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ABSTRACT

In this paper, we propose a generalized sidelobe canceler for multi-

channel blind speech dereverberation, which relies on recursive esti-

mation of posterior distributions on the unknown acoustic channels

and the adaptive interference canceler (AIC). Contrary to conven-

tional design approaches where a fixed beamformer is employed,

we consider a marginalized maximum-likelihood equalizer that is

driven by the channel posterior estimator. It is shown that the first

moment of the inferred channel posterior can also serve as a repre-

sentation of an adaptive blocking matrix (ABM). Using the output

of the blocking matrix, we estimate the AIC posterior to minimize

the residual reverberation in the equalized signal. We demonstrate

the efficacy of our approach by evaluating the algorithm in different

degrees of observation noise and varying reverberation times.

Index Terms— Dereverberation, generalized sidelobe can-

celer, maximum likelihood, recursive Bayesian estimator

1. INTRODUCTION

Enhancement of reverberant speech has been a subject of active re-

search over the years and it finds its application in hands-free com-

munication and automatic speech recognition. Efforts have been

made to cope with reverberant speech by means of single micro-

phone [1] as well as multichannel approaches [2]. Multichannel

methods allow the use of spatial information along with the spectral

characteristics of the received signals.

In [3], a multichannel partial blind deconvolution scheme was

presented for speech dereverberation by means of adaptively min-

imizing an information-theoretic cost function. A dereverberation

approach using a time-varying Gaussian source model was formu-

lated in [4], which was based on multichannel linear prediction. In

[5], Evers et al. modeled the speech signal as an auto-regressive

process and employed a Rao-Blackwellized particle filter to obtain

an estimate of the source signal.

A frequency-domain approach was proposed in [6], which max-

imized the bin-wise signal-to-noise ratio (SNR) by solving a gen-

eralized eigenvalue problem. A structure resembling the general-

ized sidelobe canceler (GSC) [7] was outlined in [8] that relied on

a fixed beamformer and a generalized eigenvector blocking matrix.

This work was extended in [9] by incorporating estimated transfer

function ratios within a GSC-like algorithm. The notion of adaptive

blocking matrix (ABM) was also considered in [10] (and references

therein), where multichannel adaptive filtering in the frequency do-

main was used to achieve robust speech signal acquisition.

In this work, we incorporate an ABM and a recursive interfer-

ence cancellation (RIC) stage to extend the maximum-likelihood

expectation-maximization blind equalization and channel identifi-

cation (ML-BENCH) algorithm proposed by Schmid et al. in [11].

We posit that not only can the recursively estimated channel poste-

rior be used to drive the ML-optimal equalizer but it can also be used

to estimate signal components orthogonal to the desired source sig-

nal, which comprise residual reverberation and noise. Furthermore,

similar to the acoustic channels we model the inference cancellation

filters as mutually independent random variables with first-order

Markov property. It is shown that the equalized signal and the esti-

mate of orthogonal signal components can be used to recursively

estimate the posterior distribution on the inference cancellation

filters via the variationally diagonalized multichannel state-space

frequency-domain adaptive filter (VD-MCSSFDAF) [12]. Simu-

lation results show that the inclusion of the ABM and RIC stages

enables the proposed recursive GSC (R-GSC) to achieve notable

improvements as compared to the ML-BENCH algorithm.

In Sec. 2, we outline the signal and system model. Sec. 3

presents the formulation of the R-GSC algorithm. Simulation re-

sults are discussed in Sec. 4 followed by conclusions in Sec. 5.

