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Abstract

Superdirective beamforming has attracted much interest in acoustic, speech and audio process-
ing since it has the potential to achieve the maximum directivity factor (DF) for noise, interference,
and reverberation suppression. However, the superdirective beamformer is sensitive to sensors’
noise and mismatch between sensors, which considerably restricts its use in practical systems.
Therefore, how to achieve a relatively large DF with a reasonable white noise gain (WNG) is
becoming an important issue in superdirective beamforming. This paper studies this problem
based on the use of a parametric gain as the cost function, which combines the DF and the WNG
in one single formula. By maximizing this gain, we derive a parametric superdirective beam-
former. Through properly choosing the parameter order within a small range, this beamformer
can achieve a good compromise between a high value of the DF and a low value of the WNG.
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1 Introduction
Beamforming methods are widely used in sensor array systems to recover a desired signal
from noisy observations [1–5]. A considerable amount of attention has been paid to this area
of research and many beamforming algorithms have been developed over the last few decades
[6–11]. Among those, the superdirective beamformer is very attractive in applications with
small-size microphone arrays; it is obtained from maximization of the directivity factor (DF), i.e.,
gain of the signal-to-noise ratio (SNR) in a spherically isotropic (diffuse) noise field [7, 12, 13].
The superdirective beamformer is a fixed beamformer since the noise pseudo-coherence matrix
is time invariant and data independent [7, 10]. In fact, when the microphone array size is very
small, the superdirective beamformer corresponds to the hypercardioid, which is also derived
by maximizing the DF [10]. While it is efficient in dealing with diffuse noise, the superdirective
beamformer is very sensitive to sensors’ noise and array imperfections, which considerably
restricts its use in practical systems [14, 15]. Therefore, how to achieve a relatively high DF
with a reasonable value of white noise gain (WNG) is becoming an important issue regarding
the design of superdirective beamforming.

A significant amount of research has been devoted to circumventing this fundamental issue.
One of the most used solutions is the regularized superdirective beamformer [1, 11, 14], the
performance of which is controlled by a regularization parameter [1]. In practice, however, it is
not easy to find the optimal value of this parameter since it is frequency dependent and varies
from zero to infinity. There are many other popular approaches to this issue, such as the
probability based beamformers, nonlinear optimization based beamformers, combined beam-
formers [16], and subspace beamformers [17]. In [16], the authors combined the regularized
superdirective beamformer together with the delay-and-sum (DS) beamformer leading to a ro-
bust regularized superdirective beamformer, which can make a tradeoff between DF and WNG.
In [17], the problem of superdirective beamforming was cast to a framework with matrix joint
diagonalization and a subspace superdirective beamformer was derived, which can achieve a
good compromise between a high DF and white noise amplification.

This paper is devoted to finding other alternatives to the robust superdirective beamformer. A
novel parametric superdirective beamformer is derived from the maximization of a parametric
SNR gain (with 1/p order noise pseudo-coherence matrix, where p ∈ [1,∞] is the parameter).
With the proposed beamformer, a good compromise between a high value of the DF and a
low value of the WNG can be obtained by properly choosing the parameter order within a
small range, which makes it easier to use than the conventional regularized superdirective
beamformer.

2 Signal Model, Performance Measures, and Conventional Beam-
formers

We consider the signal model in which a farfield source signal (plane wave) propagates from
the direction (azimuth angle) θ in an anechoic acoustic environment at the speed of sound, i.e.,
c = 340 m/s, and impinges on a uniform linear sensor array consisting of M omnidirectional
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microphones. In this context, the steering vector (of length M ) is given by

d (ω, θ) =
[

1 e−ωτ0 cos θ · · · e−(M−1)ωτ0 cos θ
]T
, (1)

where the superscript T is the transpose operator,  =
√
−1 is the imaginary unit, ω = 2πf is

the angular frequency, f > 0 is the temporal frequency, and τ0 = δ/c is the delay between two
successive sensors at the angle θ = 0, with δ being the interelement spacing.

Our main interest in this paper is in superdirective beamforming [1], [7]. Therefore, it is as-
sumed that δ is small and the desired source propagates from the endfire, i.e., θ = 0 [10]. As
a result, the observation signal vector is [6]

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + v (ω)
= d (ω)X (ω) + v (ω) , (2)

where

Ym (ω) = e−(m−1)ωτ0X (ω) + Vm (ω) (3)

is the signal picked up by the mth microphone, X (ω) is the desired signal, Vm (ω) is the
additive noise at the mth microphone, x (ω) = d (ω)X (ω) with d (ω) = d (ω, 0), and v (ω) is
defined similarly to y (ω).

