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ABSTRACT

Time delay estimation (TDE) is a basic technique for numerous ap-
plications where there is a need to localize and track a radiating
source. It is particularly challenging in the presence of noise and re-
verberation, and when the source signal is speech which is inherently
nonstationary and random. The most important TDE algorithms for
two sensors are based on the generalized cross-correlation (GCC)
method. These algorithms perform reasonably well when reverber-
ation or noise is not too high. In an earlier study of the authors, a
more sophisticated approach was proposed. It employs more sen-
sors and takes advantage of their delay redundancy to improve the
precision of the TDOA (time difference of arrival) estimate between
the first two sensors. The approach is based on the multichannel
cross-correlation coefficient (MCCC) and was found more robust to
noise and reverberation. In this paper, we show that this approach
can also be developed on a basis ofjoint entropy. For Gaussian sig-
nals, we show that, in the search of the TDOA estimate, maximiz-
ing MCCC is equivalent to minimizing joint entropy. But with the
generalization of the idea to non-Gaussian speech signals, the joint
entropy based new multichannel TDE algorithm manifests a poten-
tial to outperform the MCCC-based method. Since there is no rigor-
ous mathematical formula for speech entropy, we use the assumption
that speech can be plausibly modeled by a Laplace distribution and
develop a practical approximation of Laplace entropy for TDE of
speech signals. The performance of the proposed new algorithm is
investigated via simulations.

Index Terms- Time delay estimation, multichannel cross-
correlation coefficient, entropy, Laplace distribution

1. INTRODUCTION

The aim of time delay estimation (TDE) is to measure the relative
time difference of arrival (TDOA) among spatially separated sen-
sors. This technique is widely used in radars and sonars for local-
izing radiating sources. Nowadays, the same technique is used in
room acoustics for localization and tracking of talkers for applica-
tions such as speech enhancement [1], automatic camera tracking
for video-conferencing [2], and microphone array beam steering [3].

Many techniques exist for TDE. But the most popular and most
useful algorithms in practice are based on the generalized cross-
correlation (GCC) method proposed by Knapp and Carter [4]. The
delay estimate between two sensors is obtained as the time-lag that
maximizes the cross-correlation between filtered versions of the re-
ceived signals. This method is well studied and it performs fairly
well in moderately noisy and non-reverberant environments [5].
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However, this method tends to break down when reverberation or
noise is high. Alternatively, when more than two microphones are
available, the TDOA measurements between different microphone
pairs are not independent. Therefore, it is possible to generalize the
GCC technique in such a way that all the redundant information can
be fully taken into account for achieving an optimal TDE perfor-
mance in adverse environments. This idea was developed into a mul-
tichannel TDE algorithm based on multichannel cross-correlation
coefficient (MCCC) in [6], [7]. It was found that the algorithm's
robustness to noise and reverberation gets better as the number of
microphones increases.

While the MCCC-based TDE performs well in the presence of
noise and reverberation, the MCCC is by no means the only choice
for developing the concept ofmultichannel TDE. MCCC is a second-
order-statistics (SOS) measure of dependence among multiple ran-
dom variables and is ideal for Gaussian source signals. But for non-
Gaussian source signals, MCCC is not sufficient and higher order
statistics (HOS) have more to say about their dependence.

The concept of entropy, which is a statistical (apparently HOS)
measure of randomness or uncertainty of a random variable, was in-
troduced by Shannon in the context of communication theory. As it
will be demonstrated later, minimizing the entropy is, in fact, equiv-
alent to maximizing the MCCC for TDE ifthe source signal is Gaus-
sian. While using MCCC for TDE implies that we deal with Gaus-
sian signals, using joint entropy can certainly allow us to go beyond
this constraint. In this paper, we show how to use the concept of
minimum entropy in TDE.

Speech is a complicated random process and there is no rigor-
ous mathematical formula for its entropy. In our study, we employ
the assumption that speech can be fairly well modeled by a Laplace
distribution and we then try to use Laplace entropy in developing the
new idea of minimum entropy for TDE of speech signals. But com-
puting Laplace entropy is not straightforward. An approximation
will be derived and its viability will be justified via simulations.