We use non-bold lowercase letters for scalar quantities, bold

lowercase letters for vectors, and bold uppercase letters for matri-

ces. Frequency-domain quantities are distinguished by an under-

line and 〈·〉 is the expectation operator. The frame shift is denoted

by R, whereas L is the frame size. Superscripts T and H denote

transposition and Hermitian transposition, respectively. FL is the

DFT matrix of size L × L, whereas IR is an R × R identity ma-

trix. The symbol ⊗ denotes the Kronecker product. Letters t and

n are sample- and frame-time indices, respectively. The notation

Nc

(
b | b̂,Ψb

)
is interpreted as a complex multivariate normal [13]

distribution with b̂ and Ψb as the mean vector and covariance ma-

trix, respectively, i.e.,

Nc

(
b | b̂,Ψb

)
=

1

πL |Ψb|
exp

{
−
(

b − b̂
)H

Ψ
−1
b

(
b − b̂

)}
,

such that | · | signifies the determinant of a matrix.

2. SIGNAL AND SYSTEM MODEL

Consider a source signal st that linearly convolves with M room

impulse responses wm,t inside a reverberant enclosure, where m =
1, . . . ,M . The convoluted signals are captured by M microphones

in the presence of respective observation noise components vm,t to

give the microphone observation ym,t. We can express the forma-

tion of the mth observation signal ym,t as

ym,t = wm,t ∗ st + vm,t , (1)
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where ∗ denotes linear convolution. In order to obtain a DFT-

domain version of (1), we express L× 1 frame-based definitions:

vm,n = FLΥ [vm,nR−R+1 vm,nR−R+2 . . . vm,nR]
T , (2)

y
m,n

= FLΥ [ym,nR−R+1 ym,nR−R+2 . . . ym,nR]
T , (3)

sn = FL [snR−L+1 snR−L+2 . . . snR]
T , (4)

wm,n = FL

[
w

T
m,nR 0

T
R×1

]T
, (5)

for the DFT-domain mth observation noise vector, mth observation

vector, source signal vector, and the mth acoustic transfer function,

respectively, where Υ = [0R×L−R IR]
T

is a padding matrix.

Note that wm,nR = [w0,m,n w1,m,n . . . wL−R−1,n,m]T in (5) is

the frame-based time-domain representation of the mth room im-

pulse response considering L−R nonzero coefficients. Using (2)–

(5), a DFT-domain observation model based on (1) can be expressed

using overlap-save convolution as

y
m,n

= GWm,nsn + vm,n , (6)

= GSnwm,n + vm,n , (7)

where G = FLΥΥT F−1

L places the overlap-save constraint and

Wm,n = diag
{
wm,n

}
, (8)

Sn = diag {sn} . (9)

Expressions (6) and (7) are mathematically equivalent. We will use

(6) for deriving an estimator for sn, whereas (7) will be considered

for inferring the posterior distribution on wm,n. We model wm,n

as a complex random vector with first-order Markov property [11]

(and references therein):

wm,n = Awm,n−1 +∆wm,n , (10)

where A is the state-transition coefficient and ∆wm,n denotes the

mth process noise term. Stacked definitions:

y
n
=

[
y
H

1,n
. . . yH

M,n

]H
, (11)

Wn =
[
W

H

1,n . . . WH

M,n

]H
, (12)

can be used to express the DFT-domain single-input multiple-output

(SIMO) observation model as

y
n
= GL Wnsn + vn , (13)

where GL = IL ⊗ G and vn is defined analogous to (11). We

model the noise terms ∆wm,n in (10) and vn in (13) as normally

distributed complex random vectors with diagonal covariance ma-

trices, i.e., Ψ∆,m,n =
〈
∆wm,n∆wH

m,n

〉
and Ψ

v,n =
〈
vnv

H
n

〉
,

respectively.

