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ABSTRACT

This paper presents a theoretical analysis on the performance of the
optimal noise-reduction filter in the frequency domain. Using the au-
toregressive (AR) model to model both the clean speech and noise,
we build the relationship between the Wiener filter and the AR pa-
rameters of the clean speech and noise signals. We show that if noise
is not predictable, the Wiener filter is mostly related to the AR pa-
rameters of the desired speech signal. On the contrary, if the desired
signal is not predictable, the Wiener filter is then mostly related to
the AR parameters of the noise signal. More importantly, we provide
the bounds for noise reduction, speech distortion, and SNR improve-
ment, and show that the performance of the Wiener filter in terms of
SNR improvement and degree of noise reduction and speech distor-
tion is closely related to the prediction gain of the desired speech and
noise signals.

Index Terms— Noise reduction, Wiener filter, autoregressive
model, prediction gain.

1. PROBLEM FORMULATION, SIGNAL MODEL, AND
PREDICTION GAIN

The noise reduction problem considered in this paper is one of recov-
ering the desired signal (clean speech) � �����

,
�

being the discrete-
time index, of zero mean from the noisy observation (microphone
signal) 	 �����
� � ����������������

(1)

where
�������

is the unwanted additive noise, which is assumed to be a
zero-mean random process (white or colored) and uncorrelated with� �����

. Using the � -transform, (1) can be rewritten as� � � ������� � ������ � ��� (2)

where
� � � � , ��� � � , and

��� � � are the � -transforms of 	 ����� , � �����
,

and
�������

, respectively. In the rest, we will always take � ����� !
,

where " is the imaginary unit ("#$ �%&'(
) and ) �*&+,�- )./ ,0�

is
the angular frequency.

Since � �����
and

�������
are assumed to be uncorrelated, we have123 � ) ��� 124 � ) �� 125 � ) ���

(3)

where 1�6 � ) �
�789:;< =>��� � ! �?< $ @ (4)

is the power spectral density (PSD) of the signal A ����� , ABCDEF� �G�H� 	HI ,
and

8JK L M
denotes the mathematical expectation.

An estimate of
����� � ! �

can be obtained by multiplying
� ��� � ! �

with a complex gain, N ����� !��
, i.e.,O ��� � ! ��� N ��� � ! � � ��� � ! �����PQ���� � ! �2��HRSTU��� � ! ���

(5)

where
O ����� !��

is the frequency-domain representation of the signal� ����� , �PQ���� � ! �BV� N ��� � ! �;����� � ! �
is the filtered clean speech, and�HRST#����� !�� V� N ����� !2�G������� !��

is the residual noise. From (5), we
deduce the PSD of � ����� :12W � ) ���X< N ��� � ! �?< $ 123 � ) ���X< N ��� � ! �?< $ K 124 � ) �2 125 � ) �YMZ[

(6)

The objective of noise reduction in the frequency domain is then
to find an optimal gain N ����� !2�

at each frequency ) that would atten-
uate the noise as much as possible with as little distortion as possible
to the desired signal (speech).

To better understand and analyze the optimal gains in the context
of noise reduction, we propose to use the autoregressive (AR) model
[5] for both the clean speech and noise signals. With this popular
linear stochastic model, these two signals can be written as linear
combination of their past values, i.e.,

� �����\�]^U_` a b0c A 4Zd
a
� ���>&�ef���g 4 �������

(7)

�������\�ĥ#i` a b0c A 5jd
a �����>&�ef���g 5 �������

(8)

where A 4Zd
a
and A 5jd

a
are the AR parameters of � �����

and
�������

, respec-
tively, and

g 4 �����
and

g 5 �����
are two zero-mean random white noise

signals. In the frequency domain, (7) and (8) are

����� � ! �\�kl 4 ����� !2�= 4 ��� � ! � � (9)

�J��� � ! �\� l 5 ��� � ! �= 5 ��� � ! � � (10)

where l 4 ����� !2�
and l 5 ����� !��

are the frequency-domain representa-
tions of

g 4 �����
and

g 5 �����
, respectively, and

= 4 ��� � ! �m�n(+&%^U_` a b0c A 4Zd
a �op � !

a
�

(11)

= 5 ��� � ! �\�n(q&r^#i` a b0c A 5jd
a �op � !

a
�

(12)

are two minimum-phase polynomials. With this AR modelling, the
PSDs of the speech and noise signals become

124 � ) �m� s $t _< = 4 ��� � ! �?< $ �
(13)

125 � ) �m� s $t i< = 5 ��� � ! �?< $ �
(14)
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where � �� � � � � � �� 	
���� and � �� � � � � � �� 	
���� are the variances of� � 	
��
and

� � 	
��
, respectively.

