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ABSTRACT

Estimating time-difference-of-arrival (TDOA) remains a challeng-
ing task when acoustic environments are reverberant and noisy.
Blind channel identification approaches for TDOA estimation ex-
plicitly model multipath reflections and have been demonstrated
to be effective in dealing with reverberation. Unfortunately, ex-
isting blind channel identification algorithms are sensitive to am-
bient noise. This paper shows how to resolve the noise sensitiv-
ity issue by exploiting prior knowledge about an acoustic room
impulse response (RIR), namely, an acoustic RIR can be mod-
eled by a sparse-nonnegative FIR filter. This paper shows how
to formulate a single-input two-output blind channel identification
into a least square convex optimization, and how to incorporate the
sparsity and nonnegativity priors so that the resulting optimiza-
tion remains convex and can be solved efficiently. The proposed
blind sparse-nonnegative (BSN) channel identification approach
for TDOA estimation is not only robust to reverberation, but also
robust to ambient noise, as demonstrated by simulations and ex-
periments in real acoustic environments.

1. INTRODUCTION

Time delay estimation [1], which calculates the time-difference-
of-arrival (TDOA) between signals received at different micro-
phones, is essential for sound source localization using micro-
phone arrays. The task of TDOA estimation is illustrated in Fig. 1.
In terms of the underlying model for an acoustic room impulse re-
sponse (RIR), the existing approaches for TDOA estimation can be
classified into two categories: generalized cross-correlation (GCC)
approaches and blind channel identification approaches. The GCC
approaches approximate an acoustic RIR as a simple delta func-
tion, and the TDOA estimation is achieved by maximizing some
weighted cross-correlation function with respect to a scalar time
difference. An excellent review of this category of approaches
can be found in [2]. The GCC approaches do not explicitly take
multipath reflections into account and their performance in rever-
berant acoustic environments is limited due to the underlying un-
realistic RIR model. In contrast, blind channel identification ap-
proaches [3] [4] model an acoustic RIR as an FIR filter that in-
cludes both a direct path and multipath reflections. In these ap-
proaches, after the modeling filters have been identified, the TDOA
can be easily computed by examining the direct paths in the filters.
By using a more realistic model, the blind channel identification
approaches have been shown to be more effective than GCC ap-
proaches to reverberation. Unfortunately, blind channel identifica-
tion approaches have been found to be sensitive to ambient noise.
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Figure 1: [llustration of a single-input two-output acoustic system.
A microphone observation consists of a direct path signal, multi-
path reflections, and ambient noise. The task of TDOA estimation
is to estimate the time difference of arrival between the two direct
paths, Ats — At;.

This is because blind channel identification needs to estimate a
much more complex model having hundreds or even thousands of
parameters (filter coefficients) and is often ill-conditioned due to
the nature of blind estimation.

This paper proposes to resolve the noise sensitivity issue in
blind channel identification by exploiting prior knowledge about
acoustic RIRs. According to many studies [5], an acoustic RIR
can be modeled by an FIR filter, which is both nonnegative and
sparse in theory. In practice, nonnegativity and sparsity may not
be strictly satisfied due to effects such as low- or high-pass filter-
ing in the propagation media or the imperfect frequency response
of a microphone. However, when those effects are common to both
channels, they can be viewed as distortions to a common source.
Therefore, the nonnegativity and sparsity assumption are reason-
able for real acoustic environments if an acoustic system is appro-
priately constructed.

The nonnegativity and sparsity priors have been demonstrated
to be effective in many signal processing tasks [6]. Our previous
work [7] showed that these two priors provided dramatic regular-
ization to the least-mean-square (LMS) problem for identifying
acoustic RIRs and improved its robustness to ambient noise when
the source was given a priori. This paper shows that they play a
critical role in blind acoustic channel identification for resolving
ill-conditioned solutions, which may be caused by overestimating
the filter length or insufficient excitation due to the band-limited
nature of speech sources [8]. By making the problem better posed,
the resulting blind sparse-nonnegative (BSN) channel identifica-
tion approach is robust to ambient noise. Furthermore, the BSN
channel identification approach also allows common preprocess-
ing on the microphone observations to reduce the noise level. In
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contrast, conventional blind channel identification approaches pro-
hibit preprocessing since they are not able to resolve the prepro-
cessing filtering from filtering by a RIR.

