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ABSTRACT

Although a signi cant amount of research attention has been de-
voted to microphone-array beamforming, the performance of all the
developed algorithms in practical acoustic environments is still far
from meeting our expectation. So further research efforts on this
topic are indispensable. In this paper, we treat a microphone array
as a multiple-input multiple-output (MIMO) system and develop a
general framework for analyzing performance of beamforming al-
gorithms based on the acoustic MIMO channel impulse responses.
Under this framework, we study the bounds for the length of beam-
forming lter, which in turn shows the performance bounds of beam-
forming in terms of speech dereverberation and interference sup-
pression. We also discuss the intrinsic relationships among differ-
ent classical beamforming techniques and explain, from the channel
condition point of view, what the prerequisites have to be ful lled in
order for those techniques to work.

Index Terms— Microphone Arrays, Beamforming, LCMV, MINT,
MVDR.

1. PROBLEM FORMULATION

The problem considered in this paper can be described as an� ��
system, where we have � sources in the sound eld and we use �
microphones to observe signals from their eld of view. The output
of the �th microphone is given by

����� �

��
���

h���s���� � ������ � � �� �� � � � � �� (1)

where

��� �
�
����� ����� � � � ��������

��
is the acoustic channel impulse response from Source 	 to Micro-
phone �, 
� is the length of the longest channel impulse response,

����� �
�
����� ���� � �� � � � ���� � 
� � ��

��
�

����� is the noise observed at the �th microphone, and � denotes
the transpose of a vector or a matrix.

Given the above signal model, the array processing is to esti-
mate some of the � source signals from the microphone observa-
tions ����� (� � �� �� � � � � ��. Suppose that there are � (�  �)
desired signals that we want to estimate. Without loss of generality,
we assume that the rst � signals, i.e., �����, � � �� �� � � � � � , are
the desired sources while the other � source signals �	�
���� � �

�� �� � � � � �, are the interferers, where � � � � � . Then the
objective of the array processing becomes to extract the signals
������ � � �� �� � � � � � , from the given observation signals �����,
� � �� �� � � � � � . For ease of analysis, let us neglect the noise terms
����� in (1). In this case, the estimation of the source signals would
involve two processing operations: dereverberation and interference
suppression.

Now suppose that we can achieve an estimate of ����� by ap-
plying � lters to the � microphone outputs, i.e.,
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���

g���x����� � � �� �� � � � � �� (2)

where

g�� �
�
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�
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� � ��
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�


� is the length of the g lters. A legitimate question then arises: is
it possible to nd g�� in such a way that ����� � �������� (where
�� is a delay constant)? In other words, is it possible to perfectly
recover ����� (up to a constant delay)? We will answer this question
in the following sections. But before continuing, we make another
assumption. We assume that the number of microphones used is
greater than, or at least equal to the number of sound sources, i.e.,
� �� .

2. LEAST-SQUARES AND MINT APPROACHES

The microphone signals can be rewritten in the following form,

x���� �
��
���

H��s������� � � �� �� � � � � �� (3)

where
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is a Sylvester matrix of size 
� � 
, with 
 � 
� � 
� � �,
and s������ � ������ ���� � �� � � � ���� � 
 � ��	� , 	 �
�� �� � � � �� . Plugging (3) into (2), we nd that
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�
s������� � � �� �� � � � � �� (4)

I  251424407281/07/$20.00 ©2007 IEEE ICASSP 2007



From the above expression, we see that in order to perfectly recover
�����, the following condition has to be satis ed:

H� g� � u��� (5)

where
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and

u� �
�
� � � � � � � � � � �

��
is a vector of length �, whose ��th component is equal to �. The
channel matrix H is of size ��� ���. Depending on the values
of � and � , we have two cases, namely, � �� and � � � .

Case 1: � �� .

In this case, �� � �� � ��� ���� �� . Since �� � �,
we have�� � ��� . This means that the number of rows of H� is
always larger than its number of columns. Now let’s assume that the
matrix H� has full column rank. In this situation, the best estimator
that we can derive from (5) is the least-squares solution, i.e.,

g��� �

HH�

�
��

Hu��	 (6)

However, this solution may not be good enough in practice for the
following reasons: 1. we do not know how to determine ��; 2. the
whole impulse response matrix H must be known to nd the optimal
lter in the LS sense, and thus there is very little exibility with this

method.

Case 2: � � � .

With more microphones than sources, is it possible to nd a bet-
ter solution than the LS one? Let � � � � 
, 
 � �. In fact,
requiring H� to have a number of rows that is equal to or larger than
its number of columns, we nd this time an upper bound for �� ,

�� � ���
 � �� ��� � �� 	 (7)

If we take

�� � ���
 � �� ��� � �� � (8)

and if �� is an integer, H� is now a square matrix. Therefore,

g�	
�
� �


H�

�
��

u��	 (9)

This expression is exactly the MINT method [2], which can per-
fectly recover the signal of interest ����� if H is known or can be
accurately estimated. Of course, we supposed that H� is of full
rank, which is equivalent to saying that the polynomials formed from
���� ���� � � � � ����  � �� �� � � � �� , share no common zeroes.

