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ABSTRACT
Blind SIMO identification is challenging when additive noise is
strong and for ill-conditioned/acoustic SIMO systems. A weighted
cross relation (CR) algorithm presumably can be robust to noise but
there lacks a practical way to define the weights. In this paper, the
Pearson correlation coefficient (PCC) is used to develop an optimally
weighted CR algorithm, which is validated by simulations.

Index Terms— Weighted cross relations, Pearson correlation
coefficient, blind identification, acoustic SIMO system.

1. INTRODUCTION

Blind SIMO (single-input multiple-output) identification can find a
variety of speech applications, e.g., time delay estimation for sound
source localization [1] and speech dereverberation [2]. In these ap-
plications, acoustic impulse responses need to be known while the a
priori knowledge of the source speech signal is unavailable, making
the blind method a necessity.

This paper considers an acoustic SIMO system where the single
input is a speech source and the � outputs are microphone observa-
tions, as illustrated in Fig. 1. The �th system output ����� at time �
is expressed as

����� � �� � ���� � ����� (1)
� ����� � �����	 � � �	 �	 � � � 	 �	

where �� is the channel impulse response from the source to the
�th microphone, the symbol � denotes the linear convolution opera-
tor, ���� is the source signal, and ����� is the additive noise at the
�th microphone. The channel impulse responses are delineated with
finite impulse response (FIR) filters. The additive noise signals in
different channels are assumed to be uncorrelated with the source
signal and uncorrelated with each other.

In a vector/matrix form, the SIMO signal model (1) is written as

����� � �� � ���� � ����� (2)
� ����� � �����	 � � �	 �	 � � � 	 �	

where
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Fig. 1. Illustration of an acoustic SIMO system.

��	� denotes a vector/matrix transpose, and 
 is the length of the
longest channel impulse response in such a SIMO system.

Therefore, the blind SIMO identification problem is to estimate

�� �
�
���� ���� � � � ������

��
	 � � �	 �	 � � � 	 � (3)

from the observations ����� without the knowledge of the source
signal ����.

The innovative idea of blind SIMO identification was first pro-
posed by Sato in [3]. While higher (than second) order statistics
(HOS) of the system outputs can be used (see [4] for a tutorial on
the HOS-based approaches), second-order statistics (SOS) are suf-
ficient to solve this problem [5]. The focus of the current blind
SIMO identification research is primarily on the SOS-based meth-
ods. Celebrated work include the cross relation (CR) algorithm [6],
[7], among many other variants (see [8] for a comprehensive survey
on this subject).

According to [7], two conditions (one on the channel diversity
and the other on the input signals) are necessary and sufficient to
ensure blind SIMO identifiability, which are shared by all SOS-based
methods:

1. The polynomials formed from �� (� � �	 �	 � � � 	 � ) are
co-prime, i.e., the channel transfer functions ����� �	���

��� �����
�� do not share any common zeros;

2. The autocorrelation matrix of the input signal ��� �




������ ���

�
is of full rank, where 
��� denotes math-

ematical expectation, such that the SIMO system can be fully
excited.

It is already well known that existing blind SIMO identifica-
tion algorithms are sensitive to additive noise, particularly for ill-
conditioned (in terms of the assumption of no shared common zeros)
SIMO systems, hence impairing the usefulness of such a technique
in practice. In this paper, we intend to use the Pearson correlation
coefficient (PCC) to develop an optimally weighted CR algorithm
for use in noisy environments.
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2. WEIGHTED AND TRADITIONAL CROSS RELATION
ALGORITHMS

In the absence of noise (i.e., �� � ��), a SIMO system has the
following cross relations (CRs):

�� � �� � � � �� � �� � �� � ��� �� � � �� �� � � � � �	 (4)

At time 
, we then have

�
�
� �
��� � �

�
� �
���� �� � � �� �� � � � � �	 (5)

Multiplying (5) by ���
� from the left side and taking expectation
yields

������� � �������� �� � � �� �� � � � � �� (6)
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�

�
.