We are now ready to define a measure that naturally follows from
the AR modelling. We define the subband prediction gain of the
desired signal � 	
�� as

� � 	 �  �� ��� 	 � � �� �
� �� � � 	
� ��� �� � � (15)

If
� � 	 � �� �

then the signal � 	
�� is completely unpredictable at
frequency � . A larger value of

� � 	 �  means that the signal � 	
�� is
more predictable at frequency � .

In a similar manner, we define the fullband prediction gain [6]
of the desired signal � 	
�� as

� � �� � ��� �� �
�

(16)

where � �� � � � ��� 	
�� � is the variance of � 	
�� . Using the relation
between the variance and the PSD of � 	
�� :

� �� � �
�  ���	! 	

��� 	 � 
� � � � �� ��  ���	! 	
� �� � � 	
� ��� �� � � (17)

(16) can be rewritten as

� � � �
�  � 	! 	

� �� � � 	
� ��� �� � � �
�  � 	! 	

� � 	 � 
� � � (18)

It can be checked that
� �� �

. As a matter of fact, using (7) we
find that the variance of � 	
�� is

� �� � a �� R
�
a
� " � �� � � (19)

where

a
� � � # �$%

&
# �$% � '�'�' # �$% ()� � � �

and R
� � � �

x
	
��

x � 	
�� � is the correlation matrix of

x
	
��*� � � 	
�� � 	
� +,�- '�'�' � 	
� +�� � ".�- � � �

From (19), we get another form of the fullband prediction gain:

� � � � " a �� R
�
a
�

� �� �
�

(20)

Since a �� R
�
a
�����

, we deduce from (20) that
� �� �

.
If
� � �/�

, this means that the signal � 	
�� is completely unpre-
dictable (white noise). The larger is

� �
, the more predictable is the

signal � 	
�� .
Obviously, the same definitions of subband and fullband pre-

diction gains apply to the noise signal
01	
��

by just replacing in the
previous derivations � 	
�� by

01	
��
.

By analogy to the fullband prediction gain defined in (18), we
define the fullband prediction gains of the filtered desired and resid-
ual noise signals as, respectively,

� � 	 2 *� �
�  ���	! 	

��� 2 	
� ���  ��� � � � 	 � 
� � (21)

and
� � 	 2 3� �

�  ���	! 	
��� 2 	
� ���  ��� � � � 	 � 
� � � (22)

We can verify that if
�� 2 	
�4���� �� � 5 �$��� � , then

� � 	 2  5 � �
and� � 	 2  5 � �

with equalities if and only if
�� 2 	
� ���  �� � � �$��� � .

Contrary to
� �

and
� �

,
� � 	 2  and

� � 	 2  can be smaller than 1.
We will see that the noise reduction (or speech enhancement)

problem can be exclusively reformulated as a function of the predic-
tion gains.

2. PERFORMANCE MEASURES
To facilitate the analysis and interpretation of the noise-reduction
performance, some performance measures are presented in this sec-
tion.

The most important and reliable measure in noise reduction is
the signal-to-noise ratio (SNR) [3]. The fullband input SNR is de-
fined as the ratio of the intensity of the signal of interest over the
intensity of the additive noise, i.e.,

iSNR
�� � ��� �� � iSNR � ' � �� � � (23)

where iSNR � �� � �� ��� � �� � . It is worth noticing how the fullband
prediction gains affect the SNR. Indeed, if the desired signal is more
predictable than the noise signal then iSNR � iSNR � . But if the
noise signal is more predictable than the desired signal then iSNR

6
iSNR � . The subband input SNR is

iSNR
	 �  �� ��� 	 � ��� 	 �  � iSNR � ' � � 	 � � � 	 �  � (24)

After noise reduction with the frequency-domain model given in
(5), the subband output SNR is

oSNR
7 2 	
� ���  8 �� �� 2�� �4��� ! �� � ��� 	 � � 2 	
� ��� �� � ��� 	 �  � iSNR

	 � 4� (25)

So, the subband SNR is not affected by the filtering process. But the
fullband output SNR is

oSNR
	 2 9��"# 	! 	

