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ABSTRACT
This paper deals with the problem of binaural noise reduction in
the time domain with a stereophonic sound system. We first form
a complex signal from the stereo inputs with one channel being its
real part and the other being its imaginary part. By doing so, the
binaural noise reduction problem is converted to a single-channel
noise reduction problem via the widely linear (WL) model. The
WL estimation theory is then used to derive the minimum variance
distortionless response (MVDR) noise reduction filter that can fully
take advantage of the noncircularity of the complex speech signal to
achieve noise reduction while preserving the desired signal (speech)
and spatial information. Experiments are provided to justify the ef-
fectiveness of this MVDR filter.

Index Terms— Binaural noise reduction, stereo sound system,
noncircularity, widely linear (WL) estimation, minimum variance
distortionless response (MVDR) filter, time domain.

1. SIGNALMODEL AND PROBLEM FORMULATION

In this paper, we consider the signal model in which two micro-
phones (that we refer to as right and left) capture a source signal
convolved with acoustic impulse responses in some noise field. The
signals received at the right and left microphones, at the discrete
time-index k, are then expressed as

yR(k) = gR(k) ∗ s(k) + vR(k) = xR(k) + vR(k), (1a)
yL(k) = gL(k) ∗ s(k) + vL(k) = xL(k) + vL(k), (1b)

where gR(k) [resp. gL(k)] is the impulse response from the un-
known speech source s(k) to the microphone on the right (resp. left),
∗ stands for linear convolution, and vR(k) [resp. vL(k)] is the ad-
ditive noise at the microphone on the right (resp. left). We assume
that all the signals xR(k), xL(k), vR(k), and vL(k) are zero mean,
and xR(k) and xL(k) are uncorrelated with vR(k) and vL(k). The
two noise signals vR(k) and vL(k) can be either uncorrelated or cor-
related (e.g., from a same point source); but they are assumed to be
non-speech and stationary so that their statistics can be estimated
with the help of a voice activity detector (VAD) during silences.

The problem tackled in this paper is one of recovering the sig-
nals xR(k) and xL(k) given the observations yR(k) and yL(k). It is
clear that our objective is to attenuate the contribution of the noise
terms vR(k) and vL(k) as much as possible, and meanwhile preserve
xR(k) and xL(k) with their spatial information so that with the en-
hanced signals, along with our binaural hearing process, we will still
be able to localize the source s(k). We have stereo signals in model
(1); but we believe that it is more convenient to work in the complex
domain in order that the original (stereo) problem is transformed to a
single-channel noise reduction processing. Indeed, from the two real

microphone signals given in (1a) and (1b), we can form the complex
microphone signal as

y(k) = yR(k) + jyL(k) = x(k) + v(k), (2)

where j =
√
−1, x(k) = xR(k) + jxL(k) is the complex de-

sired signal, and v(k) = vR(k) + jvL(k) is the complex additive
noise. Now, our problem can be described as follows: given the
complex microphone signal, y(k), which is a mixture of two uncor-
related complex signals x(k) and v(k), we attempt to minimize the
effect of v(k) while preserving x(k) (i.e., our desired signal). This
can be achieved by filtering the complex microphone signal. There-
fore, the core issue of our problem is to find an optimal complex
noise reduction filter. However, since we deal with complex signals,
the classical linear techniques [5], [6] that are developed to estimate
the optimal noise reduction filters for real signals cannot be directly
applied. Instead, we need to use the so-called widely linear (WL)
estimation theory, which will be discussed in the following section.