When noise is present, for � model FIR filters �� (� �
�� �� � � � � � ), an error signal can be defined as follows
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Accordingly, a weighted cost function can be formulated as
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where ��� � � are weighting factors and should be symmetric, i.e.,
��� � ���. We can use the expression
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and compute the gradient of (8) with respect to ��:
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Equating (10) to zero and putting the � expressions in a matrix form
yields

��������� � ������ (11)
where
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A weighted CR (WCR) algorithm is then deduced with the solution
of (11), i.e., the eigenvector of�������� corresponding to its small-
est eigenvalue.

The error signal 
���
� defined in (7) consists of two parts: a
modeling error and the error caused by additive noise. The model-
ing error is what we want to minimize over the model filters. But

the additive noise has a negative impact on this minimization pro-
cedure. Therefore, intuitively if the additive noise signals in the �th
and �th channels are stronger than that in the other channels, then

���
� should be de-emphasized in the cost function and ��� should
be relatively smaller. From this perspective, the WCR algorithm is
a neat idea for its robustness with noise. But there is no straightfor-
ward ways to quantify ��� in practice. Therefore, ��� has to be set
as 1, leading to the traditional CR method. In the next sections, we
will show how the Pearson correlation coefficient can help develop
an optimally weighted CR algorithm.

3. BLIND SIMO IDENTIFICATIONWITH THE SQUARED
PEARSON CORRELATION COEFFICIENT

The Pearson correlation coefficient (PCC) of two zero-mean real-
valued random variables �� and �� is defined as [9]:

����� ��� �
�������

������
� (12)

where ���� � ������ and ���� � ������ are the variances of the
signals �� and ��, respectively. In the context of blind SIMO identi-
fication, it will be more convenient to work with the squared Pearson
correlation coefficient (SPCC):

�
����� ��� �

��������
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��

	 (13)

The SPCC gives an indication on the strength of the linear relation-
ship between the two random variables �� and ��. We always have
� � ������ ��� � �. If ������ ��� � �, then �� and �� are said to be
uncorrelated. The closer the value of ������ ��� is to 1, the stronger
the correlation between the two variables.

The concept of SPCC can be generalized to the multichannel
case. Let ��� ��� � � � � �� be � zero-mean real-valued random vari-
ables. One possible definition for the multichannel SPCC is
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This definition considers all possible two-channel SPCCs between ��
and �� , with � �� �, and counts the ������ ��� � ����� � ��� pair only
once. It can be easily checked that � � ������ ��� � � � � �� � � �. If
all the signals are completely correlated, then ������ ��� � � � � �� � �
�. If all the signals are completely uncorrelated with each other, then
������ ��� � � � � �� � � �.

In the problem of blind SIMO identification, instead of using the
traditional mean square error (MSE) to define (7), we can measure
the difference between the signals ��� ���
� and ��� ���
� with the
SPCC:
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Then the channel impulse responses are determined by searching the
model filters that maximize the multichannel SPCC
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where
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It can be checked that ����� � � if and only if �� � ����, where
�� �� � (� � �� �� � � � � � ) are � arbitrary constants.

Taking the gradient of ����� in (16) with respect to �� produces

	����

	��
�

�

��� � ��

�
� ��
��������

��������������

��
��������

�������������������

�
� � (17)

� � �� �� � � � � ��

Equating the gradient (17) to zero and putting the � expressions in
a matrix form yields
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Equation (18) is highly nonlinear with respect to �, but a sim-
ple way to solve it is by iterations. The eigenvector of ��� cor-
responding to its smallest eigenvalue, i.e., the solution of the tra-
ditional CR algorithm, is taken as the initial estimate ����. Then
in the �th (� � �) iteration, ���� is updated by the eigenvector of
��� ����� ��	 corresponding to its smallest eigenvalue. This pro-
cedure proceeds until convergence or a specified maximum number
of iterations � has been reached. This iterative procedure is summa-
rized in Table 1.

When noise is weak and � � � after convergence, we learn from
the cross relation (6) that

������ � �� (19)

������ �
�

��� �������
�

�

��� �������
� �� (20)

In this case, (18) evolves into (11) with 
�� � ������. So the use of
SPCC provides an optimal way to define 
�� in the WCR algorithm.
From (20), we see that ��� is reverse proportional to the power of
the �th and/or the 
th channel outputs. This makes sense since a
channel output with a higher power implies stronger additive noise in
this channel (assuming the same gain over all channels of the SIMO
system). Then, per the discussion at the end of last section, 
��

should be lower.

