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ABSTRACT

In this paper, we study the noise reduction problem in the time do-
main and present a frame-based method to decompose the clean
speech vector into two orthogonal components: one correlated and
the other uncorrelated with the current desired speech vector to be
estimated. In comparison with the sample-based decomposition de-
veloped in the previous research that uses only forward prediction,
this new decomposition exploits both the forward prediction and in-
terpolation. Based on this new decomposition, we formulate differ-
ent optimization cost functions and address the issue of how to de-
sign Wiener and minimum variance distortionless response (MVDR)
filtering matrices by optimizing these new cost functions. We also
discuss the relationship between the Wiener and MVDR filtering ma-
trices and show that the MVDR filtering matrix can achieve noise
reduction without adding speech distortion; but it reduces less noise
than the Wiener filtering matrix. Compared with the sample-based
algorithms developed in the previous study, the proposed frame-
based algorithms can achieve better noise reduction performance.
Furthermore, they are computationally more efficient, and therefore,
more suitable for practical implementation.

Index Terms— Noise reduction, time domain, orthogonal de-
composition, rectangular filtering matrix, Wiener filter, minimum
variance distortionless response (MVDR) filter.

1. INTRODUCTION

In many areas of speech processing an effective noise reduction al-
gorithm is required. Over the past several decades, many algorithms
have been developed and improved [1], [2], [3], [4], [5]. However,
it is well known that these algorithms in the single-channel case
achieve noise reduction at a price of adding some distortion into the
speech signal. In general, the more the noise is reduced, the more
the speech is distorted.

Recently, it has been shown that by decomposing the clean
speech signal vector into two orthogonal components, i.e., the de-
sired speech and interference, we can design many new noise reduc-
tion filters [6], [7]. Particularly, due to this orthogonal decomposi-
tion, the minimum variance distortionless response (MVDR) filter
can be designed, which can achieve noise reduction without intro-
ducing speech distortion in the single-channel case.

The algorithms developed in [6] are sample-based, which esti-
mate one sample at a time where the speech signal at the current time
instant is always predicted using the past samples (i.e., via forward
prediction). In this paper, we extend the sample-based approach into
a frame-based framework and deduce some frame-based algorithms.
These algorithms estimate more than one sample at a time where
both forward prediction and interpolation are utilized. It is well
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known that speech is highly correlated with its neighboring (both
previous and future) samples. This correlation can be well exploited
in the frame-based formulation to improve noise reduction as will
be demonstrated in Section 4 about experiments. Another advantage
of the frame-based framework as compared to the sample-based one
is the computational complexity. As we know, the largest compu-
tational burden of a time-domain noise reduction algorithm is from
the matrix inversion. In the sample-based method, matrix inversion
is needed for every sample. But in the frame-based implementation
it is only needed for each frame. So, the larger the frame length, the
lower the computational burden.

In the frame-based approach, we deal with a rectangular filter-
ing matrix instead of a filtering vector as described in [6]. As will
become clearer soon, this frame-based approach is more general and
all the results from [6] can be viewed as particular cases of the results
derived in this paper by just setting the frame length to 1.

2. SIGNAL MODEL AND PROBLEM FORMULATION

In the time domain, we assume that the observed signal, y(k), is an
additive mixture of the clean speech, x(k), and the noise, v(k), i.e.,

y(k) = x(k) + v(k), (1)

where x(k) and v(k) are assumed to be uncorrelated and zero-mean
random processes, and k is the discrete-time index. All signals are
considered to be real and broadband.

The signal model given in (1) can be put into a vector form:

y(k) = x(k) + v(k), (2)

where

y(k) =
ˆ

y(k) y(k − 1) · · · y(k − L + 1)
˜T

(3)

is a vector of length L, superscript T denotes transpose of a vector
or a matrix, and x(k) and v(k) are defined in a similar way to y(k).

In this paper, we estimate more than one sample at a time. There-
fore, we define the vector of length M :

x
M (k) =

ˆ
x(k) x(k − 1) · · · x(k − M + 1)

˜T
, (4)

where M ≤ L. In the general linear filtering approach, we estimate
the desired signal vector, xM (k), by applying a linear transformation
to y(k) [1], [7], i.e.,

z
M (k) = Hy(k) = H [x(k) + v(k)]

= x
M
f (k) + v

M
rn (k), (5)

where zM (k) is the estimate of xM (k),

H =
ˆ

h1 h2 · · · hM

˜T
(6)
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is a rectangular filtering matrix of size M × L,

hm = [hm,0 hm,1 · · · hm,L−1]
T

, m = 1, 2, . . . , M (7)

are FIR filters of length L, and

x
M
f (k) = Hx(k) (8)

v
M
rn (k) = Hv(k) (9)

are the filtered speech and residual noise respectively. Depending
on the value of M , there are two important particular cases of (5) as
described below.

