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ABSTRACT
This paper deals with the problem of binaural noise reduction us-
ing an array of microphones. This is a very important problem in
applications such as teleconferencing and hearing aids where there
is a need to mitigate the noise effect from the noisy signals picked
up by multiple microphones and produce two “clean” outputs. The
mitigation of the noise should be made in such a way that no audi-
ble distortion is added to the two outputs (this is the same as in the
single-channel case) and meanwhile the spatial information of the
desired sound source should be preserved so that, after noise reduc-
tion, the listener will still be able to localize the sound source thanks
to his/her binaural hearing mechanism. In this paper, we present
a novel approach to this problem where we first form a number of
complex input signals from the multiple and real microphone obser-
vations. We also merge the two expected real outputs into a complex
output signal. The widely linear estimation theory is then used to de-
rive optimal noise reduction filters that can achieve noise reduction
while preserving the desired signal (speech) and its spatial informa-
tion. With this new formulation, the Wiener and minimum variance
distortionless response (MVDR) filters are derived. Experiments are
provided to justify the effectiveness of these filters.

Index Terms— Binaural noise reduction, microphone arrays,
widely linear (WL) estimation, Wiener Filter, minimum variance
distortionless response (MVDR) filter.

1. SIGNAL MODEL AND PROBLEM FORMULATION
Binaural noise reduction has a wide range of applications in ar-
eas such as teleconferencing, telecollaboration, social networks, and
hearing aids. It has emerged as a very important research and engi-
neering problem over the last two decades. Traditionally, this prob-
lem is tackled by extending the single-channel spectral modification
based noise reduction technique to the binaural case by either pos-
ing some constraints on the suppression of each frequency band or
using head-related transfer functions (HRTFs) to preserve the spatial
information [1], [2]. Recently, we developed a new technique, which
works for a stereo input and binaural output system [3]. The basic
idea is to form a complex input signal from the stereo inputs and a
complex output signal from the two expected real output channels.
By doing so, the binaural noise reduction problem can be processed
by a single-channel widely linear filter. In this paper, we attempt
to extend the basic principle shown in [3] to a more general case
where an array of microphones is used. Without loss of generality,
we consider the signal model in which 2N microphones1 capture
a source signal convolved with acoustic impulse responses in some
noise field. The signal received at the ith microphone is then ex-

Effort of the second author is partially supported by the Anhui Science
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1The generalization to an odd number of microphones is straightforward.

pressed as

yr,i(t) = gi(t) ∗ s(t) + vr,i(t)

= xr,i(t) + vr,i(t), i = 1, 2, . . . , 2N, (1)

where gi(t) is the acoustic impulse response from the unknown
speech source, s(t), location to the ith microphone, ∗ stands for
linear convolution, and xr,i(t) and vr,i(t) are, respectively, the con-
volved speech and additive noise received at microphone i. We as-
sume that the impulse responses are time invariant. We also assume
that the signals xr,i(t) = gi(t) ∗ s(t) and vr,i(t) are uncorrelated,
zero mean, real, and broadband.

In binaural noise reduction, it is desired to simultaneously re-
cover the convolved speech signals at two microphones. In this pa-
per, we consider recovering the signals xr,1(t) and xr,N+1(t) given
the observations yr,i(t), i = 1, 2, . . . , 2N . This means that the de-
sired signals in our problem are the speech signals received at the
first and (N + 1)th microphones2. It is clear then that we have two
objectives. The first one is to attenuate the contribution of the noise
terms vr,1(t) and vr,N+1(t) as much as possible. The second ob-
jective is to preserve xr,1(t) and xr,N+1(t) with their spatial infor-
mation, so that with the enhanced signals, along with our binaural
hearing process, we will still be able to localize the source s(t). This
is the well-known problem of binaural noise reduction.