2. WIDELY LINEARMODEL
As can be noticed from the model given in (2), we deal with com-
plex random variables. A very important statistical characteristic of a
complex random variable (CRV) is the so-called circularity property
or lack of it (noncircularity) [1], [2]. A zero-mean CRV, z, is circu-
lar if and only if the only nonnull moments and cumulants are the
moments and cumulants constructed with the same power in z and
z∗ [3], [4], where the superscript ∗ denotes complex conjugation. In
particular, z is said to be a second-order circular CRV (CCRV) if
its so-called pseudo-variance [1] is equal to zero, i.e., E

(
z2
)

= 0,
while its variance is nonnull, i.e., E

(
|z|2

)
�= 0. This means that

the second-order behavior of a CCRV is well described by its vari-
ance. If the pseudo-variance E

(
z2
)
is not equal to 0, the CRV z is

then noncircular. A good measure of the second-order circularity is
the circularity quotient [1] defined as the ratio between the pseudo-
variance and the variance, i.e.,

γz
�
=

E
(
z2
)

E (|z|2) . (3)

It is easy to show that 0 ≤ |γz| ≤ 1. If γz = 0, z is a second-
order CCRV; otherwise, z is noncircular, and a larger value of |γz|
indicates that the CRV z is more noncircular.

Now, let us examine whether the complex desired signal x(k) in
(2) is second-order circular or not. It is easy to check that

γx =
E
[
x2(k)

]

E [|x(k)|2]

=
E
[
x2

R(k)
]
−E

[
x2

L(k)
]
+ 2jE [xR(k)xL(k)]

σ2
x

, (4)
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where σ2
x = E

[
|x(k)|2

]
is the variance of x(k). One can check

from (4) that the CRV x(k) is second-order circular (i.e., γx = 0) if
and only if

E
[
x2

R(k)
]

= E
[
x2

L(k)
]
and E [xR(k)xL(k)] = 0. (5)

Since the signals xR(k) and xL(k) come from the same source, they
are in general correlated. As a result, the second condition in (5)
should not be true. Therefore, we can safely state that the complex
desired signal, x(k), is noncircular, and so is the complex micro-
phone signal, y(k).

Since we deal with noncircular CRVs as demonstrated above,
the classical linear estimation technique [5], [6], which is developed
for processing real signals or CCRVs, cannot be applied to recover
x(k). Instead, an estimate of x(k) should be obtained using the WL
estimation theory as [7], [2]

x̂(k) = hHy(k) + h′Hy∗(k) = h̃H ỹ(k), (6)

where

y(k)
�
= [y(k) y(k − 1) · · · y(k − L + 1)]T = x(k) + v(k), (7)

is a vector consisting of L successive noisy signal samples, super-
scripts H and T denote transpose-conjugate and transpose, respec-
tively, x(k) and v(k) are defined in a similar way to y(k), h and h′
are two complex finite-impulse-response (FIR) filters of length L,
and

h̃ �
=

[
h
h′

]
, ỹ(k)

�
=

[
y(k)
y∗(k)

]
, (8)

are the augmented WL filter and observation vector, respectively,
both of length 2L. We can rewrite (6) as

x̂(k) = h̃H
[x̃(k) + ṽ(k)] = xf(k) + vrn(k), (9)

where x̃(k) and ṽ(k) are defined in a similar way to ỹ(k), xf(k)
�
=

h̃H x̃(k) is a filtered version of the desired signal and its conjugate
of L successive time samples, and vrn(k)

�
= h̃H ṽ(k) is the residual

noise. From (9), we see that x̂(k) depends on the vector x̃(k); but not
all the components in x̃(k) contribute to the estimation of the desired
signal sample x(k). To see this clearly, let us decompose the vector
x̃(k) into two orthogonal vectors: one corresponding to the desired
signal at time k and the other corresponding to the interference. Let
us first decompose x(k) as

x(k) = x(k)ρx + x′(k), (10)

where

ρx

�
=

E [x(k)x∗(k)]

σ2
x

= [ρx,0 ρx,1 · · · ρx,L−1]
T (11)

is the (normalized) correlation vector (of lengthL) between x(k) and
x(k),

ρx,l
�
=

E [x(k − l)x∗(k)]

σ2
x

(12)

is the correlation coefficient between x(k−l) and x(k)with |ρx,l| ≤
1, and

x′(k) = x(k)− x(k)ρx (13)

is the interference signal vector. Obviously, x(k)ρx is correlated
with x(k) and

E
[
x′(k)x∗(k)

]
= 0, (14)

so x′(k) is uncorrelated with x(k).
Similarly, we have

x∗(k) = x(k)γ∗
x + x′′(k), (15)

where

γx

�
=

E [x(k)x(k)]

