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ABSTRACT

This paper studies the problem of noise reduction in the short-time
Fourier transform (STFT) domain. Traditionally, the STFT coeffi-
cients in different frequency bands are assumed to be independent.
This assumption holds when the signals are stationary and the fast
Fourier transform (FFT) length is sufficiently large. In practice, how-
ever, speech is nonstationary and also the FFT length cannot be very
large due to practical reasons. So, there always exists some correla-
tion between STFT coefficients from neighboring frequency bands.
An important question then arises: how the interband correlation
can be used to optimize noise reduction performance? This paper
addresses this issue. We discuss two solutions in the framework of
the bifrequency spectrum. One considers the cross-correlation be-
tween all the frequency bands and the other takes into account only
the cross-correlation between neighboring bands. While the former
is optimal from a theoretical perspective, the latter is more practical
as it is more immune to the error in correlation matrix estimation.

Index Terms— Single-channel noise reduction, bifrequency
spectrum, interband correlation, Wiener filter, tradeoff filter.

1. INTRODUCTION

Noise reduction is an important problem and has a wide range of ap-
plications in areas such as cellular phones, hands-free communica-
tion, teleconferencing, hearing aids, human-machine interfaces, etc.
Mathematically, this problem can be described as one of recovering
the desired signal (or clean speech) x(t), t being the time index, of
zero mean from the noisy observation (microphone signal)

y(t) = x(t) + v(t), (1)
where v(t) is the unwanted zero-mean additive noise. The three
signals x(t), v(t), and y(t) are real and generally assumed to be
broadband. The noise process v(t) can be either white or colored
but it is assumed to be uncorrelated with x(t).

Using the short-time Fourier transform (STFT), (1) can be
rewritten in the frequency domain as

Y (k, m) = X(k, m) + V (k, m), (2)
where the zero-mean complex random variables Y (k, m), X(k, m),
and V (k, m) are the STFTs of y(t), x(t), and v(t), respectively,
at frequency-bin k ∈ {0, 1, . . . , K − 1} and time-frame m. With
the signal model given in (2), the objective of noise reduction is to
estimate the desired signal, X(k, m), from the noisy observation,
Y (k, m). Traditionally, the STFT components from different fre-
quency bins are assumed to be uncorrelated. So, the estimation of
X(k, m) is achieved by applying a complex gain in each subband to
the noisy spectrum Y (k, m). This assumption is true when the sig-
nals are stationary and the FFT length is sufficiently large. However,
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Fig. 1. A clean speech signal sampled at 8 kHz.

it is well known that speech is nonstationary. Also, the FFT length
cannot be set too large in reality due to practical reasons. For ex-
ample, in telecommunications, the maximum allowed delay for each
processor is limited, and for noise reduction, the delay should not
exceed 20 ms in most cases. With nonstationary speech and small
FFT lengths, the STFT coefficients from neighboring frequency bins
exhibit some correlation. To illustrate this, we recorded a 1-second
long speech signal in a quiet office room with a sampling rate of
8 kHz, as shown in Fig. 1. We divided this signal into overlap frames
with a frame length of 16 ms and 75% overlap. Each frame is trans-
formed into the STFT domain using a 128-point FFT. We then com-
puted the normalized cross-correlation coefficients [1] between dif-
ferent frequency bins. Figure 2 plots the results for the 4th, 8th, and
16th bins. It is clearly seen that there is a strong correlation between
frequency bins that are next to each other. A legitimate question
one would ask: how do we use the interband correlation information
to improve noise reduction? This question will be answered in the
following sections.