2. ENTROPY

In this section, we briefly describe the principles of entropy.
Let x be a random variable with a density p(x). (In this pa-

per, we choose not to distinguish random variables and their realiza-
tions.) The entropy is defined as [8]:

H(x) Jp (x) lnp(x)dx
-E{ln p(x)}, (1)
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where E{ } denotes mathematical expectation. The entropy (in
continuous case) is a measure of the structure contained in the d
sity p [9].

Let us now consider N random variables

X= [Xl X2 XXN ]T,

with joint density p(x), the corresponding joint entropy is:

H(x) = J- p(x) ln p(x)dx,

where [ ]T denotes a vector/matrix transpose.

2.1. Entropy of a Multivariate Gaussian Distribution

Let Xi, X2, ---, XN have a multivariate normal distribution v
mean 0 and covariance matrix

R = E{xxT}

The probability
given by:

(72l r,IX2 rxlXN
r1X12 (7X2 rx2xN

~~~~frxlxN (rx2xN XXN

density function (pdf) of Xl, X:2, * * *, X:N iS t]

1 _1XTR-1x
p(x) eN [ /2

2

/2w) [det(R)]1

where det(.) denotes the determinant of the involved matrix.
substituting (4) into (2), we can now compute the joint entropy,

H(x) = Jp(x)xTR-lxdx + In {_(2) [det(R)]1/2
I2E {xTR- lx} + In {(27r)N det(R)}

Itr {E [R 1XXT] } + In {(27r)N det(R)}

N
+ 2 in{(27r)Ndet(R)}

In (2re)N det (R)}.

The entropy for any of the random variables xn, n 1 2,...
is,

H(Xn) In {2e<2 }-

Lthe
len-

(2)

where an, n = 1, 2, ... , N, are the attenuation factors due to prop-
agation effects, t is the propagation time from the unknown source
s(k) to microphone 1, wn (k) is an additive noise signal at the nth
microphone, T is the relative delay between microphones 1 and 2,
and fn (T) is the relative delay between microphones 1 and n [with
fl (T) = 0 and f2 (T) = T]. In this paper, we are considering only
linear equispaced arrays and the far-field case (i.e., plane wave prop-
agation), in which the function fn depends on a sole delay T:

(8)

In other scenarios, frl probably involves two or three TDOAs, and
also depends on the microphone array geometry. But presumably,
the exact mathematical relation of the relative TDOAs is accessible.
In addition, the sampling rate needs to be chosen high enough for
sufficient resolution such that the values of fr (T) 's are all treated as

vith integers.
It is further assumed that w,, (k) is a zero-mean Gaussian ran-

dom process that is uncorrelated with s(k) and the noise signals at
other microphones. It is also assumed that s(k) is reasonably broad-
band.

(3) 3.2. Minimum Entropy for a Gaussian Source

We are interested in estimating only one time delay (T) from multiple
sensors. Obviously, two sensors are enough to estimate T. However,

[hen the redundant information that is available when more than two sen-
sors are used, will help to improve the estimator, especially in the
presence of high level of noise and reverberation.

(4) Consider the following vector:

x(k, m) [xi (k) x2 [k+ f2(m)] ... XN[k+ fN (m)]]
By

We can check that for m= T, all the signals xn[k + fn(T)],
n = 1, 2, ... , N, are aligned. This observation is essential because
it already gives an idea on how to find T. The covariance matrix
corresponding to the signal x(k, m) is:

R(m) = E {x(k, m)xT (k, m) }.

Therefore the joint entropy for Gaussian signals is:

H [x(k, m)] = n (27re)N det [R(m)] }

(5)

,N,

(9)

(10)

We argue that the value ofm that gives the minimum ofH [x(k, in)],
for different m, corresponds to the time delay between microphones
1 and 2. Hence, the solution to our problem is:

Te = arg min H [x(k, in)],
m

(1 1)
(6)

3. APPLICATION TO TIME DELAY ESTIMATION

3.1. Signal Model

Suppose that we have an array, which consists of N microphones
whose outputs are denoted as xn (k), for n = 1, 2, ..., N, and with
