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ABSTRACT
Binaural noise reduction is a very challenging problem since it re-
quires not only to reduce noise, but also to recover the spatial infor-
mation of the desired speech source so that the listener can localize
this source from the binaural outputs. In this paper, we study the
problem in the short-time-Fourier-transform (STFT) domain with
the use of an array of microphones. Combining the multichannel mi-
crophone observations into a number of complex signals and merg-
ing the two (binaural) expected output channels into a complex sig-
nal, we reformulate the problem with the widely linear (WL) esti-
mation technique. To efficiently achieve the optimal estimation, the
complex signals are transformed into the frequency domain via the
STFT. We then derive a WL Wiener filter based on the WL estima-
tion theory and the mean-squared-error (MSE) criterion. This WL
Wiener filter is shown to be able to exploit the noncircularity of the
complex speech signals and the spatial information captured by the
microphone array to achieve noise reduction while preserving the
sound spatial information.

Index Terms— Binaural noise reduction, microphone array,
STFT domain, widely linear, Wiener filter.

1. INTRODUCTION

Binaural noise reduction consists of processing multiple noisy mi-
crophone signals to produce two (binaural) outputs with less amount
of noise and (hopefully) the same spatial information of the desired
sound source. Traditionally, this problem is tackled through the use
of either beamforming [1]–[9] or approaches of multichannel noise
reduction [10]–[12]. Recently, we developed a WL approach to bin-
aural noise reduction in the time domain [13]–[16]. Basically, we
first convert the original multiple input and binaural output system
into a complex multiple-input/single-output (MISO) one by merg-
ing the real, multichannel input noisy signals and the two (binaural)
expected output channels into a number of complex signals. Un-
der the WL filtering framework, the optimal WL filters are then
derived that can reduce noise and recover the source spatial infor-
mation at the same time. Although they have shown great poten-
tials, those time-domain WL filters are computationally expensive
to implement. This work is basically an extension of our effort in
[13]–[16]. The contribution of this paper is an STFT-domain for-
mulation of the binaural noise reduction problem and a WL Wiener
filter. This STFT-domain WL Wiener filter is shown to be able to ex-
ploit the noncircularity of the complex speech signals and the spatial
information captured by the microphone array to achieve noise re-
duction and preserve the sound spatial information at the same time.
In comparison with its time-domain counterpart, this WL Wiener fil-
ter is more efficient to implement in terms of computation thanks to
the use of FFT and more flexible to tune the noise reduction perfor-
mance.

2. SIGNAL MODEL

We consider the scenario where there is a single desired source in
an acoustic sound field and we use an array of microphones to pick
up the desired signal. For ease of exposition, we assume that the
number of microphones is 2N with N ≥ 1 (the generalization to an
odd number of microphones is trivial). The signal received at the ith
microphone at the discrete-time index t can be expressed as

yr,i(t) = gi(t) ∗ s(t) + vr,i(t)

= xr,i(t) + vr,i(t), i = 1, 2, . . . , 2N, (1)

where gi(t) is the acoustic impulse response from the unknown
speech source, s(t), location to the ith microphone, ∗ stands for
linear convolution, and xr,i(t) and vr,i(t) are, respectively, the con-
volved speech and additive noise received at microphone i. We as-
sume that the impulse responses are time invariant. We also assume
that the signals xr,i(t) = gi(t) ∗ s(t) and vr,i(t) are uncorrelated,
zero mean, real, and broadband.

In binaural noise reduction, it is desired to simultaneously re-
cover the convolved speech signals at two microphones. In this pa-
per, we consider recovering the signals xr,1(t) and xr,N+1(t) given
the observations yr,i(t), i = 1, 2, . . . , 2N . This means that the de-
sired signals in our problem are the speech signals received at the
first and (N + 1)th microphones (note that the ideas and algorithms
developed in this paper can be applied to recovering the clean speech
signals at any other pair of microphones). Then, it is clear that we
have two objectives. The first one is to attenuate the contribution
of the noise terms vr,1(t) and vr,N+1(t) as much as possible. The
second objective is to preserve xr,1(t) and xr,N+1(t) with their spa-
tial information, so that with the enhanced signals, along with our
binaural hearing process, we will still be able to localize the source,
s(t).