2. BLIND SPARSE-NONNEGATIVE (BSN) CHANNEL
IDENTIFICATION

2.1. Previous work

In an acoustic system as illustrated in Fig. 1, the microphone out-
puts at time k can be written as:

zi(k) = s(k) x hs + ns(k), 1 =1,2, (1)
where * denotes linear convolution, s(k) is a source signal, h; rep-
resents the channel impulse response between the source and the
ith microphone, and m; (k) is a noise signal. The blind channel
identification via cross relation is based on a clever observation,
22(k) * h1 = x1(k) * ha = s(k) * h1 * he, if the microphone
signals are noiseless [8]. Then, without requiring any knowledge
from the source signal, the channel filters can be identified by min-
imizing the squared cross relation error. In matrix-vector form, the
optimization becomes

* * . 1
hi,h; = arg Juin §||X2h1 — Xihy|?

subject to |[hy||* + ||hz||® = 1, )
where X; is the (N + L — 1) x L convolution Toeplitz matrix
whose first row and first column are [z;(k — N + 1), z;(k —
N),...,zi(k— N—L+2)]and [z;(k— N+ 1),z;(k — N +
2),...,z:(k),0,...,0]", respectively, N is the microphone signal
length, L is the filter length, || - || denotes l2-norm, and the con-
straint is to avoid the trivial zero solution. It is easy to see that
the above optimization is a minimum eigenvalue problem, and it
can be solved by eigenvalue decomposition. Benesty [3] proposed
to solve the above optimization in an adaptive way, and demon-
strated that the algorithm is effective in dealing with reverberation
for TDOA estimation. Unfortunately, the filter estimation by the
optimization problem in Eq. 2 is sensitive to ambient noise.

To improve the robustness to ambient noise, our strategy is
to incorporate blind channel identification with prior knowledge
about an acoustic RIR, namely, an acoustic RIR can be modeled
by a sparse-nonnegative FIR filter. However, it is hard to incor-
porate either the nonnegativity prior or the sparsity prior directly
into the optimization in Eq. 2. In fact, if the optimization in Eq. 2
is also subject to nonnegative constraints, the resulting optimiza-
tion is NP-hard. Consequently, we choose to reformulate the blind
channel identification into a convex optimization problem, which
will provide a flexible platform for incorporating both the nonneg-
ativity prior and the sparsity prior. We will focus on the batch-
mode formulation in this paper and show its adaptive counterpart
in future work.

2.2. Convex formulation

The optimization in Eq. 2 is not convex because its domain,
|h1]|? + |Ihe]|®> = 1, is not convex [9]. However, this non-convex
constraint which is used to avoid the trivial zero solution, can be
replaced by a convex constraint, which is also able to avoid the
trivial zero solution. Our choice is a singleton linear constraint
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and the optimization becomes

L1 2
arg }2111212 §||X2h1 — Xihsl|

subjectto h1(0) =1,

hi,h; =
3

where h1(0) is the first element of h;. Because the optimization
is a minimization, its solution tends to align h;(0) with the max-
imum coefficient in the filter h;, which is often the coefficient
corresponding to the direct path. To ensure that ho does not have
nonzero elements at negative time delays, one can use earlier sam-
ples for 1. How much earlier is determined by the maximum pos-
sible time delay, fs - d/c, where d is the distance between the two
microphones, f is sampling rate, and c is the speed of sound in air.
It can be shown that, when the microphone signals are noiseless,
the two optimizations (Egs. 2 and 3) yield equivalent solutions up
to a constant delay and a constant scalar factor.

The new formulation in Eq. 3 has many advantages. It is con-
vex, and can be written as an unconstrained least square (LS) prob-
lem since the singleton constraint can be easily substituted into
the objective function. Furthermore, the resulting LS approach is
more robust to ambient noise than the eigenvalue decomposition
approach in Eq. 2. This can be better seen in the frequency do-
main. The squared cross relation error is weighted by the power
spectrum density of the underlying common source. As a result,
when microphone signals are noisy, the optimization in Eq. 2 tends
to fill the filter energy constraint with less significant frequency
bands which have little contribution in the source. This is because
the squared error in those frequency bands are weighted less in
the objective function. Consequently, the solution to Eq. 2 is ex-
tremely sensitive to ambient noise. In contrast, the singleton linear
constraint in Eq. 3 has much less coupling in the filter energy allo-
cation, and thus its solution is more robust to ambient noise.