Generally, beamforming is performed by applying a complex-valued weight to the output of
each sensor [6], i.e.,

Z (ω) =
M∑
m=1

H∗m (ω)Ym (ω) (4)

= hH (ω) y (ω)
= hH (ω) d (ω)X (ω) + hH (ω) v (ω) ,

where Z (ω) is the estimate of the desired signal, X (ω), the superscript ∗ is the complex
conjugate, h (ω) is a linear filter of length M , and the superscript H is the conjugate-transpose
operator. In our context, the distortionless constraint is desired, i.e.,

hH (ω) d (ω) = 1. (5)

In order to derive and/or evaluate different kind of optimal fixed beamformers, three fundamen-
tal performance measures are widely used. They are:

• beampattern, which is defined as

B [h (ω) , θ] = dH (ω, θ) h (ω) (6)

=
M∑
m=1

Hm (ω) e(m−1)ωτ0 cos θ,
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• white noise gain (WNG), which is written as

W [h (ω)] =

∣∣∣hH (ω) d (ω)
∣∣∣2

hH (ω) h (ω) , (7)

• and directivity factor (DF), which is in the following form

D [h (ω)] =

∣∣∣hH (ω) d (ω)
∣∣∣2

hH (ω) Γ (ω) h (ω) , (8)

where the elements of the M ×M matrix Γ (ω), which is the pseudo-coherence matrix
corresponding to the spherically isotropic (diffuse) noise, are

[Γ (ω)]ij = sin [ω(j − i)τ0]
ω(j − i)τ0

= sinc [ω(j − i)τ0] . (9)

The beampattern measures the array response to a plane wave from the θ direction. The WNG
tells how a beamformer is robust to different kinds of imperfections in the array and sensors.
And the DF measures the directional gain of the beamformer.

We give below the most used and studied fixed beamformers with microphone arrays. They
are:

• delay-and-sum (DS) [6]:

hDS (ω) = d (ω)
M

, (10)

• superdirective [7]:

hS (ω) = Γ−1 (ω) d (ω)
dH (ω) Γ−1 (ω) d (ω) , (11)

• and robust (or regularized) superdirective [1], [7]:

hR,ε (ω) = [Γ (ω) + εIM ]−1 d (ω)
dH (ω) [Γ (ω) + εIM ]−1 d (ω)

, (12)

where ε ≥ 0 is a regularization parameter and IM is the M × M identity matrix. The
parameter ε attempts to make a compromise between a large value of DF and white
noise amplification. A small value of ε leads to a large value of DF but a small WNG,
while a large value of ε gives a large WNG but a low value of DF. Two interesting cases
of (12) are hR,0 (ω) = hS (ω) and hR,∞ (ω) = hDS (ω).

The DS beamformer is equivalent to the beamformer that maximizes WNG, and therefore with
this beamformer we have W [hDS (ω)] = M . The superdirective beamformer maximizes DF; in
this case, D [hS (ω)] = dH (ω) Γ−1 (ω) d (ω) and its value is close to M2 for a small value of δ
[3]. It is well known that this beamformer is sensitive to sensors’ noise and array imperfections.
This is why hR,ε (ω) was derived by adding a constraint on the WNG.

The objective of this paper is to find other alternatives to the regularized superdirective beam-
former, hR,ε (ω), and better ways to compromise between WNG and DF.
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3 Parametric Superdirective Beamformer
Using eigenvalue decomposition [18], the pseudo-coherence matrix of the diffuse noise can be
decomposed as

Γ (ω) = U (ω) Λ (ω) UT (ω) , (13)

where U (ω) is an orthogonal matrix, i.e., UT (ω) U (ω) = U (ω) UT (ω) = IM , and Λ is a
diagonal matrix whose main elements are strictly positive as Γ (ω) is positive definite. From
this decomposition, we define the 1/p (p ∈ [1,∞]) order noise pseudo-coherence matrix as:

Γ
1
p (ω) = U (ω) Λ

1
p (ω) UT (ω) . (14)

Now, we introduce the parametric SNR gain, which is as follows:

Gp [h (ω)] =

∣∣∣hH (ω) d (ω)
∣∣∣2

hH (ω) Γ
1
p (ω) h (ω)

. (15)

It can be noticed that G∞ [h (ω)] = W [h (ω)] and G1 [h (ω)] = D [h (ω)]. In this paper, we
propose a parametric superdirective beamformer, which is obtained by maximizing Gp [h (ω)]
with a distortionless constraint, i.e.,

min
h(ω)

hH (ω) Γ
1
p (ω) h (ω) subject to hH (ω) d (ω) = 1. (16)

The solution of (16) is the parametric superdirective beamformer:

hP,p (ω) = Γ−
1
p (ω) d (ω)

dH (ω) Γ−
1
p (ω) d (ω)

, (17)

with 1/p being the parameter order and Γ−
1
p (ω) is computed as

Γ−
1
p (ω) = U (ω) Λ−

1
p (ω) UT (ω) . (18)