We have 2N real input and two real output signals. It is con-
venient, however, to work in the complex domain in order that the
original binaural problem is transformed to one like the monaural
noise reduction. Indeed, from the 2N real microphone signals given
in (1), we can form N complex microphone signals as

yn(t)
△

= yr,n(t) + yr,N+n(t)

= xn(t) + vn(t), n = 1, 2, . . . , N, (2)
where  is the imaginary unit with 2 = −1,

xn(t)
△

= xr,n(t) + xr,N+n(t) (3)

and
vn(t)

△

= vr,n(t) + vr,N+n(t) (4)

are the complex convolved speech signal and complex additive
noise, respectively, at the nth complex microphone. Our noise re-
duction problem can then be stated as follows: given the N complex
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microphone signals, yn(t), n = 1, 2, . . . , N , which are a mixture
of the uncorrelated complex signals xn(t) and vn(t), our goal is to
recover x1(t) = xr,1(t) + xr,N+1(t) (i.e., our desired signal) the
best way we can, including the phase, which is important for the
localization of the source signal.

To make the noise reduction process efficient, let us work in
the short-time-Fourier-transform (STFT) domain, in which the sig-
nal model in (2) is rewritten as

Yn(k,m) = Xn(k,m) + Vn(k,m), n = 1, 2, . . . , N, (5)

where Yn(k,m), Xn(k,m), and Vn(k,m) are the STFTs of the
complex signals yn(t), xn(t), and vn(t), respectively, at frequency
bin k ∈ {0, 1, . . . ,K} and time frame m. Putting the N complex
signals Yn(k,m), n = 1, 2, . . . , N , in (5) into a vector, we have

y(k,m)
△

=
[
Y1(k,m) Y2(k,m) · · · YN (k,m)

]T

= x(k,m) + v(k,m), (6)

where x(k,m) and v(k,m) are defined in a similar way to y(k,m),
and T denotes the transpose of a vector or a matrix. Now, the prob-
lem of binaural noise reduction in the STFT domain becomes one of
estimating X1(k,m) given y(k,m).

Since xn(t) and vn(t) are uncorrelated by assumption, the vari-
ance of Yn(k,m) can be written as

φYn(k,m)
△

= E
[
|Yn(k,m)|2

]
= φXn(k,m) + φVn(k,m), (7)

where E[·] stands for mathematical expectation, and φXn(k,m)
△

=

E
[
|Xn(k,m)|2

]
and φVn(k,m)

△

= E
[
|Vn(k,m)|2

]
are the vari-

ances of Xn(k,m) and Vn(k,m), respectively.

3. WIDELY LINEAR (WL) MODEL

We deal with complex random variables (CRVs) in this study as seen
in the signal models given in (2) and (5). It was shown in [13]–
[16] that the CRVs in (2) are noncircular1, and so are the signals
in (5). Since we deal with noncircular CRVs, we have to employ
the so-called widely linear (WL) estimation theory [13]–[18] to es-
timate the desired signal, X1(k,m), thereby achieving noise reduc-
tion. Specifically, an estimate of X1(k,m) should be obtained from
the noisy signal vector, y(k,m), according to

X̂1(k,m) = h
H(k,m)y(k,m) + h

′H(k,m)y∗(k,m)

= h̃
H(k,m)ỹ(k,m), (8)

where the superscripts H and ∗ are the conjugate-transpose and con-
jugate operators, respectively, h(k,m) and h′(k,m) are two com-
plex finite-impulse-response (FIR) filters of length N , and

h̃(k,m) ,

[
h(k,m)
h′(k,m)

]
(9)

and

ỹ(k,m) ,

[
y(k,m)
y∗(k,m)

]
(10)

are the augmented WL filter and noisy signal vector, respectively,
both of length 2N . Substituting (6) into (8) gives

X̂1(k,m) = h̃
H(k,m) [x̃(k,m) + ṽ(k,m)]

= Xf(k,m) + Vrn(k,m), (11)

1For the definition of circularity and how to measure it, see [19]–[21].

where x̃(k,m) and ṽ(k,m) are defined in a similar way to ỹ(k,m),
Xf(k,m) , h̃H(k,m)x̃(k,m) is the filtered clean speech, and
Vrn(k,m) , h̃H(k,m)ṽ(k,m) is the residual noise, which is un-
correlated with Xf(k,m).