In order to motivate the formulations in the ensuing section, we

draw the reader’s attention towards the system diagram in Fig. 1

that lays out the derivational tasks for us. First, given an estimate

of the posterior distribution q⋆
w

on the unknown acoustic channels

wm,t, we will derive the marginalized ML equalizer such that a raw

estimate of the speech signal ŝe,t can be obtained. In the context of

DFT-domain Gaussian state-space modeling, the acoustic channel

posterior q⋆
w

implies

q⋆
w

=
M∏

m=1

Nc

(
wm,n | ŵm,n,Pm,n

)
, (14)
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Figure 1: Time-domain depiction of the recursive generalized side-

lobe canceler comprising the marginalized ML equalizer, adaptive

blocking matrix (ABM), and recursive AIC and channel posterior

estimators.

where ŵm,n and Pm,n are the mean and state-error covariance for

the mth channel [13]. Thereafter, we reuse the mean of the channel

posterior as the ABM, denoted in the time domain as ŵm,t, to com-

pute the estimated observation signals ŷm,t that can be subtracted

from the observation signals ym,t to yield a representation of or-

thogonal signals ŷ⊥
m,t. The orthogonal signals ŷ⊥

m,t in conjunction

with the equalized signal ŝe,t can be used to set up a state-space

posterior estimator for recursive estimation of the interference can-

cellation filters wr,m,t to minimize the residual reverberation and

noise in ŝe,t. The output of the system ŝo,t, which is the derever-

berated source signal, can then be employed along with the micro-

phone observation ym,t to update the channel posterior.

3. R-GSC ALGORITHM

3.1. Marginalized ML Equalization

The ML equalization stage can be derived by max-

imizing the marginalized log-likelihood function〈
lnNc

(
y
n
|GLWnsn,Ψv,n

)〉

q⋆
w

with respect to the un-

known speech signal vector sn [11], i.e.,

∂

∂s∗n

〈
lnNc

(
y
n
|GLWnsn,Ψv,n

)〉

q⋆
w

= 0L×1 , (15)

where 〈 · 〉
q⋆
w

denotes expectation with respect to q⋆
w

and ∂/∂s∗n is

the conjugate differential operator. Considering homogenous noise

field [14] and diagonal approximation for the constraining matrix

GL [13], the marginalized ML equalizer takes the form [11]

ŝe,n =

[
M∑

m=1

(
Ŵ

H

m,nŴm,n +Pm,n

)]−1

Ŵ
H

n y
n
, (16)

where Ŵm,n = diag
{
ŵm,n

}
.

3.2. Recursive Posterior Estimation for Adaptive Interference

Canceler

As indicated in Fig. 1, the orthogonal signals ŷ⊥
m,t can be computed

by filtering the equalized signal ŝe,t through the estimated unknown
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acoustic channels ŵm,t and subtracting the filtered output from the

microphone observation ym,t. In order to minimize the residual

reverberation and noise in the output signal ŝo,t, we devise a con-

volution model relating the orthogonal signals ŷ⊥
m,t to the equalized

signal ŝe,t via the interference cancellation filters wr,m,t as

ŝe,t =
M∑

m=1

ŷ⊥
m,t ∗wr,m,t + v

‖
t , (17)

where v
‖
t represents the desired signal components. It is interesting

to see that the desired signal components v
‖
t are akin to the near-

end speech in multiple-input single-output (MISO) acoustic echo

cancellation [12], where near-end speech is to be preserved while

eliminating the unwanted echo component. Analogous to the devel-

opment in (2)–(7), where a DFT-domain version of a time-domain

linear convolution equation was obtained, we summarily write the

DFT-domain version of (17) as [12]

̂̈se,n = G

M∑

m=1

Ŷ
⊥

m,nwr,m,n + v
‖
n , (18)

where Ŷ
⊥

m,n is the L × L DFT-domain representation of the mth

orthogonal signal ŷ⊥
m,t [c.f. (4) and (9)], wr,m,n signifies the mth

DFT-domain interference cancellation filter defined in accordance

with (5), and ̂̈se,n is the L× 1 DFT-domain equalized signal vector

defined according to (3) using ŝe,t. Furthermore, we again impose

the first-order Markov property on the unknown filters wr,m,n, i.e.,

wr,m,n = Awr,m,n−1 +∆wr,m,n , (19)

where ∆wr,m,n denotes the process noise. The noise terms v‖
n

and ∆wr,m,n are modeled as normally distributed complex random

vectors with diagonal covariance matrices Ψ
v
‖,n =

〈
v‖
nv

‖H

n

〉
and

Ψ∆r,m,n =
〈
∆wr,m,n∆wH

r,m,n

〉
, respectively.