k being the time index. Without loss of generality, we select micro-
phone 1 as the reference point and consider that the propagation of
the signal from a far-field source to the array is modeled as:

Xn(k) = ans[k- t -fn(T)] + wn(k), (7)

where rn C [-Tmax, Tmax], and Tmax is the maximum possible de-
lay.

Let us see now why minimum entropy makes sense for TDE.
We define the squared multichannel cross-correlation coefficient
(MCCC) among the N random variables X1, X2, * * *, XN, as [10],
[1 1], [6], [7],

P T(m) =1 det [R(m)]
Hln=l Jxn

(12)

We can show that, 0 < p2(m) < 1 [7]. If two or more random
variables are perfectly correlated, then px = 1. If all the processes
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are completely uncorrelated, then Px = 0. In [6] and [7], it was
shown that the MCCC can be used to estimate the relative delay:

Tc = arg maxpx (m).
m

(13)

It is clear from (10) through (13) that minimizing the entropy or
maximizing the MCCC is equivalent for Gaussian signals, so that
Te = Tc-

4. APPLICATION TO SPEECH SIGNALS

In room acoustics environments, the sources of interest are speech
signals. It is well known that speech samples are well modeled by a
Laplace distribution [12], [13]. In this scenario, it makes more sense
to take this into account for the estimation of the entropy. However,
as it will be seen in the rest of this section, this estimation is far to be
obvious. Also note that since the noise is assumed to be Gaussian,
the signal xC cannot be exactly modeled by a Laplace distribution.
But we believe that this approximation is plausible and will rely on
simulations to justify its viability.

The univariate Laplace distribution with mean zero and variance
72 is given by

P(X) =2 -ll52o7x

It is easy to show that the corresponding entropy is [8],

H(x) = I + in (v/ ax)

(14)
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Fig. 1. Floor plan of the varechoic chamber at Bell Labs (coordinate
values measured in meters).

of the observation vector x(k, m), we propose to use the following
estimators:

K-1

E{ln (0/2)} iEln [O(k k,m)/2],
k'=o

E{ln Kp(v20)}

(20)

K-1

+ E In Kp [20(k -k m)] , (21)
k'=o

(15)

Let xi, X2, * *, XN have a multivariate Laplace distribution with
mean 0 and covariance matrix R. The pdf of xi, X2, * *, XN is [14],
[15]:

p(x) = 2 (2wr) N12 [det (R)] 1/2 (XTR 1x/2)P 2

Kp (2xTR , (16)

where P = (2 -N)/2 and Kp(.) is the modified Bessel function of
the third kind (also called the modified Bessel function ofthe second
kind) given by,

Kp(a) () z
-P-1 (

exp V-z-
a2
4z d

The joint entropy is:

H(x) =
I
In 0(2 )N det(R)2

a > 0.

(17)

P
-E{l n(0/2)}2

ElnKp (20)}, (18)

with

0 = xTR Ix. (19)

The two quantities E {ln (0/2)} and E fln Kp ( 20) } do not
seem to have a closed form. So we need to find a numerical way to
estimate them. One possibility to do this is the following. Assume
that all processes are ergodic, in this case we can replace ensemble
averages by time averages. If we have K samples for each element

with

O(k 'km) =xT(k- k',m)R 1(m)x(k k', m). (22)

In practice, we first estimate R(m) with the K observations of
x(k, m). When the covariance matrix is estimated, we use the same
data to estimate (20) and (21). We then compute the entropyH with
(18) for different m and the one that minimizes H will be a good
estimate of the relative delay T.

5. SIMULATIONS

In this section, we will evaluate the performance of the proposed
entropy-based multichannel TDE algorithm by simulation. A com-
parison to the MCCC-based method is presented.

The simulations were carried out using the impulse responses
measured in a real, reverberant environment: the varechoic cham-
ber at Bell Labs [16]. The chamber is a rectangular room (6.7 m x
6.1 m x 2.9 m ) with 368 electronically controlled panels that vary