2. THE BIFREQUENCY SPECTRUM

Before discussing how to use the interband correlation, we first in-
troduce the term bifrequency spectrum. Let a(t) be a zero-mean
real random variable for which its frequency-domain representation
is A(k, m). We define the bifrequency spectrum as [2], [3]

φA(k1, k2, m) = E [A(k1, m)A∗(k2, m)] , (3)

where k1 and k2 are possibly two different frequency bins. Basi-
cally, the bifrequency spectrum is a measure of the correlation be-
tween two different frequencies of the same signal. If a(t) is a wide-
sense stationary signal and if we use a long FFT length to compute
A(k, m), the bifrequency spectrum reduces to

φA(k1, k2, m) =

j
φA(k, m), k1 = k2 = k
0, k1 �= k2

, (4)

where φA(k, m) = φA(k, k, m). Thus, for a stationary random pro-
cess, the Fourier coefficients from two different bands are uncorre-
lated. However, for a nonstationary random process like speech, the
bifrequency spectrum will exhibit non-zero correlations along the
so-called support curves other than the main diagonal k1 = k2 as
we showed in the previous section. It seems then appropriate when
deriving noise reduction algorithms in the STFT domain to take into
account the spectral correlation that may not be negligible in this
context.
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Fig. 2. The magnitude of the cross-correlation coefficients between:
(a) the 4th and other frequency bins, (b) the 8th and other bins, (c) the
16th and other bins. The sampling rate is 8 kHz, the frame length is
16 ms (128 points), the FFT length is 128, and the overlapp is 75%.

3. THE OPTIMAL APPROACH

Let us first consider to use the correlation among all the frequency
bins. To do so, we concatenate the desired signal at all frequency
bins in a vector of length K:

x(m) = [X(0, m) X(1, m) · · · X(K − 1, m)]T , (5)

where the superscript T denotes transpose. We can then estimate
x(m) with

z(m) = H(m)y(m), (6)

where

H(m) =

2
6664

hH
0 (m)

hH
1 (m)

...
hH

K−1(m)

3
7775 (7)

is a square filtering matrix of size K ×K, the superscript H denotes
transpose-conjugate, hk(m), k = 0, 1, . . . , K − 1 are FIR filters of
length K, and y(m) is defined in a similar way to x(m). We can
rewrite (6) as

z(m) = H(m) [x(m) + v(m)] = xfd(m) + vrn(m), (8)

where v(m) is defined similarly to x(m),

xfd(m) = H(m)x(m) (9)

is the filtered desired signal vector, and

vrn(m) = H(m)v(m) (10)

is the residual noise signal vector.
The correlation matrix of z(m) is then

Φz(m) = E
h
z(m)zH(m)

i
= H(m)Φy(m)HH(m)

= H(m)Φx(m)HH(m) + H(m)Φv(m)HH(m), (11)

where

Φy(m) =2
6664

φY (0, m) φY (0, 1, m) · · · φY (0, K − 1, m)
φY (1, 0, m) φY (1, m) · · · φY (1, K − 1, m)

...
...

. . .
...

φY (K − 1, 0, m) φY (K − 1, 1, m) · · · φY (K − 1, m)

3
7775 ,

and Φx(m) and Φv(m) are the correlation matrices of x(m) and
v(m), respectively. We see now that the spectral correlation is taken
into account in the estimator z(m). If the spectral correlation is neg-
ligible for both the speech and noise, then all three correlation ma-
trices Φy(m), Φx(m), and Φv(m) are diagonal and this approach
is identical to the noise reduction with a gain as explained in [1].

The error signal vector between the estimated and desired sig-
nals is

e(m) = z(m) − x(m) = H(m)y(m)− x(m), (12)

which can also be written as the sum of two orthogonal error signal
vectors:

e(m) = ed(m) + er(m), (13)

where

ed(m) = [H(m) − IK ]x(m) (14)

is the speech distortion due to the filtering matrix, IK is the identity
matrix of size K × K, and

er(m) = H(m)v(m) (15)

represents the residual noise.
Having defined the error signal, we can now write the fullband

MSE criterion:

J [H(m)] = tr
n

E
h
e(m)eH(m)

io

= tr [Φx(m)]− tr
h
H(m)Φy(m)HH(m)

i

−tr [H(m)Φx(m)] − tr
h
Φx(m)HH(m)

i
, (16)

where tr[·] denotes the trace of a square matrix. Using the fact that
E

ˆ
ed(m)eH

r (m)
˜

= 0K×K , J [H(m)] can be expressed as the
sum of two other fullband MSEs, i.e.,

J [H(m)] = tr
n

E
h
ed(m)eH

d (m)
io

+ tr
n

E
h
er(m)eH

r (m)
io

= Jd [H(m)] + Jr [H(m)] . (17)

Given the above MSEs, we can now derive important optimal
filtering matrices.