�� 2�� �4��� ! �� � ��� 	 � 
� �
# 	! 	

� 2 	
� ��� �� � ��� 	 � 
� � �
iSNR � ' � � 	 2 � � 	 2  � (26)

Apparently, the prediction gains will affect the fullband output SNR.
We also define the fullband SNR gain as

$ 	 2  �� oSNR
	 2 

iSNR

� � � 	 2 � � ' � �
� � 	 2  � (27)

For a constant %&'� �
,
$ 	 %32  � $ 	 2  . Therefore, changing

the gains 2"� � ��� ! by a scaling factor (same over all frequencies)
will not affect the fullband SNR gain. We also observe in (27) that
making the filtered desired signal more predictable than the desired
signal or making the residual noise signal less predictable than the
original noise signal, will increase the fullband SNR gain.

It is of great importance to design the gains 2(� � ��� ! in such a
way that

$ 	 2  � �
; this would mean that the output SNR would be

improved and the estimated signal, : 	
�� , would be less noisy than
the microphone signal, ; 	
�� . We see from (27) that

$ 	 2  depends
exclusively on the prediction gains,

� �
,
� � 	 2  , � � , and

� � 	 2  .
Clearly, the prediction gains of the desired and noise signals play a
fundamental role in noise reduction and will affect the design and
performance of the gains, 2 � �4��� ! .

Another important measure in noise reduction is the noise-
reduction factor [1], [2], which quantifies the amount of noise being
attenuated by the gains. With the frequency-domain formulation,
these subband and fullband factors are defined as, respectively,

) <�= 7 2 	
� ���  8 �� ��� 	 � � 2 	
� ��� >� � ��� 	 �  �
�� 2 	
� ��� �� � � (28)

) <�=1	 2  �� # 	! 	
��� 	 � 
� �

# 	! 	
� 2 	
� ��� >� � ��� 	 � 
� � � � �

� � 	 2  � (29)
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The larger the value of the noise-reduction factor, the more the noise
is reduced. This factor should be lower bounded by 1.

The gains add distortion to the desired signal. In order to eval-
uate the amount of distortion to the signal of interest, we define the
subband and fullband speech-distortion indices [1], [2] as, respec-
tively,

����� � � ��� ��� 	 
 ��
 � � � ��� ��� 	������ ��� 	�� ����� ��� 	�� � ���� � � 	

� ��� ��� � ��� ��� 	 ��� � � (30)

����� � � 	 �� � �� �
 � � � ��� ��� 	������ ��� 	�� ����� ��� 	�� � ��� �

� �� �
��� � � 	�� �

� � �� �
��� � � 	�� ��� � ��������	�� � � �

� �� �
��� � � 	�� �

� � �� �
	 � � � 	�� ��� � ��������	�� � � �
 � 	 �  

(31)

The speech-distortion index is lower bounded by 0 and expected to
be upper bounded by 1 for optimal gains. The higher the value of
this index, the more the desired signal is distorted.

3. WIENER FILTER
In this section, we derive the Wiener filter and explain its relationship
with AR processes.

We define the error signal between the estimated and desired
signals at frequency � as

� ��� ��� 	 �� ! ��� ��� 	�� ����� ��� 	"� � ��� ��� 	 # ��� ��� 	�� ����� ��� 	� (32)

This error can also be put into the form:
� ��� ��� 	 � � � ��� ��� 	$% � & ��� ��� 	��

(33)

where

� � ��� ��� 	 ��'� � ��� ��� 	��(� 
 ����� ��� 	 (34)

is the speech distortion due to the complex gain, and

� & ��� ��� 	 �� � ��� ��� 	)*+��� ��� 	 (35)

represents the residual noise.
The frequency-domain (or subband) mean-squared error (MSE)

is then

� � � ��� ��� 	 
 �  � � � ��� ��� 	�� ��
  (36)

Minimizing the subband MSE with respect to � ��� ��� 	 , we easily find
the Wiener gain:

��	 ��� ��� 	"�
��� � � 	��, � � 	

� �-� ��& � � 	��, � � 	
� iSNR

� � 	� %
iSNR

� � 	
 

(37)

With this filter, we have the following property.
Property: With the optimal noncausal Wiener filter given in

(37), the fullband SNR gain is always greater than or equal to
�
,

i.e.,
� � ��	 	 � �

.
The proof of this can be found in [4]. This fundamental property

shows that the optimal gain can never amplify the noise. Neverthe-
less, it is essential to understand when the Wiener filter improves the
SNR when it can.