It is very interesting to see that, if we have more microphones
than sources, we have more exibility in estimation of the signals of
interest and have a better idea for the choice of �� .

3. FROST ALGORITHM

Following (3), if concatenating the � observation vectors together,
we get:

x��� �
�

x�� ��� x�� ��� � � � x�� ���
��

� H s������

where s����� � � s��	���� s��	���� � � � s��	� ��� 	� 	 The
covariance matrix corresponding to x��� is:

R

 � �
�

x���x� ���
�
� HR��H

� � (10)

with R�� � �
�
s�����s������

�
. We assumed that R

 is invert-

ible, which is equivalent to stating that the R�� matrix is of full rank
and H� matrix has full column rank. We are now ready to study two
interesting cases.

Case 1: Partial Knowledge of the Impulse Response Matrix.

In this case, we wish to extract source ����� with only the
knowledge of H��, i.e., the impulse responses from that source to
the � microphones. With this information, the LCMV lter is ob-
tained by solving the following problem [1]:


��
g
�

g�� R

g� subject to H�
��g� � u�	 (11)

Hence,

g����
� � R��

H��


H�
��R

��


H��

�
��

u�	 (12)

We refer to this approach as the LCMV1, where a necessary condi-
tion for

�
H�
��R

��


H��

�
to be nonsingular is to have��� � �, which

implies that

�� � ��� � ����� � ��	 (13)

An important thing to observe is that the minimum length required
for the lters g����

�� � � � �� �� � � � � � , decreases as the number
of microphones increases. As a consequence, the Frost lter has the
potential to signi cantly reduce the effect of the interferers with a
large number of microphones.

If we take the minimum required length for�� , i.e.,�� � ����
�������� and assume that �� is an integer, H�� turns to be a square
matrix and (12) becomes:

g����
� �


H�
��

�
��

u� �
�

H�
�� H�

�� � � � H�
��

�
��

u�� (14)

which is the MINT method [2]. So the MINT method is a particular
case of the Frost algorithm. Although never shown before, this result
should not come as a surprise since the motivation behind the two
approaches is similar.

We assumed in (14) that H�� has full rank, which requires that
the � polynomials formed from ���� ���� � � � � ��� share no com-
mon zeros. From (10), we can deduce that a necessary condition for
R

 to be invertible is to have ��� � ��. When � � � , i.e.,
the number of sources is equal to the number of microphones, this
condition is always true, which means that there is no upper bound
for �� . When � � � , assume that � � � � 
, 
 � �, this
condition becomes

�� � ���
 � �� ��� � �� 	 (15)

Combining (15) and (13), we see how �� is bounded, i.e.,

��� � ����� � �� � �� � ���
 � �� ��� � �� 	 (16)
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Case 2: Full Knowledge of the Impulse Response Matrix and � �
� .

Here, we wish to extract source �����with the full knowledge of
the impulse response matrix H, with � � � ��, � � �. Taking
all this information into account in our optimization problem,

���
g
�

g�� R��g� subject to H� g� � u��� (17)

we nd the solution,

g������ � R��

��H
�
H�R��

��H
�
��

u��� (18)

We refer to this approach as the LCMV2, where we assumed that
both R�� and

�
H�R��

��H
�
are nonsingular and their inverse matrices

exist. From the previous analysis, we know that in order for R�� to
be invertible the condition in (15) has to be true. Also, a necessary
condition for

�
H�R��

��H
�

to be nonsingular is to have�	� ��	,
which implies that

	� � ��
� � �� �	� � �� � (19)

Therefore, the only condition for (18) to exist is that:

	� � ��
� � �� �	� � �� � (20)

and this value needs to be an integer. In this case, H is a square
matrix and (18) becomes:

g������ �
�
H�

�
��

u��� (21)

which is also the MINT solution [2].