3.1. Wiener
If we differentiate the fullband MSE criterion, J [H(m)], with re-
spect to H(m) and equate the result to zero, we find the Wiener
filtering matrix

HW(m) = Φx(m)Φ−1
y (m) = IK − Φv(m)Φ−1

y (m), (18)

which is identical to the one derived in [4], [5]. This matrix depends
only on the second-order statistics of the noisy and noise signals.

If the spectral correlation of the signals can be neglected, then
HW(m) is a diagonal matrix whose components are the Wiener
gains [1], [6].
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3.2. Tradeoff
In the tradeoff approach, we minimize the MSE of speech distor-
tion with the constraint that the residual noise level is smaller than
that of the noise in the original noisy signal. Mathematically, this is
equivalent to [6]

min
H(m)

Jd [H(m)] subject to Jr [H(m)] = βtr [Φv(m)] , (19)

where 0 < β < 1 to insure that we get some noise reduction. By
using a Lagrange multiplier, μ ≥ 0, to adjoin the constraint to the
cost function and assuming that the matrix Φx(m) + μΦv(m) is
invertible, we easily deduce the tradeoff filtering matrix

HT,μ(m) = Φx(m) [Φx(m) + μΦv(m)]−1
. (20)

For μ = 1, we get the Wiener filtering matrix. For μ = 0, we see
that HT,0(m) = IK . For μ greater or smaller than 1, we obtain
a filtering matrix that reduces more or less noise than the Wiener
filtering matrix.

4. A SUBOPTIMAL APPROACH

We discussed in the previous section two optimal filtering matrices
that exploit the correlation among all the frequency bins. While they
are optimal from a theoretical perspective, these filters have some
practical drawbacks. First, to implement these filters, we need to
compute the inverse of a K × K matrix for each time frame, which
is computationally very expensive as K is usually large. Second, we
need a large number of signal frames (> K) to estimate the correla-
tion matrices Φy(m), Φv(m), and Φx(m); otherwise, they would
be either rank deficient or ill conditioned. When a large number of
frames are used, the estimates of these matrices would not follow
the true statistics of the nonstationary speech signal, causing degra-
dation in noise-reduction performance. As shown in Section 1, cor-
relation only exists between neighboring frequency bins and there is
not much correlation between distant bins. Given this, we discuss a
suboptimal yet more practical approach in this section that considers
correlation between only neighboring frequency bins. So, instead
of estimating x(m) from the noisy vector y(m), we now estimate
X(k, m) on a sample basis, i.e.,

Z(k, m) = h
′H
k (m)yk(m), (21)

where

yk(m) =
ˆ
Y (k − K

−

k , m) · · · Y (k − 1, m) Y (k, m)

Y (k + 1, m) · · · Y (k + K
+
k , m)

˜T
(22)

is a vector of length K−

k + K+
k + 1 � K, K−

k and K+
k are, re-

spectively, the numbers of samples before and after the kth bin that
are used to estimate X(k, m), and h′

k(m) is an FIR filter of length
K−

k + K+
k + 1.

Apparently, we can rewrite (21) as

Z(k, m) = h
′H
k (m) [xk(m) + vk(m)]

= Xfd(k, m) + Vrn(k, m), (23)
where xk(m) and vk(m) are defined similarly to yk(m),

Xfd(k, m) = h
′H
k (m)xk(m) (24)

is the filtered desired signal at the frequency-bin k and time-frame
m, and

Vrn(k, m) = h
′H
k (m)vk(m) (25)

is the residual noise.
It is easy to check that the two terms Xfd(k, m) and Vrn(k, m)

are uncorrelated. So, the variance of Z(k, m) is

φZ(k, m) = φXfd
(k, m) + φVrn

(k, m), (26)

where

φXfd
(k, m) = E

ˆ
|Xfd(k, m)|2

˜
= h

′H
k (m)Φxk

(m)h′

k(m), (27)

φVrn
(k, m) = h

′H
k (m)Φvk

(m)h′

k(m), (28)

and Φxk
(m) and Φvk

(m) are the correlation matrices of xk(m)
and vk(m), respectively.