The variance of X̂1(k,m) is

φ
X̂1

(k,m)
△

= E

[∣∣∣X̂1(k,m)
∣∣∣
2
]

= h̃
H(k,m)Φỹ(k,m)h̃(k,m)

= h̃
H(k,m) [Φx̃(k,m) +Φṽ(k,m)] h̃(k,m)

= φXf
(k,m) + φVrn

(k,m), (12)

where φXf
(k,m)

△

= E
[
|Xf(k,m)|2

]
, φVrn

(k,m)
△

=

E
[
|Vrn(k,m)|2

]
, and Φã(k,m) is the correlation ma-

trix of ã(k,m) with ã ∈ {ỹ, x̃, ṽ} and ã(k,m)
△

=

[A1(k,m) · · · AN (k,m) A∗

1(k,m) · · · A∗

N (k,m)]T , which
can be written into the following form:

Φã(k,m) = E
[
ã(k,m)ãH(k,m)

]
(13)

= diag [φA1
(k,m), . . . , φAN

(k,m), φA1
(k,m), . . . , φAN

(k,m)]×




1 ρA1A2
· · · ρA1AN

γA1A1
γA1A2

· · · γA1AN

... · · ·
. . .

...
... · · ·

. . .
...

ρANA1
ρANA2

· · · 1 γANA1
γANA2

· · · γANAN

γA∗

1
A∗

1
γA∗

1
A∗

2
· · · γA∗

1
A∗

N
1 ρA∗

1
A∗

2
· · · ρA∗

1
A∗

N

... · · ·
. . .

...
... · · ·

. . .
...

γA∗

N
A∗

1
γA∗

N
A∗

2
· · · γA∗

N
A∗

N
ρA∗

N
A∗

1
ρA∗

N
A∗

2
· · · 1




,

where

ρAiAj

△

=
E
[
Ai(k,m)A∗

j (k,m)
]

φAi
(k,m)

(14)

is the inter-channel correlation coefficient and

γAiAj

△

=
E[Ai(k,m)Aj(k,m)]

φAi
(k,m)

(15)

is the pseudo inter-channel correlation coefficient. If i = j, we call
γAiAi

the (second-order) circularity quotient [19], which satisfies

0 ≤ |γAiAi
| ≤ 1. (16)

The circularity coefficient measures the degree of noncircularity of
Ai(k,m). If Ai(k,m) is circular then |γAiAi

| = 0. A larger value
of |γAiAi

| means that the signal Ai(k,m) is more noncircular.

4. WL WIENER FILTER

In order to derive the WL Wiener filter, we first define the mean-
squared-error (MSE) criterion.

The error between the desired signal, X1(k,m), and its estimate
is defined as

E(k,m) , X̂1(k,m)−X1(k,m)

= h̃
H(k,m)ỹ(k,m)−X1(k,m). (17)
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The subband MSE criterion is then given by

J
[
h̃(k,m)

]
, E

[
|E(k,m)|2

]

= E

[∣∣∣h̃H(k,m)ỹ(k,m)−X1(k,m)
∣∣∣
2
]
. (18)

Now taking the gradient of J
[
h̃(k,m)

]
with respect to h̃(k,m) and

equating the result to zero, we obtain the optimal WL Wiener filter:

h̃W(k,m) = Φ
−1

ỹ
(k,m)Φx̃(k,m)i1

=
[
I−Φ

−1

ỹ
(k,m)Φṽ(k,m)

]
i1, (19)

where i1 is the first column of the identity matrix I of size 2N×2N .

5. PERFORMANCE MEASURES

In this section, we give two performance metrics that will be applied
to evaluate the performance of the WL Wiener filter, i.e., the signal-
to-noise ratio (SNR) and the speech distortion index. The former
measures the amount of noise reduction while the latter quantifies
the amount of speech distortion.

