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ABSTRACT

Noise reduction is typically achieved by applying a gain filter to
the complex spectrum of the noisy speech signal in the short-time
Fourier transform (STFT) domain. However, such an approach does
not take into account the noncircularity property of the complex
speech spectrum. Recently, a widely linear (WL) filtering frame-
work was developed, which can fully take advantage of the second-
order statistics of the noncircular speech spectrum for noise reduc-
tion. But the optimal WL filters are more complicated to estimate
as the estimation involves the use of interframe information. In this
paper, we investigate a dual-gain approach, which achieves noise
reduction by applying one gain to filter the real part and another
gain to filter the imaginary part of the complex noisy spectrum. We
show that this approach can be viewed as a particular case of the
WL framework. Compared to the classical method with a single
gain, this new approach is shown to be able to achieve better noise
reduction performance. Another advantage is that the optimal filters
with this approach can be implemented using only the current frame
of spectra without the need of the interframe information.

Index Terms— Noise reduction, speech enhancement, STFT
domain, maximum SNR gains, Wiener gains, tradeoff gains.

1. SIGNAL MODEL AND PROBLEM FORMULATION

The noise reduction problem considered in this study is one of re-
covering the desired signal (or clean speech) x(t), t being the time
index, of zero mean from the noisy observation (microphone signal)
[1]:

y(t) = x(t) + v(t), (1)

where v(t) is the unwanted additive noise, which is assumed to be a
zero-mean random process, white or colored, but uncorrelated with
x(t). All signals are considered to be real and broadband.

Using the STFT, (1) can be rewritten in the time-frequency do-
main as

Y (k, n) = X(k, n) + V (k, n), (2)

where the zero-mean complex random variables Y (k, n), X(k, n),
and V (k, n) are the STFTs of y(t), x(t), and v(t), respectively, at
frequency bin k ∈ {0, 1, . . . ,K − 1} and time frame n. Since x(t)
and v(t) are uncorrelated by assumption, the variance of Y (k, n) is

φY (k, n) � E
[|Y (k, n)|2] = φX(k, n) + φV (k, n), (3)

where E[·] denotes mathematical expectation, and φX(k, n) and
φV (k, n) are defined in a similar way to φY (k, n). The core issue
of noise reduction with the signal model given in (2) is to estimate
X(k, n) from Y (k, n).

2. CLASSICAL APPROACH WITH A SINGLE GAIN
In the classical approach, the desired signal spectrum, X(k, n), is
estimated from the noisy spectrum, Y (k, n), as follows:

X̂(k, n) = H(k, n)Y (k, n) = Xfd(k, n) + Vrn(k, n), (4)

where X̂(k, n) is supposed to be the estimate of X(k, n), H(k, n)

is a gain that needs to be determined, Xfd(k, n) � H(k, n)X(k, n)

and Vrn(k, n) � H(k, n)V (k, n) are, respectively, the filtered de-
sired signal and residual noise.

The error signal between the estimated and desired signals at
frequency bin k and time frame n is then

E(k, n) � X̂(k, n)−X(k, n) = Ed(k, n) + Er(k, n), (5)

where
Ed(k, n) � [H(k, n)− 1]X(k, n), (6a)

Er(k, n) � H(k, n)V (k, n), (6b)

are, respectively, the speech distortion and residual noise.
The mean-square error (MSE) criterion is

J(k, n) � E
[|E(k, n)|2] = Jd(k, n) + Jr(k, n), (7)

where

Jd(k, n) � E
[|Ed(k, n)|2

]
= |1−H(k, n)|2 φX(k, n), (8a)

Jr(k, n) � E
[|Er(k, n)|2

]
= |H(k, n)|2 φV (k, n). (8b)

Given the above MSE criteria, the objective of noise reduction
is to find an optimal gain that would either minimize J(k, n) or min-
imize Jd(k, n) or Jr(k, n) subject to some constraint. For example,
we find the classical Wiener gain by minimizing J(k, n) [2]:

HW(k, n) =
φX(k, n)

φX(k, n) + φV (k, n)
. (9)

One can see that the Wiener gain is always real, positive, and 0 ≤
HW(k, n) ≤ 1 for any k and n. The estimated desired signal with
the Wiener gain is

X̂W(k, n) =
φX(k, n)

φX(k, n) + φV (k, n)
Y (k, n). (10)

Clearly, X̂W(k, n) has the same phase as Y (k, n). In other words,
the Wiener approach estimates the desired signal spectrum by only
filtering the magnitude spectrum of the noisy signal.