Following the same line of ideas of the previous section, we can
define the error signal between the estimated and desired signals as

e(k, m) = Z(k, m) − X(k, m)

= ed(k, m) + er(k, m), (29)

where

ed(k, m) = Xfd(k, m) − X(k, m) (30)

is the speech distortion due to the filter and

er(k, m) = Vrn(k, m) (31)

represents the residual noise.
Given the above error signal, we can now write the narrowband

MSE criterion:

J
ˆ
h
′

k(m)
˜

= E
ˆ
|e(k, m)|2

˜
= Jd

ˆ
h
′

k(m)
˜
+ Jr

ˆ
h
′

k(m)
˜
, (32)

where

Jd

ˆ
h
′

k(m)
˜

= E
ˆ
|ed(k, m)|2

˜
(33)

and

Jr

ˆ
h
′

k(m)
˜

= E
ˆ
|er(k, m)|2

˜
= φVrn

(k, m). (34)

4.1. Wiener
The Wiener filter can be derived by taking the gradient of the nar-
rowband MSE, J [h′

k(m)], with respect to h′

k(m) and equating the
result to zero:

h
′

k,W(m) = Φ
−1
yk

(m)Φxk
(m)i

K
−

k
+1

=
ˆ
I − Φ

−1
yk

(m)Φvk
(m)

˜
i
K

−

k
+1

, (35)

where Φyk
(m) is the correlation matrix of yk(m), I is the identity

matrix of size (K−

k + K+
k + 1) × (K−

k + K+
k + 1), and i

K
−

k
+1

is

the (K−

k + 1)th column of I.

4.2. Tradeoff
Similarly to the optimal approach in Section 3, we can obtain a trade-
off filter by minimizing the MSE of speech distortion with the con-
straint that the residual noise level is smaller than that of the noise in
the original noisy signal. Mathematically, this can be written as

min
h′

k
(m)

Jd

ˆ
h
′

k(m)
˜

subject to Jr

ˆ
h
′

k(m)
˜

= βkφV (k, m), (36)

where 0 < βk < 1 is a frequency-dependent constant to insure
that we get some noise reduction. By using a Lagrange multiplier,
μk ≥ 0, to adjoin the constraint to the cost function and assuming
that the matrix Φxk

+ μkΦvk
(m) is invertible, we can deduce the

tradeoff filter

h
′

k,T,μk
(m) = [Φxk

(m) + μkΦvk
(m)]−1

Φxk
(m)i

K
−

k
+1

. (37)

If μk = 1, we get the Wiener filter. When μk = 0, we see that
h′

k,T,μk
(m) = i

K
−

k
+1

. For μk greater or smaller than 1, we obtain

a filter that reduces more or less noise than the Wiener filter.
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5. EXPERIMENTAL RESULTS
In this section, we study the effect of using interband correlation
on noise reduction performance through experiments. Due to space
limit, we only present the results of the Wiener filter given in (35).
The clean speech signal used in the experiments was recorded from
a female speaker in a quiet office room. It was sampled at 8 kHz.
The overall length of the signal is 30 seconds. The noisy speech is
obtained by adding a white Gaussian noise signal to the clean speech
and the noise signal is properly scaled to control the input SNR to
10 dB. We divide the signals into overlap frames with a frame length
of 16 ms and 75% overlap. Each frame is transformed into the STFT
domain using a 128-point FFT.