With the signal model given in (2), we define the input SNR (i.e.,
the SNR at the first microphone pair) as

iSNR
△

=
E
[
|x1(t)|

2
]

E
[
|v1(t)|

2
] . (20)

After noise reduction, the enhanced signal consists of two compo-
nents: the filtered desired signal, xf(t), which is reconstructed from
Xf(k,m) and the residual noise, vrn(t), which is synthesized from
Vrn(k,m). So, the output SNR can be defined as

oSNR
△

=
E
[
|xf(t)|

2
]

E
[
|vrn(t)|

2
] . (21)

A noise reduction filter is expected to improve the SNR; so the output
SNR should be larger than the input SNR.

Since the noise reduction filter may distort the desired speech,
we adopt the speech distortion index to quantify the distortion level
of the desired signal [22], [23], i.e.,

υsd

△

=
E
[
|xf(t)− x1(t)|

2
]

E
[
|x1(t)|

2
] . (22)

A larger value of υsd corresponds to a higher level of speech distor-
tion.

Note that in our evaluation, we compute the SNRs and the
speech distortion index using a long-time average, i.e., replacing the
expectation operator with a time average. We should point out that
the subband SNRs and the subband speech distortion index can also
be defined to evaluate the WL Wiener filter; but we will not present
them here due to space limitation.

6. EXPERIMENT
6.1. Experimental Setup
We conduct experiments in a reverberant room that is simulated
using Lehmann’s image-source method [24], [25]. The room is a
rectangular one with size of 6700 mm long by 6100 mm wide by
2900 mm high. The floor layout of the room setup is illustrated in
Fig. 1. For convenience, positions in the floor plan are designated
by (x, y) coordinates with reference to the northwest corner and cor-
responding to millimeters along the (North, West) walls. An eq-
uispaced linear microphone array consisting of six omnidirectional

0
1000

2000
3000

4000
5000

y

0 1000 2000 3000 4000 5000 6000 x

M1 (3237, 500) M6 (3737, 500)

P1 (337, 1938)

P2 (1337, 1938)

P3 (2337, 1938)

P4 (3337, 1938)

Fig. 1. Floor layout of the room setup (coordinate values measured
in millimeters).

Table 1. Reconstruction error (i.e., the error between the original
signal and the reconstructed one) with the overlap add technique (the
overlap between two neighboring frames is 75%).

Window size (sample) 64 128 256 512

Error (dB) −90.2 −87.4 −86.5 −86.1

microphones is employed in the measurement. The first microphone
is at M1 (3237, 500) and the last one at M6 (3737, 500). A loud-
speaker, simulating the source signal, is placed at one of the four
positions from P1 (337, 1938) to P4 (3337, 1938). The four posi-
tions are uniformly spaced along the line connecting P1 and P4. The
elevation of the microphone array is 1400, while it is 1600 for the
source positions. Using Lehmann’s model, we generate the impulse
responses from the source positions to the microphones in a condi-
tion where the reverberation time T60 is 0.2 s.

6.2. Algorithm Implementation
The WL Wiener filter is implemented in the STFT domain. We first
divide the noisy signals into short frames with an overlap of 75%
between two consecutive frames. Then, each frame of the noisy sig-
nals is transformed into the frequency domain using the fast Fourier
transform (FFT). Subsequently, a WL Wiener filter is designed and
applied to the noisy STFT coefficients in each subband. Finally, the
enhanced binaural signal is reconstructed in the time domain using
the inverse FFT (IFFT) and overlap-add technique. Note that we
deal with complex signals in both the time and frequency domains,
the overlap add reconstruction and the aliasing problem due to circu-
lar convolution are slightly different from those in traditional noise
reduction in the STFT domain. We will not discuss the aliasing prob-
lem in this paper due to space limitation. But just as in the traditional
approach, we apply a real-valued Kaiser window in both the analysis
and synthesis steps to reduce the aliasing effect. Table 1 presents the
reconstruction error (i.e., the error between the original signal and
the reconstructed one without applying any filter) for different frame
lengths. One can see that the overlap add technique achieves a good
reconstruction accuracy with the use of a Kaiser window.