It is well known that the Wiener gain adds distortion to the de-
sired speech signal, and the amount of distortion is, in general, pro-
portional to the amount of noise reduction [3]. To control the com-
promise between the degree of speech distortion and the amount of
noise reduction, a more general form of Wiener, called the trade-
off gain was introduced (see [4] and references therein), which is
shown as follows:

HT,μ(k, n) =
φX(k, n)

φX(k, n) + μφV (k, n)
, (11)
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where μ ≥ 0. If μ = 1, (11) degenerates to the Wiener gain as in
(9). If μ = 0, we have HT,0(k, n) = 1, which does not introduce
any speech distortion, but does not produce any noise reduction ei-
ther. Generally, for μ > 1, we can achieve more noise reduction
with the tradeoff gain as compared to the Wiener gain filter, but the
resulting speech distortion is larger than that of the Wiener gain.
For μ < 1, we achieve less noise reduction, but the resulting speech
distortion is smaller than that of the Wiener gain.

3. WIDELY LINEAR APPROACH
The classical optimal gains discussed previously are derived from
the linear estimation theory based on the assumption that the com-
plex STFT coefficients of nonstationary speech signals at each fre-
quency bin are second-order circular. (A random complex variable
is second-order circular or noncircular depending on whether its
pseudo-variance is equal to zero or not [5], [6]. However, as shown
in [7], the STFT coefficients of nonstationary speech signals are
noncircular. To fully use the second-order statistics of the complex
speech spectra in noise reduction, a widely linear (WL) filtering ap-
proach was developed [7], [8], where the desired signal, X(k, n),
is estimated according to

X̂(k, n) = H1(k, n)Y (k, n) +H2(k, n)Y
∗(k, n)

= hH(k, n)y(k, n), (12)

where the superscripts ∗ and H are, respectively, the complex-
conjugate and transpose-conjugate operators, and

h(k, n) � [H∗
1 (k, n) H∗

2 (k, n)]
T
,

y(k, n) � [Y (k, n) Y ∗(k, n)]T .

With this estimate, the MSE can be written as

J(k, n) � E
[|E(k, n)|2] . (13)

where

E(k, n) � X̂(k, n)−X(k, n) = hH(k, n)y(k, n)−X(k, n).
(14)

Taking the gradient of J(k, n) with respect to h(k, n) and equating
the result to zero, we find the WL Wiener filter:

hWLW(k, n) = Φ−1
y (k, n)Φx(k, n)i1 (15)

=
φX(k, n)

φY (k, n)
Γ−1

y (k, n)Γx(k, n)i1,

where

Φy(k, n) � E
[
y(k, n)yH(k, n)

]
, (16)

Γy(k, n) �
[

1 γY (k, n)
γ∗
Y (k, n) 1

]
, (17)

γY (k, n) �
E
[
Y 2(k, n)

]
E
[|Y (k, n)|2] , (18)

i1 � [1 0]T , (19)

and Φx(k, n), γX(k, n), and Γx(k, n) are defined in a similar way
to Φy(k, n), γY (k, n), and Γy(k, n), respectively.

The WL Wiener filter achieves better noise reduction perfor-
mance as compared to the classical Wiener gain given in (9) [7].
However, its implementation requires the knowledge of the circular-
ity quotients γY (k, n) and γX(k, n). In practice, it is challenging to
obtain an accurate estimate of these two quotients since it involves
the use of the interframe information. One cannot approximate the
expectation operation in (18) with its instantaneous value since this
would make the Γy(k, n) matrix rank deficient.

4. DUAL-GAIN APPROACH
Another way to achieve noise reduction in the STFT domain is to
process the real and imaginary parts of the noisy speech spectra
separately [9]. In this section, we introduce a dual-gain approach.
Let us rewrite (2) as

Y (k, n) = YR(k, n) + jYI(k, n), (20)

where j =
√−1 is the imaginary unit and

YR(k, n) = XR(k, n) + VR(k, n), (21)

