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ABSTRACT 
Directivity pattern or beam pattern is an important performance 

measure in all fixed beamformers. Given a microphone array, how 
to design the beamforming filter so that the resulting directivity pat
tern is close to the desired one is a critical issue. In this paper, we 
study the design of such patterns for endfire uniform linear micro
phone arrays. By considering the frequency-independent Chebyshev 
pattern as the desired one, we derive an optimal beamforming filter 
based on the minimization of the mean-squared error (MSE) under 
the distortion less constraint. It is shown that the proposed beam
former design can generate beam patterns that are very close to the 
desired ones and, the larger is the number of microphones, the better 
is the designed beampattern. 

Index Terms- Linear microphone arrays, differential micro
phone arrays (DMAs), endfire arrays, directivity pattern, beam pat
tern design, white noise gain, directivity factor. 

1. INTRODUCTION 

In real-world environments, speech quality and intelligibility are ad
versely affected by noise and reverberation. Therefore, the speech 
enhancement technology, which aims at combating these problems, 
is essential in many applications such as hands-free telecommunica
tion and hearing aids. Microphone arrays, which are very promis
ing for speech enhancement, have been widely studied for several 
decades [I], [2], [3]. Among them, differential microphone arrays 
(DMAs) have received an increasing research attention recently. D
MAs have the nice property that their beampatterns are almost fre
quency independent [4], [5], [6], [7], [8]. In this paper, we basically 
show how to design patterns that resemble the DMA ones. Our ob
jective is to describe an optimal approach so that the designed beam
pattern is as close as possible to the desired one. For this purpose, we 
first define the MSE criterion between the endfire array beampattern 
and the desired directivity pattern. Then, we formulate the design 
into an optimization problem that comprises the minimization of the 
MSE criterion subject to the distortion less constraint. Thanks to the 
modified Bessel function, which naturally appears in the formula
tion, we find the optimal solution to the described problem. Simula
tion results show that the designed beam pattern is very close to the 
desired directivity pattern and this design gets better as the number 
of microphones increases. 

2. SIGNAL MODEL, PROBLEM FORMULATION, AND 
DEFINITIONS 

We consider a source signal (plane wave), in the farfield, that prop
agates in an anechoic acoustic environment at the speed of sound, 
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i.e., c = 340 mis, and impinges on a uniform linear sensor array 
consisting of M omnidirectional microphones, where the distance 
between two successive sensors is equal to <5. The direction of the 
source signal to the array is parameterized by the azimuth angle 8. 
In this scenario, the steering vector (of length M) is given by 

d (w, 8) 
= [ 1 e -JWTo cos 8 e -J( M - 1 )WTo cos 8 r, (I) 

where the superscript T is the transpose operator, J = A is the 
imaginary unit, W = 211" f is the angular frequency, f > ° is the tem
poral frequency, and TO = <5/ c is the delay between two successive 
sensors at the angle 8 = 0 .  The acoustic wavelength is .\ = c/ f. 

In order to avoid spatial aliasing [1], which has the negative ef
fect of creating grating lobes (i.e., copies of the main lobe, which 
usually points toward the desired signal), it is necessary that the in
terelement spacing is less than .\/2, i.e., 

WTo < 11". (2) 

The condition (2) easily holds for small values of <5 and at low fre
quencies but not at high frequencies. 

We consider designing directivity patterns identical to the ones 
obtained with DMAs [4], [5], [6], [7], [8], where the main lobe is 
at the angle 8 = ° (endfire direction). For that, a complex weight, 
H:r, (w), m = 1,2, ... , M, is applied at the output of each micro
phone, where the superscript * denotes complex conjugation. The 
weighted outputs are then summed together to form the beamformer 
output. Putting all the gains together in a vector of length M, we get 

h(w)=[Hl(W) H2(W) (3) 

It is assumed that the desired signal propagates from the endfire di
rection, so that the corresponding steering vector is d (w, 0). In our 
context, the distortion less constraint is desired, i.e., 

hH (w)d(w,O)  = 1, (4) 

where the superscript H is the conjugate-transpose operator. Then, 
the objective is to design the fi Iter, h (w), in such a way that the 
beampattern of the array is as close as possible to a desired directiv
ity pattern. 

With the filter, h (w), and the source at the endfire direction, the 
array gain in signal-to-noise ratio (SNR) is defined as [8] 

IhH (w)d(w,0)12 
9 [h (w ) 1 = h H (w) r v (w) h (w) , (5) 
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where r v (w) is the pseudo-coherence matrix of the noise signal 
vector. 

The most convenient way to evaluate the sensitivity of the array 
to some of its imperfections is via the so-called white noise gain 
(WNG), which is defined by taking r v (w) = 1M in (5), where 1M 
is the M x M identity matrix, i.e., 

IhH (w)d(w,0) 1 2 
W [h (w)J = hH (w) h (w) 

The maximum WNG is given by [8] 

Wmax [h(w)J = M. 