• M = 1. In this situation, z1(k) = z(k) is a scalar and H

degenerates to an FIR filter hT of length L. This case has
been well studied in [6].

• M = L. In this situation, zL(k) = z(k) is a vector of length
L and H = HS is a square matrix of size L × L. This
scenario has been widely covered in [1], [4], [5] and in many
other papers.

By definition, our desired signal is the vector xM (k). There-
fore, we need to extract xM (k) from x(k). For that, we need to
decompose x(k) into two orthogonal components: one that is corre-
lated with (or is a linear transformation of) the desired signal xM (k)
and another that is orthogonal to xM (k) and, hence, will be consid-
ered as the interference component. Specifically, the vector x(k) is
decomposed into the following form:

x(k) = RxxM R
−1
xM x

M (k) + xi(k) = xd(k) + xi(k), (10)

where

xd(k) = RxxM R
−1
xM x

M (k) = ΓxxM x
M (k) (11)

is a linear transformation of the desired signal, RxM =
E

ˆ
xM (k)xMT (k)

˜
is the correlation matrix (of size M × M ) of

xM (k) with E[·] denoting mathematical expectation, RxxM =
E

ˆ
x(k)xMT (k)

˜
is the cross-correlation matrix (of size L × M )

between x(k) and xM (k), ΓxxM = RxxM R−1

xM
, and

xi(k) = x(k) − xd(k) (12)

is the interference signal. It is easy to see that xd(k) and xi(k) are
orthogonal, i.e.,

E
h
xd(k)xT

i (k)
i

= 0L×L. (13)

For the particular case M = L, we have Γxx = IL, which is
the identity matrix (of size L × L), and xd(k) coincides with x(k),
which obviously makes sense. For M = 1, Γxx1 simplifies to the
normalized correlation vector [6]

γx =
E [x(k)x(k)]

E [x2(k)]
. (14)

Substituting (10) into (5), we get

z
M (k) = H [xd(k) + xi(k) + v(k)]

= x
M
fd (k) + x

M
ri (k) + v

M
rn (k), (15)

where

x
M
fd (k) = Hxd(k) (16)

x
M
ri (k) = Hxi(k) (17)

are the filtered desired signal and the residual interference respec-
tively. It can be checked that the three terms xM

fd (k), xM
ri (k), and

vM
rn (k) are mutually uncorrelated. Therefore, the correlation matrix

of zM (k) is

RzM = E
h
z

M (k)zMT (k)
i

= RxM

fd

+ RxM

ri

+ RvM
rn

, (18)

where

RxM

fd

= HRxd
H

T
, (19)

RxM

ri

= HRxi
H

T = HRxH
T − HRxd

H
T
, (20)

RvM
rn

= HRvH
T
, (21)

Rxd
= ΓxxM RxM ΓT

xxM is the correlation matrix (whose rank is
equal to M ) of xd(k), and Rxi

= E
ˆ
xi(k)xT

i (k)
˜
is the correlation

matrix of xi(k).
Now, the error signal between the estimated and desired signals

can be defined as a vector of length M :

e
M(k) = z

M (k) − x
M (k) = e

M
d (k) + e

M
r (k), (22)

where

e
M
d (k) = x

M
fd (k) − x

M (k) = (HΓxxM − IM )xM (k) (23)

is the signal distortion due to the rectangular filtering matrix with
IM being the M × M identity matrix and

e
M
r (k) = x

M
ri (k) + v

M
rn (k) = Hxi(k) + Hv(k) (24)

represents the residual interference-plus-noise.
Having defined the error signal, we can now write the mean-

square error (MSE) criterion:

J (H) =
1

M
· tr

n
E

h
e

M (k)eMT (k)
io

(25)