YI(k, n) = XI(k, n) + VI(k, n), (22)

are the real and imaginary parts of Y (k, n), respectively.
Now, we estimate the real and imaginary parts of the desired

signal separately with two real gains, i.e.,

X̂�(k, n) = H�(k, n)Y�(k, n), (23)

where the subscript � ∈ {R, I}, X̂�(k, n) is supposed to be the
estimate of the real or imaginary part of the desired signal, and
H�(k, n) is a real-valued gain. In this approach, we implicitly
assume that the real and imaginary parts of the signals are uncor-
related and therefore can be processed separately. The estimate of
the desired signal is then

X̂(k, n) = X̂R(k, n) + jX̂I(k, n)

= HR(k, n)YR(k, n) + jHI(k, n)YI(k, n)

= Xfd(k, n) + Vrn(k, n), (24)

where

Xfd(k, n) � HR(k, n)XR(k, n) + jHI(k, n)XI(k, n) (25)

is the filtered desired signal and

Vrn(k, n) � HR(k, n)VR(k, n) + jHI(k, n)VI(k, n) (26)

is the residual noise. The error signal between the estimated and
desired signals at frequency bin k and time frame n can now be
written as

E(k, n) � X̂(k, n)−X(k, n) = Ed(k, n) + Er(k, n), (27)

where

Ed(k, n) � [HR(k, n)− 1]XR(k, n)

+j [HI(k, n)− 1]XI(k, n), (28a)

Er(k, n) � HR(k, n)VR(k, n) + jHI(k, n)VI(k, n), (28b)

are the speech distortion and residual noise, respectively. The MSE
is then

J(k, n) � E
[|E(k, n)|2] = Jd(k, n) + Jr(k, n), (29)

where

Jd(k, n) � E
[|Ed(k, n)|2

]
(30a)

= [1−HR(k, n)]
2 φXR(k, n)

+ [1−HI(k, n)]
2 φXI(k, n),

Jr(k, n) � E
[|Er(k, n)|2

]
(30b)

= H2
R(k, n)φVR(k, n) +H2

I (k, n)φVI(k, n).

Having defined the MSE criteria J(k, n), Jd(k, n), and Jr(k, n),
we can now start to derive different optimal dual-gain filters.
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4.1 Wiener Gains
By minimizing the MSE criterion [eq. (29)], we easily find the
Wiener gains:

HR,W(k, n) =
φXR(k, n)

φYR(k, n)
=

φXR(k, n)

φXR(k, n) + φVR(k, n)
, (31a)

HI,W(k, n) =
φXI(k, n)

φYI(k, n)
=

φXI(k, n)

φXI(k, n) + φVR(k, n)
. (31b)

The minimum MSE of the dual-gain Wiener filter can be found by
substituting (31) into (29):

JDGW(k, n) =
φXR(k, n)φVR(k, n)

φXR(k, n) + φVR(k, n)
+

φXI(k, n)φVI(k, n)

φXI(k, n) + φVI(k, n)
.

(32)

The MSE for the classical Wiener gain is obtained by substituting
(9) into (7):

JW(k, n) =
φXφV

φX + φV
(33)

=
[φXR(k, n) + φXI(k, n)] [φVR(k, n) + φVI(k, n)]

φXR(k, n) + φXI(k, n) + φVR(k, n) + φVI(k, n)
.

It is easy to check that

JDGW(k, n) ≤ JW(k, n), (34)

where the equality holds if and only if φXR(k, n)/φVR(k, n) =
φXI(k, n)/φVI(k, n). So, the minimum MSE of the dual-gain
Wiener filter is generally smaller than that of the classical Wiener
gain. Note that both JDGW(k, n) and JW(k, n) consist of two part-
s, i.e., speech distortion part and residual noise part. Therefore, the
inequality in (34) indicates that the total amount of speech distor-
tion and residual noise of the dual-gain Wiener filter is generally
smaller than that of the classical Wiener gain.

4.2 Tradeoff Gains

The tradeoff gains are obtained by minimizing the speech distortion
with the constraint that the residual noise level is equal to a value
smaller than the level of the original noise. This is equivalent to
solving the following optimization problem:

min
HR(k,n),HI(k,n)

Jd(k, n) subject to Jr(k, n) ≤ β · φV(k, n),

(35)

where 0 < β < 1 in order to have some noise reduction at the
frequency bin k. Using a Lagrange multiplier, μ ≥ 0, to adjoin the
constraint to the cost function, we can solve the above optimization
problem and obtain the tradeoff gains:

HR,T,μ(k, n) =
φXR(k, n)

φXR(k, n) + μφVR(k, n)
, (36a)