2.3. BSN channel identification algorithm

The convex LS formulation in Eq. 3 provides a flexible platform
for incorporating the nonnegativity and sparsity priors. The op-
timization for blind sparse-nonnegative (BSN) channel identifica-
tion becomes

L—-1

* * . 1 . .
hih; = arg min o[ Xzhy — Xiha|? + A [k (5) + ha ()]

§=0

subjectto h1(0) =1,h; > 0,hs >0

where the second term is the /;-norm of the filters, and )\’ is the
sparsity regularization parameter that balances the preference be-
tween the squared fitting error and the sparseness of the solution
described by its /1-norm. Enforcing sparsity using !:-norm regu-
larization has been an active research area in the last decade [6],
and it has been the driving force for many emerging fields in sig-
nal processing, such as sparse coding and compressive sensing.
As for the nonnegative constraints, they were inspired by nonneg-
ative matrix factorization (NMF) [10], which showed that nonneg-
ative constraints are able to dramatically regularize an optimiza-
tion problem. Combining both the nonnegative constraints and the
l1-norm regularization, the optimization in (4) is expected to re-
solve the ill-conditioning problem in blind channel identification
and yield solutions that are robust to ambient noise.

Given a sparsity regularization parameter \’, the optimization
in Eq. 4 is a convex nonnegative quadratic programming (NNQP)

“)
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problem, which can be solved by various methods with guaran-
teed global convergence. Among those, the multiplicative update
algorithm [11] is able to solve the NNQP problem efficiently since
it only involves Toeplitz matrix-vector multiplication, which can
be implemented by FFTs. Another important issue in Eq. 4 is
how to determine the regularization parameter \’, which controls
the sparseness of solutions. The work in [7] shows that, in the
Bayesian framework, the optimal regularization parameter A is
equal to the product o2\, where o2 describes the noise level and
A is the parameter describes the sparseness of filters. These two
parameters can be determined by either a priori knowledge, or
learning from observed microphone signals [7].

3. RESULTS

3.1. A simulated example

Here we first provide a toy example to illustrate the the advantage
of the proposed BSN channel identification approach for TDOA
estimation in comparison with other existing approaches. In the
simulation, the source (s) is a speech segment of 4096 samples
with sampling rate of 16 kHz, and both of the two FIR filters (h1
and hg) are 16 samples long. If we use 7 = 0,1,...15 to index
the filter coefficients, filter h; has nonzero elements only at j=0,
2, and 12 with amplitudes of 1, 0.7, and 0.5, respectively; filter ho
has nonzero elements only at j=2, 6, 8, and 10 with amplitudes of
1, 0.6, 0.6 and 0.4, respectively. Notice that both filters are non-
negative and sparse. Then, the simulated microphone observations
(z;) were computed according to Eq. 1 where the ambient noise
(n;) was real noise recorded in a conference room. The noise was
scaled so that the signal-to-noise ratio (SNR) of the microphone
signals was 15 dB. The simulated microphone signals were then
highpassed with a cut-off frequency of 300 Hz to reduce the low
frequency noise before they were fed to different algorithms for
TDOA estimation.

The simulation results are shown in Fig. 2. The traditional
cross-correlation approach [Fig. 2 (a-1)] has low temporal reso-
lution, and multipath reflections often cause a peak shift in the
cross-correlation function. Consequently, this approach performs
poorly in reverberant environments. The phase transform (PHAT)
approach [Fig. 2 (a-2)] improves the temporal resolution by pre-
whitening the microphone signals, however, its performance is still
limited by the underlying oversimplified RIR model. The simula-
tion results of blind channel identification approaches are shown
in Fig. 2 (b), illustrating strong advantages of our new formulation
of blind channel identification presented in Section 2. As shown
in Fig. 2 (b), the new LS formulation in Eq. 3 is more robust to
ambient noise than the conventional eigenvalue decomposition ap-
proach in Eq. 2. Moveover, the sparsity and nonnegativity prior
knowledge helps to resolve the degeneracy in blind channel iden-
tification and yields dramatic improvement in filter estimates. The
filter estimation accuracy gained by the BSN channel identifica-
tion approach will become critical when the filters are thousands
of taps long, as in typical real acoustic environments.

3.2. Performance comparison using real room recordings

Now we evaluate the performance of the proposed BSN channel
identification approach for TDOA estimation in real environments.
The experimental setup is illustrated in Fig. 3. Prerecorded speech
sequences were played through a loudspeaker located at one end
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(a) GCC approaches. In each figure, the solid line describes the GCC
function between two microphone signals, and the vertical dot line in-
dicates the true time delay. The traditional cross-correlation is on the
left and the phase transform (PHAT) is on the right.