4. GENERALIZED SIDELOBE CANCELLER

The generalized sidelobe canceller (GSC) transforms the LCMV
algorithm from a constrained problem into an unconstrained form
[3]. Consider the linearly constrained optimization problem given
in (11). If we assume that 	� � �	� � ��
�� � �� so that the
nullspace of H�

�� not to be equal to zero (this indicates that the GSC
structure makes sense only for the LCMV1 lter), the GSC method
can be formulated as [4]:

g� � f� � B�w�� (22)

where

f� � H��

�
H�
��H��

�
��

u� (23)

is the minimum-norm solution of H�
��f� � u� and B� is the blocking

matrix that spans the nullspace of H�
��, i.e. H�

��B� � 0. The size
of B� is �	� � ��	� � 	�, where �	� � 	 is the dimension of
the nullspace of H�

��. Therefore, w� is a vector of length �	� �
	 � �� � ��	� � 	� 	 �, which is obtained from the following
unconstrained optimization problem:

���
w�

�f� � B�w��
� R�� �f� � B�w�� � (24)

and the solution is:

w�	�

� �
�
B�� R��B�

�
��

B�
� R��f�� (25)

It has been shown that,

g������ � R��

��H��

�
H�
��R

��

��H��

�
��

u

�

�
I� B�

�
B�
� R��B�

�
��

B�
� R��

�
f� � g�	�� (26)

so the LCMV and GSC algorithms are equivalent.
Expressions (22) and (26) have a very nice physical interpre-

tation [compared to (12)]. The LCMV lter g����� is the sum of
two orthogonal vectors f� and �B�w�	�� , which serve for different
purposes. The objective of the rst vector, f�, is to perform dere-
verberation on the signal �����, while the objective of the second
vector, �B�w�	�

� , is to reduce the effect of the interference. In-
creasing the length 	� of the lters g����� from its minimum value
�	� � ��
�� � �� will not change anything on the dereverbera-
tion part. However, increasing 	� will augment the dimension of
the nullspace of H�

��, and hence the length of w�	�

� . As a result,
better interference suppression is expected. It is obvious, from a
theoretical point of view, that perfect dereverberation is possible (if
H�� is known or can be accurately estimated) but perfect interfer-
ence suppression is not. In practice, if all the impulse responses
��� (� � �� � � � � � ) can be estimated, we can expect good derever-
beration but interference suppression may be limited for the simple
reason that it will be very hard to make 	� much larger than 	� (the
length of the impulse responses ���).

To nd the bounds for the length of w�	�

� , we consider two
situations. The rst one is when � � � . In this case, we know
from the previous section that there is no upper bound for 	� . This
implies that w�	�� can be taken as large as we wish. As a result,
we can expect better interference suppression as 	� is increased. By
increasing the number of microphones (with� �� ), the minimum
length required for 	� will decrease compared to 	�, which is a
very good thing because in practice acoustic impulse responses can
be very long.

Our second situation is when we have more microphones than
sources. Assume that � � � ��,� � �. Using (16) and the fact
that 	w� � �� � ��	� �	� 	 �, we can easily deduce the bounds
for the length of w�	�

� :

�  	w� �
�

�
�� �� � ���	� � ��

�
�

�
�� �� � ���� � ��	� � (27)

This means that there is a limit to interference suppression. Consider
the scenario where we have one desired source only (� � �) and �
interferers. We have � � �	 � � � �� and (27) is now:

�  	w� �
��

� ��� �
�	� � �� �

��� � ���

� ��� �
	�� (28)

We see from (28) that if 	� and � remain the same, when we
increase the number of microphones, it will allow us to use a
larger value for 	w� to augment the speech-dereverberation and
interference-suppression performance.

5. MVDR APPROACH

The minimum variance distortionless response (MVDR) method,
due to Capon [5], is a particular case of the LCMV1. In the original
formulation of MVDR, the observation signals were assumed free
of reverberation so it applies only one constraint to the direct path of
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the desired source. In the presence of reverberation, the constraint
for MVDR should be modi ed as follows,

h�������g� � �� (29)

where h������ is the ��th column of the matrix H��. The aim of this
constraint is to align the desired source signal, �����, at the output
of the beamformer. Hence, in the MVDR approach, we have the
following optimization problem:

���
g
�

g��R��g� subject to h�������g� � �� (30)

whose solution is:

g����

� �
R����h������

h�������R����h������
� (31)

The minimum required length for the lters g����

�� is �� � ��. In
this case, the performance of the MVDR beamformer is similar to
that of the classical delay-and-sum beamformer. This method does
not require the full knowledge of the impulse responses but only
the relative delays among microphones. However, it may have the
problem of signal self cancellation.

6. EXPERIMENTS

This section compares different algorithms and studies the effect
of lter length on beamforming performance. We set up a micro-
phone array system in the varechoic chamber at Bell Labs [which
is a room measures 6600 mm long, 5850 mm wide, and 2750 mm
high (�� � � 	)]. The array consists of 4 microphones, placed, re-
spectively, at (2437, 5600, 1400), (2537, 5600, 1400), (2637, 5600,
1400), and (2737, 5600, 1400). There are three sources (loudspeak-
ers) in the sound eld: one target [�����, is located at (3337, 1438,
1600)], and two interferers [����� and ����� are placed at (1337,
2938, 1600) and (5337, 2938, 1600) respectively]. The reverbera-
tion time 
	
 is controlled to be approximately 0.35 seconds. To
make the experiments repeatable, the impulse response from each
source to each microphone was measured. These measured impulse
responses are then treated as the true ones. In our experiment, the
sampling rate is 8 kHz. The impulse responses are truncated to 128
points (�� � ��	). ����� is a prerecorded speech signal from a
male speaker, and both ����� and ����� are speech signals from a
same female speaker. The microphone outputs are obtained by con-
volving the sources with the impulse responses. The input SIR is
�	��
 dB.