It is more informative to rewrite the optimal gain (37) as a func-
tion of the prediction gains:

��	 ��� ��� 	"� iSNR  . 	 � � � 		 & � � 	�% iSNR  . 	 � � � 	
 

(38)

From the definition of the fullband SNR gain, we observe that
the worst-case scenario for the Wiener filter is when

	 � � � 	/�	 & � � 	���� � . Indeed, in this situation

��	 ��� ��� 	"� iSNR � %
iSNR 

�
Constant

� � � (39)

and it is easy to verify that
� � ��	 	�� �

, so the SNR cannot be im-
proved. The case

	 � � � 	0� 	 & � � 	�� � � , happens when either the
speech and noise signals are completely unpredictable (white ran-
dom signals) so that

	 � � 	 & � �
[and

	 � � � 	"� 	 & � � 	1� �2� � � ]
or the speech and noise signals are basically the same signals (having
the same AR parameters) but they may have different volumes. It is
now easy to understand why with babbling noise, for example, the
Wiener filter may not perform at its best, since the speech and noise
signals may have similar spectra [3]. This simple analysis of the
Wiener filter is very insightful; it explains some practical situations
where this filter may have limited performances.

To further analyze (38), we assume that iSNR  � �
(for sim-

plicity) and the desired and noise signals are neither white nor they
have the same AR parameters. In this case

��	 ��� ��� 	"�
	 � � � 		 & � � 	�% 	 � � � 	

 
(40)

If the desired signal is more predictable than the noise signal at all
frequencies [i.e.,

	 � � � 	 � 	 & � � 	�� � � ], we have ��	 �������$	 ��  
 � � � . But if the noise signal is more predictable than the de-
sired signal at all frequencies [i.e.,

	 & � � 	 � 	 � � � 	�� � � ] then��	 ��� ��� 	 3 �  
 � � � . We deduce, by looking at (27), that the full-
band SNR gain is greater in the second case than in the first one but
at a price of more speech distortion by inspection of (31). These two
cases have opposite behaviors. These results may come as a small
surprise. The fact that the noise is predictable may not be, after all,
a bad thing as long as its spectrum is different from the speech spec-
trum. It is often intuitively thought that the non-whiteness of the
noise may limit the performance of the Wiener filter but we under-
stand now that this limitation that may occur in practical situations
may mainly be due to the fact that noise and speech may have similar
spectra.

Let us further exploit (38) by rewriting it as follows:

� �	 ��� ��� 	45 	 & � � 	$% iSNR  . 	 � � � 	674�
iSNR  . 	 � � � 	 ��	 ��� ��� 	� (41)

Integrating both sides of (41) and multiplying by
�
�
� 
 ��	

, we obtain

	 & � ��	 	�% iSNR  . 	 � � ��	 	"� iSNR 
 � � �� �
��	 ��� ��� 	 	 � � � 	�� �

8 iSNR  . 	 �  (42)

Therefore, we deduce the bounds for the fullband prediction gain of
the filtered desired signal with the Wiener filter:

� 8 	 � � ��	 	 8 	 � � 	 & � ��	 	
iSNR  8 	 � �

(43)

or

� 8 	 � � ��	 	 8 	 � oSNR
� ��	 	� %

oSNR
� ��	 	 8

	 � �
(44)
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Fig. 1. (a) A speech signal selected from the TIMIT database with
phoneme labeling and phoneme boundaries. (b) The fullband pre-
diction gain

� �
for each phoneme. (c) The output SNR for each

phoneme with the Wiener filter.

and the bounds for the fullband prediction gain of the residual noise
signal:

� � � � � ��� � � � � ���� ���	
��
iSNR

��
(45)