Additionally, we consider wr,m,n to be mutually indepen-

dent random variables, which implies p(wr,1,n, . . . ,wr,M,n) =∏M

m=1
p(wr,m,n). Recursive posterior estimation for the state-

space model described in (18) and (19) under mutual indepen-

dence assumption on wr,m,n, can be carried out using the varia-

tionally diagonalized state-space frequency-domain adaptive filter

(VD-MCSSFDAF) [12]. The VD-MCSSFDAF recursion for the

mth filter wr,m,n is then given as

ŵ
+

r,m,n−1 = A ŵr,m,n−1 , (20)

P
+

r,m,n−1 = A2
Pr,m,n−1 +Ψ∆r,m,n , (21)

µ
r,m,n

= P
+

r,m,n−1

(
Ŷ

⊥

m,nP
+

r,m,n−1Ŷ
⊥H

m,n +
L

R
Ψ

v
‖,n

)−1

,

(22)

er,m,n = ̂̈se,n −G

M∑

i=1
i 6=m

Ŷ
⊥

i,nŵr,i,n−1 −GŶ
⊥

m,nŵ
+

r,m,n−1 ,

(23)

ŵr,m,n = ŵ
+

r,m,n−1 + µ
r,m,n

Ŷ
⊥H

m,ner,m,n , (24)

Pr,m,n = P
+

r,m,n−1 −
R

L
µ

r,m,n
Ŷ

⊥H

m,nŶ
⊥

m,nP
+

r,m,n−1 , (25)

where the superscript “+” signifies the predicted quantities. In (20)–

(25), Pr,m,n, µ
r,m,n

, and er,m,n are the L × L state-error covari-

ance, L×L Kalman step size, and L× 1 error signal, respectively,

for the mth AIC filter. After executing the VD-MCSSFDAF recur-

sion for each channel in a given iteration, the DFT-domain vector of

the dereverberated output ŝo,t of the R-GSC as shown in Fig. 1 is

computed using

ŝo,n = ̂̈se,n −G

M∑

m=1

Ŷ
⊥

m,nŵr,m,n . (26)

3.3. Recursive Posterior Estimation for Unknown Acoustic

Channels

In order to recursively estimate the posterior q⋆
w

on the unknown

acoustic channels, we modify the observation model of (7) as

y
m,n

= GŜo,nwm,n + vm,n , (27)

where

Ŝo,n = diag
{

FL [ŝo,nR−L+1 ŝo,nR−L+2 . . . ŝo,nR]
T
}

. (28)

Thus we have altered the observation model to incorporate the dere-

verberated output of the R-GSC, rather than using the raw equal-

ized signal as proposed in [11]. Considering the state-space model

described by (27) and (10), the posterior distribution for the mth

channel can be recursively estimated using the single-channel state-

space frequency-domain adaptive filter (SSFDAF) [13, 11]. The

SSFDAF recursion for the mth channel is thus given as

ŵ
+

m,n−1 = A ŵm,n−1 , (29)

P
+

m,n−1 = A2
Pm,n−1 +Ψ∆,m,n , (30)

µ
m,n

= P
+

m,n−1

(
Ŝo,nP

+

m,n−1Ŝ
H

o,n +
L

R
Ψ

v,m,n

)−1

, (31)

em,n = y
m,n

−GŜo,nŵ
+

m,n−1 , (32)

ŵm,n = ŵ
+

m,n−1 + µ
m,n

Ŝ
H

o,nem,n , (33)

Pm,n = P
+

m,n−1 −
R

L
µ

m,n
Ŝ
H

o,nŜo,nP
+

m,n−1 . (34)

In (29)–(34), Pm,n, µ
m,n

, Ψ
v,m,n, and em,n are the L × L state-

error covariance, L×L Kalman step size, L×L observation noise

covariance, and L×1 error signal, respectively, for the mth channel.