(6) 

(7) 

Another important measure, which quantifies how the micro
phone array performs in the presence of reverberation, is the directiv
ity factor (DF). Considering the spherically isotropic (diffuse) noise 
field, the DF is defined as 

where the elements of the M x M matrix r d (w) are 

[r ( )J -sin [ w(j - i)To J -' [ (  . .) J d W ,- ( " ) - SInC W J - t TO • tJ w J - t TO 
The maximum DF is given by [8] 

'Dmax [h (w)J = dH (w, 0) rci1 (w) d (w, 0) , 

and it can be shown that [9] 

lim 'Dmax [h(w)J = M2. 
0-+0 

3. BEAMPATTERNS 

(8) 

(9) 

(10) 

(11) 

The beam pattern or directivity pattern describes the sensitivity of the 
beamformer to a plane wave (source signal) impinging on the array 
from the direction B. For a uniform linear array, it is mathematically 
defined as 

BM [h (w) , BJ = dH (w, B) h (w) (12) 
M 

_ """ H ( ) J( m -1 )WTo cos B 
- � m w e  . 

m=l 

Recall that h (w) is designed so that the array looks in the direction 
B = 0. For a fixed h (w) , it is obvious that 

BM [h (w) , -BJ = BM [h (w) , BJ (13) 

and 

(14) 

Therefore, the complex function B M [h (w) ,BJ is even and periodic. 
As a result, the study of BM [h (w) ,BJ is limited to B E [0,71 1 

Let B (B) be a real even periodic function with period 27r and 
such that I; IB (B)I dB exists, then B (B) can be written in terms of 
its Fourier cosine series: 

00 

B(B) = Lbncos(nB) , (IS) 
n=O 
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where 

117r bo = - B(B)dB, 
7r 0 

bi = � r B(B)cos( iB)dB, i 2: 1. 
7r 10 

(16) 

(17) 

Now, if we limit this series to the order N, B (B) can be approximat
ed by 

N 
BN (B) = L bn cos (nB) , (18) 

n=O 
which is a trigonometric polynomial of order N. The func
tion BN (B) is, in fact, a very general definition of a frequency
independent directivity pattern of order N. It is very much related to 
the directivity pattern of an Nth-order DMA [4], [8]: 

N 
B'rv (B) = Lan cosn B, (19) 

n=O 
and any DMA pattern can be designed with BN (B). Indeed, we 
know from the usual trigonometric identities that 

cosn B = L c(n,  i) cos [(n - 2i) BJ , (20) 

where c(n ,  i) are some binomial coefficients. Substituting (20) into 
(19), we deduce that any DMA pattern can be written as a general 
pattern, BN (B). It is well known that 

cos (nB) = Tn (cos B) , (21) 

where Tn (-) is the nth Chebyshev polynomial of the first kind [10], 
which have the recurrence relation: 

Tn+l (cos B) = 2cosB x Tn (cos B) - Tn-1 (cos B) , (22) 

with 

To (cos B) = 1, Tl (cos B) = cosB. 

Thus, cos (nB) can be expressed as a sum of powers of cos B. Con
sequently, any general pattern can be written as a DMA pattern. We 
can then conclude that B N (B) and B'rv (B) are strictly equivalent. 

The relations between the coefficients bn, n = 0,1, . . .  ,N of 
BN (B) and the coefficients an, n = 0,1, . . .  , N of B'rv (B) for the 
first three orders are as follows: 

• N = 1: bo = ao , b1 = al; 
• N = 2: bo = ao + Ef, b1 = aI, b 2 = Ef; and 

• N = 3: bo = ao + Ef, b1 = al + ¥, b2 = Ef, b3 = !!;t. 
For convenience, we can also express (18) as 

where 

and 

t (B) = [1 cos B 

are two vectors of length N + 1. 

(23) 

cos (NB) 1 T (24) 

(25) 



In the rest, we need to make sure that at B = 0, we have 

BN (0) = B� (0) = 1. (26) 

Therefore, we will always choose 

N 
ao = 1- Lan, (27) 

n=l 

(28) 

4. MEAN-SQUARED ERROR CRITERION 

Considering the frequency-independent Chebyshev pattern, BN (B), 
as the desired directivity pattern, the objective becomes to find a 
proper fi Iter, h (w), so that the array beampattern, B M [h (w) , B], is 
as close as possible to BN (B). From now on, it is assumed that B is 
a real random variable, which is uniformly distributed in the interval 
[0,7r]. We define the MSE criterion between the array beampattern 
and the desired directivity pattern as 

MSE [h (w)] = E {IBM [h (w) , B]- BN (B)12} (29) 

= E [ ldH (w, B) h (w) - tT (B) bn 
= hH (w) Pd (w) h (w) - hH (w) Pdt (w) b 

- bT p;{t (w) h (w) + bT ptb, 

where E {-} denotes mathematical expectation, and 

Pd (w) = E [d(w,B)dH (w,B)] , 

PdtCW) = E [d(w,B) tT (B)] , 

Pt = E [t (B) t T (B)] . 