We can also deduce from (42) that

oSNR
� ��� � � iSNR

� � ���� ��� ��� 
�� (46)

As a result,


 � � � ��� � � � ����� ��� ���



iSNR

�
(47)

Now assume that for a particular frequency � � , the noise signal
is completely unpredictable [i.e.,

� � � ��� ��� 
 ]. We have

� � 
� ��������� � ���

��� ��� � ���
iSNR �

� � � � ��� ��� iSNR �� � � ��� ��� � ��� �
�

(48)

� � 
� ����������� ��� ���

��� � � � 
��
(49)

This shows more explicitly how the Wiener filter, in certain condi-
tions, is mostly related to the AR parameters of the desired signal.

Finally, to finish this part, we assume this time that for a particu-
lar frequency ��� , the desired signal is completely unpredictable [i.e.,� � � ��� ����
 ]. We find that

� � 
� ��������� � ���

��� ��� � � � iSNR �
� � � ��� �

�
iSNR �

� ��� � � ��� ���
� � ��� � � (50)

� � 
� ����������� ��� ���

��� � � � 
��
(51)

We see now how the Wiener filter is mostly related to the AR param-
eters of the noise signal.

It is instructive to observe how the Wiener filter is clearly de-
pendent on the AR parameters of the desired signal when the noise
signal is not predictable, while it is clearly dependent on the AR
parameters of the noise signal when the desired signal is not pre-
dictable.

4. EXPERIMENTAL RESULTS
The clean speech used in this experiment is from the TIMIT database
[7], which was designed to provide speech data for acoustic-phonetic
studies and for the development and evaluation of automatic speech
recognition (ASR) systems. Each speech signal in this database is

recorded using a 16-kHz sampling rate and is accompanied by man-
ually segmented phonetic (based on 61 phonemes) transcripts. In
this experiment, we took one signal from the speaker FAKS0 and
downsampled it into 8 kHz. This signal is then used as the clean
speech. Figure 1(a) plots this signal and also visualizes both the
phonetic transcription and phoneme boundaries. The corresponding
noisy signal is generated by adding a white Gaussian noise into the
clean speech with

� �� !" � 
 � �#$%&!�
.

To make the experiment simple, we model each phoneme with
a 12-order AR model, and " � ��#$� and " % ��#$� are directly computed
from the clean and noisy speech signals. The fullband prediction
gain of each phoneme of the clean speech is shown in Fig. 1(b).
Then, a Wiener filter for each phoneme is constructed according to
(37) with the computed AR parameters.

To perform noise reduction in the frequency domain, the input
speech signal is partitioned into overlapping frames with a frame
width of 8 ms and an overlapping factor of '

�()
. A Kaiser win-

dow is then applied to each frame and the windowed frame signal
is subsequently transformed into the frequency domain using a 64-
point FFT. The noisy speech spectra are then passed through the con-
structed phoneme-dependent Wiener filter. The inverse FFT (with
overlap add) is used to obtain the time-domain speech estimate. To
evaluate the performance, the output SNR for each phoneme is com-
puted and shown in Fig. 1(c). Since the white Gaussian noise is used
in this experiment, which is completely unpredictable, the SNR im-
provement of the Wiener filter should depend on the prediction gain
of the clean speech, which is clearly verified by Comparing Fig. 1(b)
and (c).

5. CONCLUSIONS
In this paper, we presented a theoretical analysis about the per-
formance of the frequency-domain noise-reduction Wiener filter.
Specifically, based on the use of the AR model to model both the
desired speech and noise signals, we showed the relationship be-
tween the frequency-domain Wiener filter and the AR parameters of
the desired speech and noise signals. We then developed the connec-
tion between the noise-reduction performance (in terms of SNR gain,
noise-reduction factor, and speech-distortion index) and the predic-
tion gain. We demonstrated that the Wiener filter can improve the
fullband SNR, but the SNR gain would depend on the prediction
gains of the clean speech and noise signals. In case that the noise is
unpredictable, the Wiener filter is mostly related to the AR param-
eters of the desired speech signal. On the contrary, if the desired
speech signal is unpredictable, the Wiener filter is mostly related to
the noise AR parameters. These new insights would be helpful to
better understand the performance behavior of the Wiener filter, and
may also help develop new ideas on noise reduction.
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