the acoustic absorption of the walls, floor, and ceiling [17]. There-
fore the level ofroom reverberation is well controlled by the percent-
age of open panels. Three panel configurations were investigated:
75%, 30%, and 0% open panels. Their average T60 reverberation
times are approximately 310 ms, 380 ms (moderately reverberant),
and 580 ms (highly reverberant), respectively. The original impulse
responses were measured at 8 kHz and had 4096 samples. For our
simulations, they are truncated to 300 samples. The source is a fe-
male speech signal of 20 seconds in length sampled at 8 kHz. Eight
microphones are employed. The positions of the sound source and
microphones are shown in Fig. 1. The true TDOA between the first
two microphones is T 1 sample. The clean speech is convolved
with the measured impulse responses to generate the microphone
outputs. The additive noise is white and Gaussian. The frame size is
2000 samples.
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Table 1. Simulation summary statistics in terms of the percentage
of successful time delay estimates using the previously developed
MCCC-based and the proposed entropy-based algorithms. The im-
pulse responses were measured in the varechoic chamber at Bell
Labs under three different room acoustics setups. The additive noise
is Gaussian at -5 dB SNR.

TDE Methods Percent Successful Estimates (0)
N =2 N=4 N=6 N= 8

T60 = 310 ms
MCCC 52.50 73.75 81.25 83.75
Entropy 60.00 76.25 81.25 86.25

T60 = 380 ms
MCCC 48.75 70.00 73.75 78.75
Entropy 52.50 75.00 72.50 83.75

T60 = 580 ms
MCCC 33.75 60.00 67.50 67.50
Entropy 47.50 66.25 72.50 81.25

-1 L
0 0.5 1.5

Time (s)
2.5

Fig. 2. The first 3 s waveform of the first microphone output for
T60 = 310 ms and SNR =-5 dB.

We found that when the signal-to-noise ratio (SNR) was fairly
high (> 0 dB), both MCCC and entropy-based TDE algorithms can
accurately estimate T with no errors. In order to show their differ-
ence in performance, we choose to present in Table 1 a set of results
at a fairly low SNR of -5 dB. As shown in Fig. 2 with the output of
the first microphone for T60 = 310 ms, at such a low SNR many
weak speech tails are covered by the additive noise such that TDE is
challenging as one can imagine. The results are visualized in Fig. 3.
We can clearly see a performance degradation as reverberation time
increases for both methods. But using more microphones, the robust-
ness against room reverberation is significantly improved, which is
particularly true for the entropy-based algorithm. Between the two
studied algorithms, the entropy-based algorithm performs in general
comparably to or better than the MCCC-based method (only occa-
sionally worse). The advantage is more obvious for small numbers
of used microphones, e.g., N = 2.

6. CONCLUSIONS

Time delay estimation is a challenging problem in adverse envi-
ronments with strong noise and considerable reverberation. In this
paper, the concept of minimum entropy is introduced and a novel
entropy-based multichannel TDE algorithm is developed. It is ex-
plained that minimizing joint entropy is equivalent to maximiz-
ing multichannel cross-correlation coefficient (MCCC) for Gaussian
sources. But for non-Gaussian sources, entropy is a more compre-
hensive measure of statistical dependence than MCCC. Simulations
show that the proposed minimum-entropy-based TDE algorithm is
much more robust to reverberation than the MCCC-based TDE ap-

T60 = 380 ms T60 = 580 ms
100 T60 = 310 ms

- 80
6-0

ct 60 K

¢ 40-

20 L

2 4 6 82 4 6 82
Number of Microphones

4 6 8

Fig. 3. Comparison of the percentage of successful TDEs between
the MCCC (dotted line) and entropy (solid line) algorithms for
SNR =-5 dB.

proach.
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