(30) 

(31 ) 

(32) 

The (i, j)th element of the M x M matrix Pd (w) can be com
puted as 

where 

[Pd (w)l;j = E [eJw(j - i)70cosB] 
=.!. (

" eJw(j - i)70 cos B dB 
7r Jo 

= 10 [Jw(j - i)70] , 

In(Z) =.!. {" 
eZ cos B cos (nB)dB 

7r Jo 

(33) 

(34) 

is the integral representation of the modified Bessel function of the 
first kind [10]. 

In the same way, we can compute the (i, j)th element of the 
M x (N + 1) matrix Pdt (w) as follows: 

[Pdt (W)]ij = E {e -Jw(i - 1)70cosB cos [(j - l)B] } (35) 

=.!. {" e -JW (i - 1) 70 cos B cos [(j - 1)B] dB 
7r Jo 

= Ij-1 [-Jw(i - 1)70] .  
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Fig. 1. Desired directivity pattern. 

5. OPTIMAL DESIGN 

To find the optimal filter, in the MSE sense, for the desired directivity 
pattern, it is important to minimize the MSE criterion given in (29) 
subject to the distortionless constraint given in (4), i.e., 

minMSE[h(w)] subject to hH(W)d(w,O) =1. (36) 
hew) 

We easily find that the optimal solution is 

ho(W) 

=h (w) 
1-dH(w,0) hu(w) p-1(w)d(w 0) (37) u + 

dH(w,0) Pd1(W)d(w,0) 
d " 

where 

hu (w) = Pd1 (w) Pdt (w) b (38) 

is the unconstrained filter obtained by minimizing MSE [h (w)]. 

6. SIMULATIONS 

In this section, we carry out simulations to evaluate the perfor
mance of the proposed approach. We consider a linear array with 
6 = 2.5 cm. In the rest, we would like to design the following 
frequency-independent Chebyshev pattern: 

B2 (B) = 0.3095 + 0.484 cos B + 0.2065 cos(2B). (39) 

This is equivalent to the second-order supercardioid pattern [6]: 

B; (B) = 0.103 + 0.484 cos B + 0.413cos2 B. (40) 

Figure 1 illustrates the desired directivity pattern [eq. (39)]. It should 
be noticed that similar simulation results can be obtained for other 
patterns and orders. 

In order to avoid numerical problems with the inver
sion of Pd (w), we replace Pd1 (w) in (37) and (38) by 
[Pd (w) + ElMr\ where E = 10-12. 

First, we derive the optimal design by setting the number of mi
crophones to M = 3. The derived beam pattern and SNR gains are 
plotted in Figs. 2 and 3. We can see that the beam pattern is simi
lar to the desired directivity pattern in that the desired signal at the 



endfire direction is perfectly preserved while the signals from the 
other directions are attenuated. We can also see that the DF is higher 
than 7 dB while the WNG is negative at low frequencies. Then, we 
increase the number of microphones to M = 5 and investigate its ef
fect on the performance of the optimal design. The beampattern and 
SNR gains are presented in Figs. 4 and 5. Comparing the patterns 
in Figs. 1, 2, and 4, we observe that, as the number of microphones 
increases, the designed beam pattern gets closer to the desired direc
tivity pattern as it can be expected. Comparing the SNR gains in 
Figs. 3 and 5, we can see that increasing the number of microphones 
slightly improves the DF and makes it frequency independent but 
degrades the WNG. 

270" 

Fig. 2. Designed beampattem. M = 3, 8 
1 kHz. 

2.5 em, and f 

12r---�--'---'---�---'---'--�---' 

10 

6 

Frequency (kHz) 

Fig. 3. SNR gains with the designed beampattern: (a) DF and (b) 
WNG. M = 3 and 8 = 2.5 em. 

7. CONCLUSIONS 

In this paper, we focused on the design of beam patterns that resem
ble the DMA directivity patterns, which are almost frequency in
dependent. We proposed an optimal design in the MSE sense and it 
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270" 

Fig. 4. Designed beam pattern. M = 5, 8 
1 kHz. 
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Fig. 5. SNR gains with the designed beampattern: (a) DF and (b) 
WNG. M = 5 and 8 = 2.5 em. 

was shown that we can approach the desired directivity patterns with 
very high precision. OUf next step is to extend these ideas and make 
the proposed approach more robust to white noise amplification by 
including, for example, some ideas from [11]. 

8. RELATION TO PRIOR WORK 

Microphone arrays can be applied to speech enhancement in noisy 
and reverberant environments [1], [2], [3]. In the design of fixed 
beamformers, the beam pattern is a very important performance cri
terion. Among the many types of microphone arrays, DMAs are 
designed in such a way that their beam patterns obey some desired 
directivity patterns. In [4], [5], [6], [7], DMAs are constructed by 
using simple delays and band-pass filters. In [8], [12], DMAs are 
designed by passing the microphone outputs through a filter with 
some fundamental constraints on nulls. In this paper, we propose 
another way to design DMA patterns, which is based on the MSE 
criterion. 
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