To implement the WL Wiener filter in (19), we need to know the
Φỹ(k,m) and Φṽ(k,m) matrices. In our experiments, we compute
Φỹ(k,m) and Φṽ(k,m) using a short-time average on the P most
recent frames of the corresponding signals. In other words, the noise
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Fig. 2. Noise reduction performance of the WL Wiener filter as a
function of P for three different values of N . The input SNR is
5 dB, the frame length is 128 (16 ms), and the overlap is 75%.

estimation problem is put aside.

6.3. Experimental Result
In our experiments, the source is a speech signal recorded from a
female speaker in a quiet office environment, which is sampled at
8 kHz. To simulate a moving speech source, we change its position
every 4 seconds, first from P1 to P4, and then back. The microphone
signals are generated by convolving the source signal with the cor-
responding impulse responses. White Gaussian noise is then added
to control the input SNR.

We study the performance of the WL Wiener filter as a function
of the number of pairs of microphones, i.e., N = 1, 2, 3. To make
the results comparable, we use the 1st and 4th microphones in the
array when N = 1, and the 1st, 2nd, 4th, and 5th microphones
when N = 2. The input SNR is 5 dB, the frame length (same as
the FFT size) is 128 (16 ms), and the number of frames that is used
to compute the correlation matrices varies between 2 and 40, i.e.,
P ∈ [2, 40]. To evaluate the performance of the WL Wiener filter,
we compute the output SNR, i.e., oSNR and the speech distortion
index υsd using a long-time average. Figure 2 plots oSNR and υsd

for different number of microphones as a function of P .
When the number of frames used to compute the signal correla-

tion matrices is small (e.g., P < 6), the estimated correlation ma-
trices are not accurate and the statistics estimation error affects the
performance of the WL Wiener filter. As more frames are used, the
correlation matrix estimates are more accurate. Therefore, one can
see that the performance of the WL Wiener filter first increases with
the value of P . However, when P is large (e.g., P > 14), if we con-
tinue to increase its value, the noise reduction performance does no
longer improve, or sometimes degrades slightly. This is due to the
fact that the estimated correlation matrices cannot follow the time-
varying statistics of the speech signal if P is too large. One can see
that the best performance of the WL Wiener filter for each studied
value of N is achieved with a moderate value of P . Comparing the
best performance of the WL Wiener filter for different values of N ,
one can see that the WL Wiener filter with more microphones (cor-
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Fig. 3. The contours of the cross-correlation functions between
the 1st and the 4th channels: (a) clean speech; (b) noisy speech
(iSNR = 5 dB); and (c) the enhanced speech by the WL Wiener
filter with 6 microphones (i.e., N = 3).

responding to a larger N ) performs better. However, as the value of
N increases, we need a larger P to achieve the optimal performance.
This result can be explained as follows. With a larger value of N ,
the WL Wiener filter can exploit the spatial information from more
microphones to produce better performance. However, with a larger
N , the signal correlation matrices are larger in size and, therefore,
require more data samples for accurate estimation.

To visualize the spatial information recovery with the WL
Wiener filter, we compute the cross-correlation function between the
enhanced binaural (the 1st and 4th microphones) signals and com-
pare it to those of the clean and noisy speech. The cross-correlation
functions are computed every 256 ms using a short-time average.
The contours of the computed cross-correlation functions are plot-
ted in Fig. 3, where the lag time corresponding to the maximal value
of the cross-correlation function shows the position of the speech
source. One can see that the noise has considerably changed the spa-
tial information of the speech source. The WL Wiener filter does not
only mitigate the noise effect, but also recovers the source spatial
information.

7. CONCLUSIONS

In this paper, we studied the problem of binaural noise reduction
with an array of microphones in the STFT domain. We first modeled
the problem into a complex MISO system by merging the multichan-
nel observation signals and the two (binaural) expected output chan-
nels into complex signals. The complex signals are then transformed
into the frequency domain via the STFT. Under the WL framework,
a WL Wiener filter based on the WL estimation theory and the MSE
criterion is designed and applied to the STFT coefficients to achieve
noise reduction. It is shown that this WL Wiener filter is able to ex-
ploit the noncircularity of the complex speech signals and the spatial
information captured by the microphone array to achieve noise re-
duction and preserve the sound spatial information at the same time.
The more the number of microphones, the better is the performance
of binaural noise reduction.
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