=
1

M

h
tr (RxM ) + tr

“
HRyH

T
”
− 2tr

`
HRyxM

´i

=
1

M

h
tr (RxM ) + tr

“
HRyH

T
”
− 2tr (HRxxM )

i
,

where tr{·} denotes the trace of a square matrix and

RyxM = E
h
y(k)xMT (k)

i

= E
h
x(k)xMT (k)

i

= RxxM , (26)

is the cross-correlation matrix between y(k) and xM (k).
Using the fact that E

ˆ
eM
d (k)eMT

r (k)
˜

= 0M×M , J (H) can
be expressed as the sum of two other MSEs, i.e.,

J (H) = Jd (H) + Jr (H) , (27)

where

Jd (H) =
1

M
· tr

n
E

h
e

M
d (k)eMT

d (k)
io

, (28)

Jr (H) =
1

M
· tr

n
E

h
e

M
r (k)eMT

r (k)
io

. (29)

3. OPTIMAL RECTANGULAR FILTERING MATRICES

In this section, we are going to derive two important filtering matri-
ces that can help reduce the noise in the microphone signal.
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3.1. Wiener

If we differentiate the MSE criterion, J (H), defined in (25), with re-
spect to H and equate the result to zero, we find the Wiener filtering
matrix

HW = R
T

yxM R
−1
y = R

T

xxM R
−1
y . (30)

Using the identity filtering matrix Ii =
ˆ
IM 0M×(L−M)

˜
, we can

rewrite the Wiener filtering matrix as

HW = IiRxR
−1
y = Ii

`
IL − RvR

−1
y

´
. (31)

Since
RxxM = ΓxxM RxM , (32)

we can rewrite (30) as

HW = RxM Γ
T

xxM R
−1
y . (33)

By exploiting the decomposition of x(k) in (10), we can decom-
pose the correlation matrix of y(k) as

Ry = Rxd
+ Rin = ΓxxM RxM Γ

T

xxM + Rin, (34)

where
Rin = Rxi

+ Rv (35)

is the interference-plus-noise correlation matrix.
Determining the inverse of Ry from (34) with the Woodbury’s

identity

R
−1
y = (36)

R
−1
in −R

−1
in ΓxxM

“
R

−1
xM + Γ

T

xxM R
−1
in ΓxxM

”
−1

Γ
T

xxM R
−1
in

and substituting (36) into (33), we get another interesting formula-
tion of the Wiener filtering matrix

HW =
“
IM + RxM Γ

T

xxM R
−1
in ΓxxM

”
−1

RxM Γ
T

xxM R
−1
in

=
“
R

−1
xM + Γ

T

xxM R
−1
in ΓxxM

”
−1

Γ
T

xxM R
−1
in . (37)

3.2. MVDR

The celebrated MVDR approach, requiring no distortion to the de-
sired signal, is usually derived in the multichannel case. Interest-
ingly, with the new formulation, we can also derive the MVDR in
the single-channel case, just like in [6], [7]. The corresponding rect-
angular filtering matrix is obtained by minimizing the MSE of the
residual interference-plus-noise, Jr (H), with the constraint that the
desired signal is not distorted. Mathematically, this is equivalent to

min
H

1

M
· tr

“
HRinH

T
”

subject to HΓxxM = IM . (38)

The solution to the above optimization problem is

HMVDR =
“
Γ

T

xxM R
−1
in ΓxxM

”
−1

Γ
T

xxM R
−1
in , (39)

which is interesting to compare to HW in (37).
Obviously, by using the Woodbury’s identity of R−1

y in (36) we
can rewrite (39) as

HMVDR =
“
Γ

T

xxM R
−1
y ΓxxM

”
−1

Γ
T

xxM R
−1
y . (40)

From (33) and (40), we deduce the relationship between the
MVDR and Wiener filtering matrices:

HMVDR = (HWΓxxM )−1
HW. (41)

4. EXPERIMENTAL RESULTS

In this section, we use experiments to evaluate the performance of
the two proposed optimal rectangular filtering matrices, i.e., Wiener
and MVDR.

The clean speech signal used in the experiments was recorded
from a male talker in a quiet office room. It was sampled at 8 kHz.
The overall length of the signal is 30 seconds. White Gaussian noise
is added into the clean speech and the input signal-to-noise ratio
(SNR) of the noisy speech is 10 dB.

Implementation of the noise reduction filtering matrices derived
in Section 3 require the estimation of the correlation matrices Ry,
Rx, and Rv. To avoid the complicated voice activity detection
(VAD) issue and make the performance study simple, we compute
the three matrices Ry, Rx, and Rv directly from the corresponding
signals. Specifically, at each frame, the matrices Ry and Rx are
computed, respectively, using the most recent 600 samples (75-ms
long) of the noisy and clean speech signals with a short-time aver-
age. Since noise is stationary, we estimate Rv using 960 samples
(120-ms long) with a short-time average during periods of silence.
With this implementation, our experiments should demonstrate the
upper limit performance of the optimal rectangular filtering matrices.