σ2
x

= [γx,0 γx,1 · · · γx,L−1]
T (16)

is the (normalized) correlation vector (of length L) between x(k) and
x∗(k),

γx,l
�
=

E [x(k − l)x(k)]

σ2
x

(17)

is the correlation coefficient1 between x(k − l) and x∗(k) with
|γx,l| ≤ 1, and

x′′(k) = x∗(k)− x(k)γ∗
x (18)

is the interference signal vector. Clearly, x(k)γ∗
x is correlated with

x(k), while x′′(k) and x(k) are uncorrelated since

E
[
x′′(k)x∗(k)

]
= 0. (19)

Combining (10) and (15), we get

x̃(k) = x(k)dx + x̃′(k) = x̃d(k) + x̃′(k), (20)

where

dx
�
=

[
ρx

γ∗
x

]
, x̃′(k)

�
=

[
x′(k)
x′′(k)

]
, (21)

x̃d(k)
�
= x(k)dx is correlated with the desired signal, x(k), and will

contribute to its estimation, so we call it the desired signal vector. In
comparison, x̃′(k) is uncorrelated with x(k), and will interfere with
the estimation, so we call it the interference signal vector.

Substituting (20) into (9), we obtain

x̂(k) = h̃H [
x̃d(k) + x̃′(k) + ṽ(k)

]

= h̃H [
x(k)dx + x̃′(k) + ṽ(k)

]

= xfd(k) + x′
ri(k) + vrn(k), (22)

where xfd(k)
�
= h̃H x̃d(k) = x(k)h̃Hdx is the filtered desired signal

and x′
ri(k)

�
= h̃H x̃′(k) is the residual interference. We observe that

the estimate of the desired signal at time k is the sum of three terms
that are mutually uncorrelated. Therefore, the variance of x̂(k) is

σ2
x̂ = σ2

xfd + σ2
x′
ri

+ σ2
vrn , (23)

where

σ2
xfd = σ2

x

∣∣∣h̃Hdx

∣∣∣
2

= h̃HRx̃d h̃, (24)

σ2
x′
ri

= hHRx̃′ h̃ = h̃HRx̃h̃− σ2
x

∣∣∣h̃Hdx

∣∣∣
2

, (25)

σ2
vrn = h̃HRṽh̃, (26)

1Note that γx,0 = γx , which is the circularity quotient for the complex
signal x(k).
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Rx̃d = E
[
x̃d(k)x̃H

d (k)
]

= σ2
xdxdH

x is the correlation matrix
(whose rank is equal to 1) of x̃d(k), and Rx̃′ = E

[
x̃′(k)x̃′H(k)

]
,

Rx̃ = E
[
x̃(k)x̃H(k)

]
, and Rṽ = E

[
ṽ(k)ṽH(k)

]
are the correla-

tion matrices of x̃′(k), x̃(k), and ṽ(k), respectively.
It is clear from (22) that the objective of our noise reduction

problem is to find optimal filters that can minimize the effect of
x′

ri(k) + vrn(k) while preserving the desired signal, x(k).

3. TIME-DOMAINWLMVDR FILTER
To derive the WL MVDR filter, we need to derive first the mean-
square error (MSE) criterion.

We define the error signal between the estimated and desired
signals as

e(k)
�
= x̂(k)− x(k) = h̃H ỹ(k)− x(k), (27)

which can be written as the sum of two uncorrelated error signals:

e(k) = ed(k) + er(k), (28)

where

ed(k)
�
= xfd(k)− x(k) (29)

is the signal distortion due to the WL filter and

er(k)
�
= x′

ri(k) + vrn(k) (30)

represents the residual interference-plus-noise.
The MSE is then

J
(
h̃
) �

= E
[
|e(k)|2

]
= h̃HRỹh̃ = Jd

(
h̃
)

+ Jr

(
h̃
)

, (31)

where

Jd

(
h̃
) �

= E
[
|ed(k)|2

]
= σ2

x

∣∣∣h̃Hdx − 1
∣∣∣
2

, (32)