To quantitatively assess the performance of interference sup-
pression and speech dereverberation, we evaluate two criteria,
namely signal-to-interference ratio (SIR) and speech spectral dis-
tortion. The input and output SIRs are given by (see [6] for more
details):

���� �

�
�

�

��

��

�
�
��� � ������

�
�

��

	�
� ���	 � �	������

(32)

����� �

�
�
�
��� � ������

�
�

��

	�
� ���	 � �	������

(33)

where �	 �
��

�� ��� � �	 denotes the impulse response of the
equivalent channel between the �th source and the beamforming
output. For spectral distortion, we evaluate the Itakura-Saito (IS)
distance between ����� and ����� � �	, which should measure the
amount of reverberation present in the estimated speech signal after
beamforming.

Table 1. Performance of different algorithms when the MIMO im-
pulse responses are known a priori (“�” indicates the maximum
value that the �� can take for the condition and “�” means that
the �� cannot take this value for the method in the given condition).

Direct LCMV1 LCMV2 GSC MVDR

�� ��� IS ��� IS ��� IS ��� IS ��� IS
(dB) (dB) (dB) (dB) (dB)

765� 117.2 0.0 7.9 0.0 117.2 0.0 1.5 0.0 4.4 7.7
700 24.8 0.0 1.3 0.0 � � 1.3 0.0 4.4 7.6
600 11.2 0.2 0.1 0.0 � � 0.1 0.0 4.5 7.4
300 4.0 0.2 -6.7 0.0 � � -6.7 0.0 3.0 9.1

During beamforming, we assumed that the MIMO impulse re-
sponse were know a priori. Table 1 summarizes the experimental
results. Many observations can be made from this table. 1. As the
length of the impulse responses, i.e., ��, increases, the maximum
achievable (with the maximum ��) gain in SIR decreases. This oc-
curs to all the algorithms. 2. In the ideal condition where impulse
responses are known and �� is set to its maximum value, both the
direct and LCMV2 (or MINT) techniques can achieve almost per-
fect interference suppression and speech dereverberation. Similar
to the direct and LCMV2 methods, the LCMV1 and GSC can also
perform perfect speech dereverberation, but their interference sup-
pression performance is limited. This is mainly because LCMV1
and GSC did not use the channel information from the interferers
to the microphones. 3. In each reverberant condition (a xed ��),
if we reduce the length of the �� lter, the amount of interference
suppression decreases signi cantly. 4. The MVDR method is rel-
atively robust to the length of the �� lter, but it suffers dramatic
signal distortion.

7. CONCLUSIONS

This paper developed a general acoustic MIMO framework for mi-
crophone array beamforming. Under this general framework, we an-
alyzed the lower and upper bounds for the length of the beamforming
lter, which in turn shows the performance bounds of beamforming

in terms of speech dereverberation and interference suppression. We
addressed the connection between beamforming and the multiple-
input/output inverse theorem (MINT), which was originally devel-
oped to achieve the exact inverse ltering of the room acoustics. We
also discussed the intrinsic relationships among the most classical
beamforming techniques and explained, from the channel condition
point of view, what the necessary conditions have to be ful lled in
order for the different beamforming techniques to work.

8. REFERENCES

[1] O. L. Frost, III, “An algorithm for linearly constrained adaptive array
processing,” Proc. IEEE, vol. 60, pp. 926–935, Aug. 1972.

[2] M. Miyoshi and Y. Kaneda, “Inverse ltering of room acoustics,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-36, pp. 145–152,
Feb. 1988.

[3] L. J. Grif ths and C. W. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Trans. Antennas Propagat., vol.
AP-30, pp. 27–34, Jan. 1982.

[4] C. W. Jim, “A comparison of two LMS constrained optimal array struc-
tures,” Proc. IEEE, vol. 65, pp. 1730–1731, Dec. 1977.

[5] J. Capon, “High resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, pp. 1408–1418, Aug. 1969.

[6] Y. Huang, J. Benesty, and J. Chen, “A blind channel identi cation-
based two-stage approach to separation and dereverberation of speech
signals in a reverberant environment,” IEEE Trans. Speech Audio Pro-
cess., vol. 13, pp. 882–895, Sept. 2005.

I  28