To evaluate the amount of noise reduction, the output SNR is
adopted as the objective performance measure. It is computed ac-
cording to [6], [7]

oSNR (H) =
tr

“
RxM

fd

”

tr
“
RxM

ri

+ RvM
rn

” . (42)

The higher is the value of oSNR (H), the more the noise is reduced.
We also evaluate the amount of speech distortion using the

speech distortion index [6], [7]

υsd (H) =
tr{E

ˆ
eM
d (k)eMT

d (k)
˜
}

tr (RxM )
. (43)

The speech distortion index is always greater than or equal to 0 and
should be upper bounded by 1 for optimal filtering matrices; so the
higher is the value of υsd (H), the more the desired signal is dis-
torted.

In order to calculate the above objective measures, the clean
speech signal was also processed for each filtering matrix in addition
to the noisy signal. That is to say, the filtering matrix was calculated
on the noisy signal and then also applied to the clean speech. In
this way, two signals are available at the output: the enhanced noisy
signal zM (k) and the processed desired speech xM

fd (k). Moreover,
both measures are computed based on the 30-s long signals using a
long-time average.

The first experiment investigates the influence of the filter length
L on the noise reduction performance. Figure 1(a) shows that the
output SNR of the Wiener filtering matrix increases with L if the
value of M is small, i.e., (M ≤ 2), while it does not change much
with L if the value of M is large (M ≥ 4). In comparison, the
MVDR filtering matrix yields a higher output SNR with a larger L

in all the studied cases. Figure 1(b) shows that the speech distortion
index of the Wiener filtering matrix decreases linearly with L, while
such index of the MVDR filtering matrix is approximately 0 for all
the different values of M and L.

The second experiment tests the noise reduction performance as
a function of the frame length M . Based on the previous experi-
ment, we set L = 48. We see from Figure 2(a) that the output SNR
of the Wiener filtering matrix grows quickly as M is increased up
to 4, and then continues to grow but with a slower rate, while the
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Fig. 1. Performance of the Wiener and MVDR filtering matrices
as a function of the filter length L: (a) output SNR and (b) speech
distortion index. White Gaussian noise is used, the input SNR is
10 dB, and M = 1, 2, and 4.

output SNR of the MVDR filtering matrix first increases to its max-
imum, and then decreases as M is increased. Figure 2(b) shows that
the speech distortion index of the Wiener filtering matrix increases
linearly with M , while such index of the MVDR filtering matrix is
always small (approximately 0). One can see that the MVDR filter-
ing matrix achieves less noise reduction as compared to the Wiener
filtering matrix but it does not introduce speech distortion, which is
a strong advantage.

All the experiments demonstrated that both the Wiener and
MVDR filtering matrices can yield a better performance when M >

1 as compared to M = 1 (if M is not too large). This shows the
advantage of using filtering matrices over using filtering vectors de-
veloped in [6]. The underlying reason, as we have explained in Sec-
tion 1, is that speech is highly correlated with its neighboring (either
previous or future) samples. Another benefit of using a filtering ma-
trix instead of a filtering vector is that the computational burden re-
duces with M , which indicates that the frame-based algorithms are
more suitable for real-time implementation.

5. CONCLUSIONS

In this paper, we proposed a frame-based signal orthogonal decom-
position to resolve the noise reduction problem in the time domain.
By decomposing the clean speech vector into two orthogonal com-
ponents, i.e., the desired speech and interference, we formulated dif-
ferent optimization cost functions and deduced two filtering matri-
ces, i.e., Wiener and MVDR. The experimental results demonstrated
that the Wiener filtering matrix can remove more noise, while the
MVDR filtering matrix can achieve noise reduction without intro-
ducing any speech distortion. Furthermore, compared to the sample-
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Fig. 2. Performance of the Wiener and MVDR filtering matrices as
a function of the frame length M : (a) output SNR and (b) speech
distortion index. White Gaussian noise is used, input SNR is 10 dB,
and L = 48.

based method developed previously, the frame-based approach can
lead to a better performance in terms of noise reduction. Another
side benefit of the frame-based approach is that it is computationally
more efficient than the sample-based one.
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