4. SIMULATION RESULTS

We considered utterances from four male and four female speakers

at a sampling frequency fs = 16 kHz. Room impulse responses

(RIRs) were generated for M = 8 microphones using the modified

image method [15]. Room size was selected as 7m × 5m × 4m
(x × y × z), with the source and reference microphone located at

(5m × 1.5m × 1.5m) and (2m × 4m × 1.5m), respectively.

Other microphones were positioned by successively subtracting 0.1
m from the x-coordinate of the reference microphone. For ob-

taining the reverberant signals, the impulse response length was

selected as T60 · fs, where reverberation times were selected in

the range 0.2 s ≤ T60 ≤ 1.0 s in steps of 0.2 s. The direct-to-

reverberant ratio (DRR) of the generated RIRs was in the range
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Figure 2: Cepstral distances (CDs) measured at SNR = 30 dB and

different reverberation conditions.

−3.19 dB ≥ DRR ≥ −15.74 dB. Microphone signals were gen-

erated by corrupting the reverberant signals with diffusive white

noise [14] at two different SNRs, i.e., 10 and 30 dB. We consid-

ered the minimum variance distortionless response (MVDR) beam-

former [16] and the ML-BENCH algorithm as the reference ap-

proaches to evaluate the proposed R-GSC. All algorithms were op-

erated with a frame size L = 2048 and frame shift R = 1024 with

the state-transition coefficient A = 0.9997. Noise covariance ma-

trices were computed using the rules discussed in [11, 12, 13]. For

an objective evaluation, cepstral distances (CDs) and log-likelihood

ratios (LLRs) to the clean speech signal were computed after pro-

cessing, according to the definitions given in [17].

In Fig. 2, we can observe that the CDs measured at SNR

= 30 dB for varying T60. It is evident that the R-GSC consid-

erably outperforms the MVDR and ML-BENCH approaches. For

T60 = 1.0 s, ML-BENCH alleviates the CD of the reverberant

microphone signal by almost 1.02, whereas R-GSC causes an im-

provement of 1.59 in terms of the CD. Thus, R-GSC enhances the

performance by almost 50 % as compared to the ML-BENCH algo-

rithm. In Table 1, we again see that the R-GSC consistently achieves

the best performance as compared to the contending approaches in

SNR = 30 dB

T60 = 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s

Reverberant 0.57 0.57 0.74 0.82 0.87

MVDR 0.25 0.41 0.57 0.70 0.74

ML-BENCH 0.26 0.32 0.40 0.51 0.56

R-GSC 0.22 0.27 0.32 0.41 0.43

SNR = 10 dB

T60 = 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s

Reverberant 1.38 1.40 1.41 1.43 1.44

MVDR 0.99 1.07 1.16 1.21 1.20

ML-BENCH 0.72 0.73 0.80 0.83 0.88

R-GSC 0.66 0.71 0.76 0.80 0.85

Table 1: Log-likelihood ratios (LLRs) measured at different SNR

and reverberation conditions.

terms of the measured LLRs for all considered reverberation times

and at two different noise levels.

5. CONCLUSIONS

In this work, we have formulated a multichannel approach based on

generalized sidelobe cancellation for blind speech dereverberation.

Unlike conventional approaches, the proposed recursive general-

ized sidelobe canceler (R-GSC) consists of a data-dependent beam-

former, i.e., marginalized ML equalizer, an adaptive blocking ma-

trix, and two recursive Bayesian estimators for inferring posteriors

on the unknown acoustic channels and the interference cancellation

filters. We show by means of simulations conducted in different de-

grees of observation noise and varying reverberation times that the

R-GSC achieves notable improvement as compared to the consid-

ered blind and non-blind reference approaches.
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