We have 2N real input and two real output signals. It is con-
venient, however, to work in the complex domain in order that the
original binaural problem is transformed to a single-output noise re-
duction problem with a microphone array. Indeed, from the 2N real
microphone signals given in (1), we can form N complex micro-
phone signals as

yn(t) = yr,n(t) + jyr,N+n(t) (2)

= xn(t) + vn(t), n = 1, 2, . . . , N,

where j =
√−1,

xn(t) = xr,n(t) + jxr,N+n(t), n = 1, 2, . . . , N (3)

is the complex convolved speech signal, and

vn(t) = vr,n(t) + jvr,N+n(t), n = 1, 2, . . . , N (4)

is the complex additive noise. Now, our problem can be stated as
follows: given the N complex microphone signals, yn(t), n =
1, 2, . . . , N , which are a mixture of the uncorrelated complex signals
xn(t) and vn(t), our goal is to recover x1(t) = xr,1(t)+jxr,N+1(t)
(i.e., our desired signal) the best way we can, including the phase,
which is important for the localization of the source signal.

2Note that the ideas and algorithms developed in this paper can be applied
to any other pair of microphones.
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The signal model given in (2) can be put into a vector form as

y(t) = x(t) + v(t), (5)

where

y(t) =
ˆ

yT
1 (t) yT

2 (t) · · · yT
n (t) · · · yT

N (t)
˜T

,

the superscript T is the transpose operator,

yn(t) =
ˆ

yn(t) yn(t − 1) · · · yn(t − L + 1)
˜T

is a vector of length L, and x(t) and v(t) are defined in a similar
way to y(t). Since the clean and noise signals are uncorrelated by
assumption, the correlation matrix (of size NL × NL) of the noisy
signal is

Φy = E
h
y(t)yH(t)

i
= Φx + Φv, (6)

where the superscript H is the transpose-conjugate operator, and
Φx =

ˆ
x(t)xH(t)

˜
and Φv = E

ˆ
v(t)vH(t)

˜
are the correlation

matrices of x(t) and v(t), respectively.

2. WIDELY LINEAR FILTERING
As seen from the model given in (2), we deal with complex random
variables. A very important statistical characteristic of a complex
random variable (CRV) is the so-called circularity property or lack
of it (noncircularity) [4], [5]. A zero-mean CRV, z, is circular if and
only if the only nonnull moments and cumulants are the moments
and cumulants constructed with the same power in z and z∗ [6], [7],
where the superscript ∗ denotes complex conjugation. In particular,
z is said to be a second-order circular CRV (CCRV) if its so-called
pseudo-variance [4] is equal to zero, i.e., E

`
z2

´
= 0, while its vari-

ance is nonnull, i.e., E
`|z|2´ �= 0. This means that the second-order

behavior of a CCRV is well described by its variance. If the pseudo-
variance E

`
z2

´
is not equal to 0, the CRV z is then noncircular. A

good measure of the second-order circularity is the circularity quo-
tient [4] defined as the ratio between the pseudo-variance and the
variance, i.e.,

γz =
E

`
z2

´
E (|z|2) . (7)

It is easy to show that 0 ≤ |γz| ≤ 1. If γz = 0, z is a second-order
CCRV; otherwise, z is noncircular.

Now, let us examine whether the complex desired signal,
x1(t) = xr,1(t) + jxr,N+1(t), is second-order circular or not. We
have

γx1
=

E
ˆ
x2

1(t)
˜

E [|x1(t)|2] (8)

=
E

ˆ
x2

r,1(t)
˜ − E

ˆ
x2

r,N+1(t)
˜
+ j2E [xr,1(t)xr,N+1(t)]

φx1

,

where φx1
= E

ˆ|x1(t)|2
˜

is the variance of x1(t). One can check
from (8) that the CRV x1(t) is second-order circular (i.e., γx1

= 0)
if and only if

E
ˆ
x

2
r,1(t)

˜
= E

ˆ
x

2
r,N+1(t)

˜
and E [xr,1(t)xr,N+1(t)] = 0. (9)