HI,T,μ(k, n) =
φXI(k, n)

φXI(k, n) + μφVR(k, n)
. (36b)

The particular cases of μ = 1 and μ = 0 correspond to the Wiener
and identity gains, respectively. More generally, we can write the
tradeoff gains into the following forms:

HR,T,μR(k, n) =
φXR(k, n)

φXR(k, n) + μRφVR(k, n)
, (37a)

HI,T,μI(k, n) =
φXI(k, n)

φXI(k, n) + μIφVR(k, n)
. (37b)

4.3 Maximum SNR Gains

We define the subband output SNR as the ratio of the variance of
the filtered desired signal over the variance of the residual noise [4],
i.e.,

oSNR(k, n) � φXfd(k, n)

φVrn(k, n)

=
H2

R(k, n)φXR(k, n) +H2
I (k, n)φXI(k, n)

H2
R(k, n)φVR(k, n) +H2

I (k, n)φVI(k, n)
. (38)

In the maximum SNR technique, we find the gains that maxi-
mize the subband output SNR. It is clear that we need to find
the maximum eigenvector of the matrix D−1

V (k, n)DX(k, n),
where DV (k, n) = diag [φVR(k, n), φVI(k, n)] and DX(k, n) =
diag [φXR(k, n), φXI(k, n)] are two diagonal matrices. Since

D−1
V (k, n)DX(k, n) is also a diagonal matrix, we deduce that the

maximum gains are{
HR,max(k, n) = 1,
HI,max(k, n) = 0,

if
φXR(k,n)

φVR
(k,n)

≥ φXI
(k,n)

φVI
(k,n)

,{
HR,max(k, n) = 0,
HI,max(k, n) = 1,

if
φXR(k,n)

φVR
(k,n)

<
φXI

(k,n)

φVI
(k,n)

. (39)

It is interesting to see that the result of the maximum SNR filter
is similar to the widely known binary masking technique [11]. It
selects either the real part or the imaginary part at the frequency bin
k and time frame n depending whose SNR is larger.

5. CONNECTION BETWEEN THE DUAL-GAIN AND
WIDELY LINEAR APPROACHES

In this section, we show that the dual-gain Wiener filter is equivalent
to the WL Wiener filter if XR(k, n), VR(k, n), and YR(k, n) are
uncorrelated, respectively, with XI(k, n), VI(k, n), and YI(k, n).

Proof : If XR(k, n), VR(k, n), and YR(k, n) are uncorre-
lated, respectively, with XI(k, n), VI(k, n), and YI(k, n), we
have E [XR(k, n)XI(k, n)] = 0, E [VR(k, n)VI(k, n)] = 0,
and E [YR(k, n)YI(k, n)] = 0. Then, the covariance matrices,
Φy(k, n) and Φx(k, n), can be written into the following forms:

Φy(k, n) =

[
φYR(k, n) + φYI(k, n) φYR(k, n)− φYI(k, n)
φYR(k, n)− φYI(k, n) φYR(k, n) + φYI(k, n)

]
,

Φx(k, n) =

[
φXR(k, n) + φXI(k, n) φXR(k, n)− φXI(k, n)
φXR(k, n)− φXI(k, n) φXR(k, n) + φXI(k, n)

]
.

Substituting the above two equations into (15), we can readily get

hWLW(k, n) =
1

2

[
HR,W(k, n) +HI,W(k, n)
HR,W(k, n)−HI,W(k, n)

]
, (41)

where HR,W(k, n) and HI,W(k, n) are the dual-gain Wiener filters
given in (31).

With the WL Wiener filter, the estimate of the desired signal

from the noisy observation, y(k, n) = [Y (k, n) Y ∗(k, n)]T , is
given by

X̂WLW(k, n) = hH
WLW(k, n)y(k, n). (42)

Substituting (41) into (42) yields

X̂WLW(k, n) = HR,W(k, n)YR(k, n) + jHI,W(k, n)YI(k, n)

= X̂DGW(k, n), (43)

where X̂DGW(k, n) is the estimate of desired signal obtained from
the dual-gain Wiener filter. That completes the proof.
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However, in practice, some correlation may exist between
XR(k, n) and XI(k, n), and YR(k, n) and YI(k, n) due to the facts
that speech signals are nonstationary and the STFT length is lim-
ited. In this case, the WL Wiener filter may achieve better noise
reduction performance than the dual-gain Wiener filter.