Jr

(
h̃
) �

= E
[
|er(k)|2

]
= σ2

x′
ri

+ σ2
vrn = h̃HRinh̃, (33)

and

Rin = Rx̃′ + Rṽ (34)

is the interference-plus-noise covariance matrix.
With the previously defined MSEs, it is clear that the MVDR

filter can be derived by minimizing J
(
h̃
)
subject to the constraint

Jd

(
h̃
)

= 0. Mathematically, this can be transformed into the fol-
lowing optimization problem

min
˜h
h̃HRỹh̃ subject to h̃Hdx = 1. (35)

Using a Lagrange multiplier to adjoin the constraint to the cost func-
tion and then taking the gradient with respect to h̃ and equating the
result to zero, we obtain

h̃MVDR =
R−1

ỹ dx

dH
x R−1

ỹ dx

. (36)

Obviously, the MVDR filter can also be deduced by minimizing
Jr

(
h̃
)
subject to the constraint h̃Hdx = 1. This time, the problem

can be written into the following form

min
˜h
h̃HRinh̃ subject to h̃Hdx = 1, (37)

for which the solution is

h̃MVDR =
R−1

in dx

dH
x R−1

in dx

. (38)

With the use of the following relation

Rỹ = σ2
xdxdH

x + Rin, (39)

we can rewrite (38) as

h̃MVDR =
R−1

in Rỹ − I2L

tr
(
R−1

in Rỹ
)
− 2L

i1, (40)

where i1 is the first column of the identity matrix I2L of size 2L×2L.
It is easy to check that the three forms of the MVDR filter in (36),
(38), and (40) are theoretically identical.

4. EVALUATION OF THEWLMVDR FILTER
4.1. Theoretical Evaluation
To evaluate the performance of a noise reduction filter, we generally
need to examine both the amount of speech distortion and the degree
of noise reduction due to the filter. However, since the MVDR filter
does not introduce speech distortion, it is only necessary to evaluate
the noise reduction part. For this purpose, we examine the input and
output signal-to-noise ratios (SNRs) of the MVDR filter. The input
SNR is defined as

iSNR �
=

σ2
x

σ2
v
, (41)

where σ2
v

�
= E

[
|v(k)|2

]
is the variance of the complex additive

noise. After applying a WL filter h̃, the output SNR is defined as the
ratio of the variance of the filtered desired signal over the variance
of the residual interference-plus-noise2, i.e.,

oSNR
(
h̃
) �

=
σ2

xfd

σ2
x′
ri

+ σ2
vrn

=
σ2

x

∣∣∣h̃Hdx

∣∣∣
2

h̃HRinh̃
=
h̃HRx̃d h̃

h̃HRinh̃
. (42)

The objective of the noise reduction filter is to make the output SNR
greater than the input SNR so that the quality of the noisy signal will
be enhanced. Now, let us introduce the quantity oSNRmax, which is
defined as the maximum output SNR that can be achieved through
filtering so that

oSNR
(
h̃
)
≤ oSNRmax, ∀h̃. (43)

It can be checked from (42) that this quantity is equal to the maxi-
mum eigenvalue of the matrix R−1

in Rx̃d , i.e.,

oSNRmax = λmax

(
R−1

in Rx̃d
)

. (44)

The filter that can achieve oSNRmax is called the maximum SNR fil-
ter and is denoted by h̃max. It is easy to see from (44) that h̃max is the
eigenvector corresponding to the maximum eigenvalue of R−1

in Rx̃d .
Clearly, we have

oSNRmax = oSNR
(
h̃max

)
≥ oSNR (i1) = iSNR. (45)

Since the rank of the matrix Rx̃d is equal to 1, we also have

oSNRmax = tr
(
R−1

in Rx̃d
)

= σ2
xdH

x R−1
in dx, (46)

2In this paper, we consider the interference as part of the noise in the
definitions of the performance measures.
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where tr(·) denotes the trace of a square matrix.
Substituting (38) into (42), we can deduce that

oSNR
(
h̃MVDR

)
= oSNRmax. (47)

It is of great interest to observe that the MVDR filter maximizes
the output SNR without introducing speech distortion. Note that the
h̃max filter is different from h̃MVDR by a scaling factor although both
can maximize the output SNR. This scaling factor is time-varying
and can cause discontinuity in both the speech and the residual noise
level, which is eventually transformed into speech distortion. There-
fore, it is recommended to use the MVDR filter rather than the max-
imum SNR one in practice.