——e Estimated

h, o True h,
1 1
b-1 b-2
Eigen 0.50 o 0.5 O oo
o
0, ;';Hﬁ-===== L ) ° ;"E';';D;H&=
l -Iv L Ly ® I [ i i
-0.5 -0.5
5 10 15 5 10 15
1 = B3 1 b—4]
LS . o
. T IT Tt s
0p——n-s-0-0-0-ol 7 ol L T2
I $e I'f ‘II I T e
-1 -1
0 5 10 15 0 5 10 15
1 1—a
b-5 Y b-6
BSN
0.5 T 0.5 I T
0le ' sesssssese oo =l o0-0-ls =T====
0 5 10 15 0 5 10 15
Time (sample) Time (sample)

(b) Blind channel identification approaches. The three rows from top
to bottom are the identified filters respectively by eigenvalue decom-
position approach (Eq. 2), LS approach (Eq. 3) and the BSN channel
identification approach (Eq. 4). The left and right columns represent
the identified filters associated with channel 1 and channel 2, respec-
tively. In each figure, the dot-solid line describes the identified filters,
and the square-dot line indicates the true filters up to a constant time
delay and a constant scalar factor.

Figure 2: Results of GCC approaches and blind channel identifi-
cation approaches for TDOA estimation.

of the room and recorded by a matched omnidirectional micro-
phone pair (SP-CMC-8, Sound Professionals) located at the other
end of the room. We recorded two data sets: one set had the loud-
speaker in the middle (see Position 1 in Fig. 3), and the other had
the loudspeaker about 75 cm away from the middle (see Position
2 in Fig. 3). At each speaker position, 100 speech sentences (50
by a male speaker and 50 by a female speaker) were played and
recorded with a sampling rate of 16 kHz. In our evaluation, we di-
vided the recordings into segments of 4096 samples, and discarded
those silent segments which contained no speech signals. Then,
we treated each segment independently and performed TDOA al-
gorithms on each of them. Since a large portion of the ambient
noise was at low frequency (such as air-conditioning noise), the
recorded signals were highpassed with a cut-off frequency of 300
Hz before they were fed to TDOA estimation algorithms. For the
BSN channel identification approach, the filter length was 2048.
As shown in Fig. 4, the proposed BSN channel identification
approach yielded consistent TDOA estimates at both Position 1
and Position 2, even though Position 2 is difficult for TDOA es-
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Figure 3: The loudspeaker-microphone positions in a conference
room during recording. The dot-dash line indicates the center line
of the room.
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Figure 4: Histogram in percentage of TDOA estimates using three
different approaches: the cross-correlation (CC) approach, the
phase transform (PHAT) approach, and the BSN channel identi-
fication approach. The left and right column describes the TDOA
estimation results when the speaker was at Position 1 and Position
2, respectively. The bad estimates are those that are more than 10
samples away from the true values (-1 for Position 1, and 10 for
Position 2).

timation since the loudspeaker was close to the wall and the wall
reflections were very strong. In contrast, the PHAT approach had
good estimates only at position 1 but not position 2. The cross-
correlation approach did not yield satisfactory estimates at either
positions and almost completely failed at position 2. As for other
blind channel identification approaches, the batch-mode eigen-
value decomposition (in Eq. 2) and the LS (in Eq. 3), they were
not able to yield competitive results simply because there were not
enough frequency components in a short 4096-sample frame for
estimating filters of length 2048. The BSN channel identification
approach overcomes the difficulty by exploiting knowledge about
the nonnegativity and sparsity of the RIRs.

4. DISCUSSION
We have developed a blind sparse-nonnegative (BSN) channel

identification approach for TDOA estimation, which exploits prior
knowledge about an acoustic RIR, namely, an acoustic RIR can
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be modeled by a sparse-nonnegative FIR filter. The BSN channel
identification is formulated as an /1 -norm regularized nonnegative
LS problem, which is convex and can be solved efficiently with
guaranteed global convergence. Both simulation and experimental
results in real acoustic environments demonstrate the effectiveness
of the BSN channel identification approach for TDOA estimation.

Although modeling an acoustic RIR as a sparse-nonnegative
FIR filter is demonstrated to be effective for TDOA estimation,
how accurate the modeling is in real acoustic environments re-
mains an open problem. TDOA estimation is relatively immune
to moderate modeling inaccuracy since it only requires informa-
tion about the direct path but not the whole filter. Nevertheless,
we believe exploiting prior knowledge about RIRs is crucial for
blind channel identification to resolve its underlying degeneracy
and become robust to ambient noise.

Our future work is to develop an adaptive algorithm for BSN
channel identification. We expect the resulting adaptive algorithm
would outperform the adaptive eigenvalue decomposition (AED)
algorithm [3], which has been shown to be not only computation-
ally efficient, but also effective in dealing with reverberation.
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