Table 1. The iterative SPCC-based algorithm for blind SIMO iden-
tification.

Initialization: ���� � mineig �����

Iteration: For � � �� �� � � � � �� compute

��� ����� ��	 �
��� ��� ������������ ��

��� ��� ������������ ��
�

��� ����� ��	 �
��� ����� ��	

��� ��� ������������ ��
�

���� � mineig ��������� ��	� �

where mineig��� stands for the eigenvector of � corresponding
to its smallest eigenvalue.

4. SIMULATIONS

In this section, we will evaluate the performance of the developed
SPCC algorithm in comparison with the CR batch method by simu-
lations. Similar to our earlier studies on this subject, we use the nor-
malized projection misalignment (NPM) in dB as the performance
measure, which is given by
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The first experiment is concerned with a simple three-channel

SIMO system whose impulse responses are
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where � and � controls the positions of the zeros of the three chan-
nels. For � � ���� and � � ����, the zeros of the three chan-
nels are separated far away to each other. The system is definitely
blindly identifiable and hence is deemed well-conditioned (WC). For
� � � � ����, the SIMO system is regarded as ill-conditioned
(IC) since the zeros of the two channels are quite close, which is
about to invalidate the identifiability assumption of no common ze-
ros. Such a SIMO system was first introduced in [10] (with only the
first two channels) and was then widely employed in the studies of
blind SIMO identification.

The source is an uncorrelated binary phase-shift-keying (BPSK)
sequence and the additive noise is i.i.d. zero-mean Gaussian at a
specified signal-to-noise radio (SNR) defined as follows

�
��
�
� �� 
����

��	����
�

��
�
� � � �� �� � � � � �� (23)

We set the SNR of the first two channels always equal but 10 dB
higher than that of the third channel in order to study whether the
weights in the SPCC algorithm would vary with the channel SNR as
expected from our analysis.

For each channel of the SIMO system, 500 output samples were
used. The SPCC algorithm took less than � � � iterations to con-
verge.

For each set of specified SNRs, we averaged the NPMs of 100
Monte-Carlo trials. The results are presented in Fig. 2. We see that
the SPCC performs better than the batch CR for low SNRs and their
performances are comparable for high SNRs. This advantage of the
SPCC is more evident for the ill-conditioned system.
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Fig. 2. Comparison of average NPM vs. SNR between the batch
CR and the SPCC algorithms for blind identification of the well-
conditioned (WC) and ill-conditioned (IC) three-channel SIMO sys-
tems in the first experiment. The SNRs are for the first two channels
and are 10 dB higher than that of the third channel.
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Fig. 3. The amplitude of ������ after convergence in one arbi-
trary Monte-Carlo trial of the first experiment regarding the well-
conditioned SIMO system.

Figure 3 plots ������, ������, and ������ in one arbitrary
Monte-Carlo trial after convergence for the well-conditioned system.
It is consistent with the analysis that ������ is larger than ������
and ������ since the noise in the third channel is stronger.

In the second experiment, we worked on a real acoustic SIMO
system. The channel impulse responses were extracted from the
measurements made by Härmä [11] in the varechoic chamber at Bell
Labs when 89% panels were open and the reverberation time of the
chamber was about 240 ms. We set that � � � and � � ��. The
three channel impulse responses are shown in Fig. 4 (a). A female
speech signal of 5500 samples long (sampled at 8 kHz) was used as
the source. It is visualized in Fig. 4 (b). Again the additive noise
signals are i.i.d. zero-mean Gaussian. The SNR’s of the first two
channels are equal but 10 dB higher than that of the third channel.
100 Monte-Carlo trials were conducted. For the SPCC, � � ��.
The results are presented in Fig. 5. The SPCC outperforms the batch
CR for low SNRs.

5. CONCLUSIONS

An optimally weighted cross-relation algorithm for blind SIMO
identification algorithm was developed by using the squared Pearson
correlation coefficient (SPCC). Simulation results indicated that the
new algorithm is more robust than the batch cross-relation method
for ill-conditioned or acoustic SIMO systems and when the SNR is
low.
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