Since the signals xr,1(t) and xr,N+1(t) come from the same source,
they are in general correlated. As a result, the second condition in (9)
should not be true. Therefore, we can safely state that the complex
desired signal, x1(t), is noncircular, and so is the complex micro-
phone signal, y1(t). If the noise terms at the two microphones are

assumed to be uncorrelated and have the same power, then γv1
= 0

[i.e., v(t) is a second-order CCRV].
Since we deal with noncircular CRVs as demonstrated above,

the classical linear estimation technique [8], which is developed for
processing real signals or CCRVs, cannot be applied. Instead, an
estimate of x1(t) should be obtained using the widely linear (WL)
estimation theory as [5], [9]

bx1(t) = h
H
y(t) + h

′H
y
∗(t) = ehH ey(t), (10)

where h and h′ are two complex FIR filters of length NL and

eh =

»
h

h′

–
(11)

ey(t) =

»
y(t)
y∗(t)

–
(12)

are the augmented WL filter and observation vector, respectively,
both of length 2NL. We can rewrite (10) as

bx1(t) = ehH [ex(t) + ev(t)] = xf(t) + vrn(t), (13)

where ex(t) and ev(t) are defined in a similar way to ey(t),

xf(t) = ehH ex(t) (14)

is a filtered version of the desired signal vector and its conjugate, and

vrn(t) = ehH ev(t) (15)

is the residual noise.
From (13), we see that bx1(t) depends on the vector ex(t). How-

ever, our desired signal at time t is not the whole vector ex(t) but only
the sample x1(t); so we should decompose the vector ex(t) into two
orthogonal vectors: one correlated and the other uncorrelated with
the desired signal sample, x1(t). This decomposition is given as

ex(t) = x1(t)ρexx1
+ exi(t) = exd(t) + exi(t), (16)

where

exd(t) = x1(t)ρexx1
(17)

is the desired signal vector,

exi(t) = ex(t) − exd(t) (18)

is the interference signal vector,

ρexx1
=

E [ex(t)x∗

1(t)]

E
ˆ|x1(t)|2

˜ (19)

is the normalized [with respect to x1(t)] correlation vector betweenex(t) and x1(t), and

E [exi(t)x
∗

1(t)] = 02NL×1. (20)

Substituting (16) into (13), we obtain

bx1(t) = ehH [exd(t) + exi(t) + ev(t)]

= xfd(t) + xri(t) + vrn(t), (21)

where

xfd(t) = ehH exd(t) = x1(t)ehH
ρexx1

(22)
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is the filtered desired signal and

xri(t) = ehH exi(t) (23)

is the residual interference. We observe that the estimate of the de-
sired signal at time t is the sum of three terms that are mutually
uncorrelated. Therefore, the variance of bx1(t) is

φbx1
= φxfd

+ φxri
+ φvrn

, (24)

where

φxfd
= φx1

˛̨̨ehH
ρexx1

˛̨̨2
= ehH

Φexd

eh, (25)

φxri
= ehH

Φexi

eh = ehH
Φex

eh − φx1

˛̨̨ehH
ρexx1

˛̨̨2
, (26)

φvrn
= ehH

Φev
eh, (27)

Φexd
= φx1

ρexx1
ρ

H
exx1

is the correlation matrix (whose rank is equal
to 1) of exd(t), and Φexi

= E
ˆexi(t)exH

i (t)
˜
, Φex = E

ˆex(t)exH(t)
˜
,

and Φev = E
ˆev(t)evH(t)

˜
are the correlation matrices of exi(t),ex(t), and ev(t), respectively.

It is clear from (21) that the objective of our noise reduction
problem is to find optimal filters that can minimize the effect of
xri(t) + vrn(t) while preserving the desired signal, x1(t).

3. OPTIMAL FILTERS

Before deriving the optimal filters, we first define the mean-square-
error (MSE) criterion.

The error signal between the estimated and desired signals is
defined as

e(t) = bx1(t) − x1(t) = xfd(t) + xri(t) + vrn(t) − x1(t). (28)

We can rewrite (28) as

e(t) = ed(t) + er(t), (29)

where

ed(t) = xfd(t) − x1(t) =
“ehH

ρexx1
− 1

”
x1(t) (30)

is the speech distortion due to the WL filter, and

er(t) = xri(t) + vrn(t) = ehH exi(t) + ehH ev(t) (31)

represents the residual interference-plus-noise. The two error signals
ed(t) and er(t) are clearly uncorrelated.