6. EXPERIMENTS
In the section, we evaluate the performance of the optimal dual-gain
Wiener filter using experiments and compare it with the Wiener fil-
ters derived from the classical single-gain as well the WL approach-
es. The clean speech used is recorded in a quiet room with a sam-
pling rate of 8 kHz and the overall length of the signal is 30 sec-
onds. The noisy signal is generated by adding some pre-recorded
noise signal to the clean speech where the noise signal is properly
scaled to control the input SNR to 10 dB. The overlap add technique
is used in the implementation. The frame size is set to 64 and the
overlap between the successive frames is 75%. To minimize fre-
quency aliasing, a Kaiser window is applied both before the STFT
and after the inverse STFT.

We use the output SNR and speech distortion index as the per-
formance measures, which are defined, respectively, as [4]:

oSNR �
E
[
x2
fd(t)

]
E [v2rn(t)]

, and υsd �
E
{
[xfd(t)− x(t)]2

}
E [x2(t)]

, (44)

where xfd(t) and vrn(t) are the filtered desired signal and residu-
al noise reconstructed from Xfd(k, n) and Vrn(k, n), respectively.
Note that for the WL Wiener filter, there is also a residual interfer-
ence term, which is treated same as the residual noise.

To implement different Wiener filters, we need to know the vari-
ance parameters and circularity quotients of the noisy and clean
speech signals in the STFT domain. Since the noisy signal is ac-
cessible, all the parameters associated with this signal can be easily
computed. However, in order to estimate the parameters associated
with the clean and noise signals, we would need a noise estimator,
which generally relies on a voice activity detector (VAD). Howev-
er, due to space limitation, we will put aside the VAD issues in this
paper and directly compute the circularity quotients from the corre-
sponding signals with a short-time average using the most recently
20 frames. The variance parameters of the noisy and noise signals
are computed by approximating the mathematical expectation with
a recursive average. Specifically, the variance φY (k, n) is estimated
according to

φ̂Y (k, n) = λY φ̂Y (k, n− 1) + (1− λY ) |Y (k, n)|2 , (45)

where λY ∈ (0, 1) is a forgetting factor, and φYR(k, n) and
φYI(k, n) are computed in a same way. The parameter φV (k, n),
φVR(k, n) and φVI(k, n) are computed similarly but with a forget-
ting factor of λV . Then, the variance of the clean speech is comput-
ed by subtracting the variance of the noise signal from that of the
noisy signal (the result is forced to 0 if it is negative). With this way
of estimation of the variance parameters, the values of the forgetting
factors λY and λV play an important role on the noise-reduction
performance. If they are too small, the estimation variance of the
signal statistics would be large, which will be translated into speech
distortion. If they are too large, the estimated statistics would not
follow the nonstationary property of the speech and noise signals.
It is difficult, of course, to determine the optimal values of λY and
λV in an analytically manner. So, we use experiments to study their
impact on noise reduction performance. We investigated three noise
conditions: white Gaussian noise, a car noise recorded in a Volvo
sedan running at 55 MPH and a babble noise recorded in a New
York stock exchange (NYSE) noise. Due to space limit, we only
report the results in the NYSE noise as show in Fig. 1, where we set
λV to 0.96 and vary λY from 0.3 to 0.96.

As seen, the three Wiener filters can achieve reasonably good
performance when λY is in the range between 0.8 and 0.9. Among
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Figure 1: Performance of the classical, WL, and dual-gain Wiener
filters in the NYSE babble noise where the input SNR is 10 dB and
λV = 0.96.

the three filters, the dual Wiener gains yield a performance better
than that of the classical Wiener filter but worse than the WL wiener
filter, which validates the previous theoretical analysis.

7. CONCLUSIONS
In this paper, we investigated a dual-gain approach to noise re-
duction in the STFT domain. Unlike the classical approach that
achieves noise reduction by applying a single gain to the noisy
speech spectrum, this dual-gain approach applies one gain to fil-
ter the real part and another gain to filter the imaginary part of
the complex noisy spectrum. With this formulation, we derived
the Wiener, tradeoff, and maximum SNR filters. We showed that
the dual Wiener gains can be viewed as a particular case of the
WL Wiener filter. Experiments demonstrated that the dual-gain ap-
proach has the potential to achieve a larger output SNR and a small-
er speech distortion than the classical single-gain method.
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