Implementation of the Wiener filter given in (35) requires esti-
mation of the correlation matrices Φyk

(m), Φvk
(m), and Φxk

(m).
Computation of the matrix Φyk

(m) is relatively easy as the noisy
signal spectrum Y (k, m) is accessible. But we would need a noise
estimator or voice activity detector (VAD) to compute the other two
matrices in practice. However, in this paper, we will set aside the
noise estimation issue and only focus on illustrating the effect of us-
ing interband correlation on noise reduction performance. So, we
will not use any noise estimator in our experiments. Instead, we
compute all the correlation matrices directly from the corresponding
signal using a short time average.

In the first experiment, we set K−

k = K+
k = Kk and study

the performance of the Wiener filter given in (35) as a function of
Kk (note that the first and last a few bins are properly processed
with the available bins before or after the kth bin). We compute
the correlation matrices Φyk

(m), Φxk
(m), and Φvk

(m) from the
corresponding signals using the most recent 100 spectrum samples
(i.e., 100 frames). The inverse of the Φyk

(m) is computed using the
eigenvalue decomposition based approach where all the non-positive
eigenvalues (this can happen when Kk is large) of Φyk

(m) are set
to zero during the inverse process. We use the output SNR to evalu-
ate the performance of noise reduction and the Itakura-Saito distance
(ISD) between the clean and filtered speech to evaluate the amount
of speech distortion. These two measures are computed in a global
manner, i.e., we use overlap-add technique to reconstruct the time-
domain enhanced and filtered speech signals. The output SNR is
computed as the ratio between the energy of the filtered speech and
that of the residual noise. The ISD is computed between the clean
and filtered speech. The result is plotted in Fig. 3. It is clearly seen
that using the interband correlation can help improve noise reduction
as the performance of the Wiener filter first increases (larger output
SNR and smaller ISD value) with Kk. But when it is larger than
roughly 10, further increasing Kk will lead to performance degra-
dation. This degradation is mainly caused by the numerical issue
as the estimation error of the noisy correlation matrix Φyk

(m) in-
creases with Kk given the fixed number of samples (it is 100 in our
experiment). Taking into account both the SNR improvement and
speech distortion, the best performance is obtained with inclusion of
only a few neighboring frequency bins. This result, on the one hand,
validates the observation made in Section 1, and on the other hand,
shows the advantage of the Wiener filter given in (35) over that given
in (18) as (18) can be viewed as an extreme case of (35) when K−

k

and K+
k reach their maximum value to K−

k + K+
k + 1 = K.

One can notice that the speech distortion in Fig. 3 is large (the
ISD values are large). This is mainly due to the fact that a large num-
ber of frames (100) are used to compute the correlation matrices to
ensure that the estimated Φyk

(m) matrix is full rank for different
values of Kk. With the use of such a large number of frames, the
estimated correlation matrices cannot follow the time-varying statis-
tics of the speech signal. In the second experiment, we fix Kk to 2
and vary the number of frames used to compute the correlation ma-
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Fig. 3. The output SNR and ISD between the clean and filtered
speech of the Wiener filter as a function of Kk (K−

k = K+
k = Kk).
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Fig. 4. The output SNR and ISD between the clean and filtered
speech of the Wiener filter as a function of the number of frames
used to compute the correlation matrices.

trices. The result is sketched in Fig. 4. Clearly, we see that if too
many frames are used to compute the statistics, the output SNR de-
creases and the ISD value increases. This performance degradation
again demonstrates the advantage of the optimal filters deduced in
Section 4 over those derived in Section 3 for practical usage since
it is easier to estimate the time-varying correlation matrices for the
filters in Section 4 with a small Kk value.

6. CONCLUSIONS

This paper studied the problem of noise reduction in the STFT do-
main. Unlike most traditional approaches that assume that STFT
coefficients in different frequency bins are independent, we consid-
ered the interband correlation in deriving the noise reduction filters.
Particularly, we discussed two approaches: one considers the cross-
correlation between all the frequency bins and the other takes into
account only the cross-correlation between neighboring bins. While
the former is optimal from a theoretical viewpoint, the latter is more
practical as we demonstrated that the time-varying correlation matri-
ces involved in this category have a much lower dimensionality, and
therefore, are easier to estimate.
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