The classical MSE criterion is then

J
“eh”

= E
ˆ|e(t)|2˜

= E
ˆ|ed(t)|2

˜
+ E

ˆ|er(t)|2
˜

= φx1

˛̨̨ehH
ρexx1

− 1
˛̨̨2

+ ehH
Φexi

eh + ehH
Φev

eh
= Jd

“eh”
+ Jr

“eh”
, (32)

where

Jd

“eh”
= E

ˆ|ed(t)|2
˜

= φx1

˛̨̨ehH
ρexx1

− 1
˛̨̨
2

, (33)

Jr

“eh”
= E

ˆ|er(t)|2
˜

= ehH
Φin

eh, (34)

and

Φin = Φexi
+ Φev = Φey − φx1

ρexx1
ρ

H
exx1

(35)

is the correlation matrix of the interference-plus-noise.
Given the above MSE criteria, the filters that can achieve noise

reduction can be derived by either directly minimizing J
“eh”

or

minimizing Jd

“eh”
or Jr

“eh”
with some constraints.

3.1. WL Wiener Filter

In our problem, the WL Wiener filter can be obtained by taking the
gradient of (32) with respect to eh and equating the result to zero. We
easily get

ehW = Φ
−1

ey
Φex

ei =
ˆ
I2NL − Φ

−1

ey
Φev

˜ei, (36)

whereei is the first column of the identity matrix I2NL of size 2NL×
2NL. From (35), we can write the inverse of Φey according to the
Woodbury’s identity:

Φ
−1

ey
= Φ

−1

in − Φ−1

in
ρexx1

ρ
H
exx1

Φ−1

in

φ−1
x1

+ ρ
H
exx1

Φ−1

in
ρexx1

. (37)

Substituting (37) into (36), we get an alternative form of the WL
Wiener filter, i.e.,

h̃W =
Φ−1

in
ρexx1

φ−1
x1

+ ρ
H
exx1

Φ−1

in
ρexx1

, (38)

which can be more useful for practical implementation as the matrix
Φin is generally better conditioned than Φey in real-world applica-
tions.

3.2. WL MVDR Filter

The WL MVDR filter can be derived by minimizing either

E
ˆ|bx1(t)|2

˜
, J

“eh”
, or Jr

“eh”
subject to the constraint that

Jd

“eh”
= 0. Using J

“eh”
, the problem can be mathematically

written as

min
eh

J
“eh”

subject to ehH
ρexx1

= 1. (39)

Using a Lagrange multiplier to adjoin the constraint to the cost func-
tion, taking the gradient with respect to h̃, and then equating the
result to zero, we obtain

ehMVDR =
Φ−1

ey
ρexx1

ρ
H
exx1

Φ−1

ey
ρexx1

. (40)

Now, using Jr

“eh”
, the problem can be written into the follow-

ing form:

min
h̃

ehH
Φin

eh subject to ehH
ρexx1

= 1, (41)

for which the solution is

h̃MVDR =
Φ−1

in
ρexx1

ρ
H
exx1

Φ−1

in ρexx1

. (42)

It is easy to check that the two forms of the MVDR filter in (40) and
(42) are identical.

4. EXPERIMENTAL EVALUATION
Experiments were conducted with the speech source recorded in a
reverberant but quiet room. The room is 6 m long and 5 m wide.
For ease of exposition, positions in the room are designated by (x,
y) coordinates with reference to one corner of the room, 0 ≤ x ≤ 6
and 0 ≤ y ≤ 5. An equispaced linear array with six omnidirectional
microphones is configured where the first and last microphones are,
respectively, at (3.4, 0.5) and (3.9, 0.5), and spacing between two
neighboring microphones is 0.1 m. A female talker reads a story
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Fig. 1. The output SNR and speech distortion index as a function
of the number of microphones for the Wiener and MVDR filters in
white noise: L = 40 and input SNR of 10 dB. Note that the values
of the speech distortion index for the MVDR filter are not displayed
because they are very small.

while standing at (1.3, 3.0) and her voice is recorded with a sampling
rate of 8 kHz. The recorded multichannel signals are treated as the
convolved speech. White Gaussian noise is then added to the signals
so that the input SNR is equal to 10 dB. The overall length of the
signal is 30 s. We set L to 40 based on the results from a previous
study [3].