4.2. Experimental Evaluation

Experiments were conducted with the clean speech recorded in a
reverberant but quiet room. The room is 6 m long and 5 m wide.
For ease of exposition, positions in the room are designated by (x, y)
coordinates with reference to one corner of the room with 0 ≤ x ≤ 6
and 0 ≤ y ≤ 5. A stereo recording system is configured where two
same omnidirectional microphones are placed respectively at (3.0,
0.5) and (3.1, 0.5). A female talker reads a story while walking along
the line y = 3 m and her voice is recorded with a sampling rate of
8 kHz. The recorded stereo signal is treated as the clean speech.
White Gaussian noise is then added into the signal so that the input
SNR is equal to 10 dB. The overall length of the signal is 30 s. We
set the filter length to L = 40.

To implement the MVDR filter given in (36), we need to know
the correlation matrixRỹ and the correlation vector dx. In this paper,
we compute the Rỹ matrix from the noisy signal using a short-time
average. Specifically, at each time instant k, an estimate of the ma-
trix Rỹ, i.e., R̂ỹ(k), is computed using the most recent 640 samples
(40-ms long) of the noisy signal y(k). To obtain an estimate of the
dx vector, we first compute the Rṽ matrix directly from the noise
signal (without using any VAD) with a short-time average using the
most recent 1280 samples (80-ms long). Subtracting the computed
R̂ṽ(k) matrix from R̂ỹ(k), we obtain an estimate of the Rx̃ matrix
at time k, i.e., R̂x̃(k). Then the estimate of the dx vector, i.e., d̂x(k),
is the first column of R̂x̃(k) normalized by its first element. Substi-
tuting R̂ỹ(k) and d̂x(k) into (36), we obtain the MVDR filter. With
this filter and using (22), we get the three signals xfd(k), x′

ri(k), and
vrn(k). We then computed the output SNR using a long-time av-
erage. The output SNR for this experiment is equal to 14.5 dB. In
other words, the SNR improvement is 4.5 dB.

To illustrate the results, we plot, in Fig. 1, the spectrograms of
the clean, noisy, and enhanced speech signals for the left channel
(we do not show those for the right channel due to space limit). It is
clearly seen that the enhanced signal is much cleaner than the noisy
one.

To visualize the spatial sound effect, we computed the cross-
correlation function between the two channels every 64 ms using a
short-time average with a frame size of 64 ms. The location of the
maximum value of this function indicates the position of the talker
at time instant k. Figure 2 shows the contours of the time-varying
cross-correlation function of the clean, noisy, and enhanced signals.
One can notice that the noise has significantly modified the sound
spatial effect. It is clearly seen that the MVDR filter has recovered
the spatial effect.

5. CONCLUSIONS
This paper focused on the binaural noise reduction problem in stereo
systems that have two inputs and two outputs. By merging the two
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Figure 1: The spectrograms of the left channel. Upper trace: clean
speech; middle trace: noisy speech at SNR = 10 dB; lower trace:
noise reduced speech.

0 5 10 15 20 25 30
-8
-4
0
4
8
-8
-4
0

4
8
-8
-4
0
4
8

La
g
tim
e
(s
am
pl
e)

Time (s)

0

0.5

1.0
0

0.5

1.0
0

0.5

1.0

Figure 2: The contours of the short-time cross correlation coef-
ficients between the left and right channels. Upper trace: clean
speech; middle trace: noisy speech at SNR = 10 dB; lower trace:
noise reduced speech.

real input signals into one complex signal, we formulated the prob-
lem into a WL filtering framework. Under this new framework,
we derived a time-domain MVDR noise reduction filter, which was
shown to be able to not only enhance the noisy speech, but also re-
cover the spatial effects of the speech source.
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