, we increased the number of co-
herent frequencies to Nf = 5 with ν0 = 0.05, ν1 = 0.06,
ν2 = 0.07, ν3 = 0.08, and ν4 = 0.09. Figure 2 com-
pares again the two algorithms with the same parameters
of Fig. 1. The MVDR MSC is still much better. In or-
der to increase the resolution, we augmented the window
length of the ‘cohere’ function to 200 and took K = 200 for
the new algorithm. Figure 3(b) (proposed algorithm) shows
very clearly the 5 expected peaks while Fig. 3(a) (‘cohere’
function) does not have this ability.

5. CONCLUSIONS

The coherence function plays a major role in a huge num-
ber of applications. In spite of its importance, not so many
algorithms exist in the literature to estimate it correctly. The
most popular approach to do so is based on the Welch’s
method, which does not give, in our opinion, satisfactory
results. Even though the MVDR principle is very popular in
array processing, it was certainly underestimated for spec-
tral estimation. In this paper, we have shown for the first
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Fig. 3. Estimation of the magnitude squared coherence function.
(a) MATLAB function ‘cohere’ with a window length of 200. (b)
Proposed algorithm with K = 200 and L = 100. Conditions
of simulations: 5 coherent frequencies at ν0 = 0.05, ν1 = 0.06,
ν2 = 0.07, ν3 = 0.08, and ν4 = 0.09.

time, that the MVDR concept can be easily extended for the
estimation of the MSC. Many simulations show very clearly
the superiority of the new algorithm over the one based on
the Welch’s method.
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