We choose to implement the WL Wiener and MVDR filters ac-
cording to (38) and (42), respectively, for which we need to know
the parameters Φin, φx1

, and ρexx1
. In this paper, we first com-

pute the two covariance matrices Φey and Φev directly from the noisy
and noise signals using a short-time average. Specifically, at each
time instant t, an estimate of Φey, i.e., Φ̂ey(t), is computed using the
most recent 480 ey vectors, and Φ̂ev(t) is computed in the same man-
ner but from the noise signal. An estimate of Φex is calculated as
Φ̂ex(t) = Φ̂ey(t) − Φ̂ev(t). Then φ̂x1

(t) is taken as the first element
of Φ̂ex(t) and ρ̂exx1

(t) is the first column of Φ̂ex(t) normalized by

φ̂x1
(t). The matrix Φ̂in(t) can then be computed according to (35).
Substituting Φ̂in(t), φ̂x1

(t), and ρ̂exx1
(t) into (38) and (42), we

implemented the WL Wiener and MVDR filters. To evaluate the
noise reduction performance of these two filters, we used the output
SNR and speech distortion index, which are defined as [3]:

oSNR
`
h̃

´
=

φxfd

φxri
+ φvrn

, (43)

υsd

`
h̃

´
=

E
ˆ|xfd(t) − x1(t)|2

˜
φx1

. (44)

These two measures are computed using a long-time average. The
results, as a function of the number of microphones, are plotted in
Fig. 1. (Note that for a fair comparison, in the two-microphone case,
we used the 1st and 4th microphones, and in the four-microphone
case, we used the 1st, 2nd, 4th, and 5th microphones.) For both
the WL Wiener and MVDR filters, we see that the output SNR in-
creases while the speech distortion index decreases with the number
of microphones. This clearly demonstrates the advantage of using
multiple microphones for binaural noise reduction. It is also seen
that the WL MVDR can improve SNR without adding speech dis-
tortion, though its SNR improvement is less than that of the WL
Wiener filter.

To visualize the spatial sound effect, we computed the cross-
correlation function between the two real output channels [i.e., the
real and imaginary parts of bx1(t)] every 64 ms using a short-time av-
erage with a frame size of 64 ms. The location of the maximum value
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Fig. 2. The contours of the short-time cross-correlation coefficients
between the left and right channels. Upper trace: clean speech; mid-
dle trace: noisy speech (with an input SNR of 10 dB); lower trace:
enhanced speech using the MVDR filter with 6 microphones.

of this function indicates the position of the talker at time instant t.
Figure 2 shows the contours of the time-varying cross-correlation
function of the clean and noisy signals as well as that of the en-
hanced signal (due to space limitation, we only show the result with
the MVDR filter using 6 microphones). One can notice that the noise
has dramatically modified the sound spatial effect. It is clearly seen
that the MVDR filter with 6 microphones has significantly recovered
the spatial effect.

5. SUMMARY
In this paper, we presented a multichannel widely linear (WL) ap-
proach to the problem of binaural noise reduction using a micro-
phone array. We first formed a number of complex input signals from
the multiple and real microphone observations. We also merged the
two expected real outputs into a complex output signal. By doing
so, the binaural noise reduction problem is converted into one of
multiple-input/single-output WL filtering. The WL estimation the-
ory was then used to derive the optimal WL Wiener and MVDR fil-
ters that can achieve noise reduction while preserving the desired sig-
nal (speech) and its spatial information. Experimental results have
justified the effectiveness of these filters.
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