It follows then that the WNG of the parametric superdirective beamformer is

W [hP,p (ω)] =

∣∣∣hHP,p (ω) d (ω)
∣∣∣2

hHP,p (ω) hP,p (ω)
=

[
dH (ω) Γ−

1
p (ω) d (ω)

]2
dH (ω) Γ−

2
p (ω) d (ω)

, (19)

with

W [hP,1 (ω)] =

[
dH (ω) Γ−1 (ω) d (ω)

]2
dH (ω) Γ−2 (ω) d (ω) ≤M (20)

and

W [hP,∞ (ω)] = M. (21)
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Figure 1: Beampatterns of the parametric superdirective beamformer with a uniform linear
array, for six different values of p: (a) p = 1, (b) p = 1.1, (c) p = 1.3, (d) p = 1.5, (e) p = 2, and
(f) p = 10. Conditions of simulation: M = 4, δ = 1.5 cm, and f = 2000 Hz.

The DF of this parametric superdirective beamformer is

D [hP,p (ω)] =

∣∣∣hHP,p (ω) d (ω)
∣∣∣2

hHP,p (ω) Γ (ω) hP,p (ω)
=

[
dH (ω) Γ−

1
p (ω) d (ω)

]2
dH (ω) Γ1− 2

p (ω) d (ω)
, (22)

with

D [hP,1 (ω)] = dH (ω) Γ−1 (ω) d (ω) ≤M2 (23)

and

D [hP,∞ (ω)] = M2

dH (ω) Γ (ω) d (ω) ≥ 1. (24)

For any given parameters p1 ≥ p2, we should always have

W [hP,p1 (ω)] ≥ W [hP,p2 (ω)] (25)
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Figure 2: SNR gains of the parametric superdirective beamformer with a uniform linear array
as a function of the frequency, f , for six different values of p: (a) DF and (b) WNG. Conditions
of simulation: M = 4 and δ = 1.5 cm.

and

D [hP,p1 (ω)] ≤ D [hP,p2 (ω)] . (26)

Clearly, by playing with the value of the parameter p, we have three different cases:

• For p = 1, we obtain the conventional superdirective beamformer, i.e., hP,1 (ω) = hS (ω),
which achieves the maximum DF with a given number of sensors.

• For p = ∞, we get the DS beamformer, i.e., hP,∞ (ω) = hDS (ω), which achieves the
maximum WNG.

• For 1 < p <∞, we obtain a beamformer whose DF decreases while WNG increases with
p. So, by properly choosing the value of p, the parametric superdirective beamformer
hP,p (ω) is able to control white noise amplification while having a reasonably good value
of DF.
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Figure 3: SNR gains of the parametric superdirective beamformer with a uniform linear array
as a function of the parameter p: (a) DF and (b) WNG. Conditions of simulation: M = 4, δ =
1.5 cm, and f = 1000 Hz.

4 Simulations
In this section, we briefly study the performance of the parametric superdirective beamformer
through simulations. We use a uniform linear array consisting of four closely spaced micro-
phones, with δ = 1.5 cm.

Figure 1 plots the beampatterns of the parametric superdirective beamformer with p = 1, 1.1,
1, 3, 1.5, 2, 10 at frequency f = 2000 Hz. It is clearly seen that the patterns vary greatly with p.
For p = 1, one can see that the beampattern is a superdirective one, which has a gain of one
at the angle θ = 0◦ and three nulls in the range of 0◦ to 180◦. This superdirective patterns is
the third-order hypercardioid as shown in [10] that the superdirective beamformer corresponds
to the hypercardioid pattern of order M − 1 [10]. For a large value of p (e.g., p = 10), the
beampattern resembles the DS beampattern.

Figure 2 plots both the WNG and the DF of the parametric superdirective beamformer (with
p = 1, 1.1, 1, 3, 1.5, 2, 10) as a function of the frequency, f . It is seen that the superdirective
beamformer (p = 1) can achieve the maximum DF of approximately 12 dB. However, it is clearly
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seen that it suffers from significant white noise amplification, particularly at low frequencies,
which limits its use in practice. In comparison, the parametric superdirective beamformer can
achieve a good compromise between large values of the DF and low values of the WNG. As
seen, as the value of p increases from 1.1 to 10, the value of DF decreases while the value of
WNG increases, which corroborates the theoretical analysis in Section 3.

Figure 3 plots the DF and the WNG as a function of p at f = 1000 Hz. It is seen that the DF
decreases while the WNG increases significantly with p in the small range from 1 to 3. If the
value of p is larger than 3, the DF and the WNG do not vary much. This indicates that we
can choose a proper value of p within a small range to design the parametric superdirective
beamformer even though theoretically this parameter can vary from 1 to positive infinity.

5 Conclusions
The superdirective beamformer, although maximizes the directivity factor, is found to suffer
from white noise amplification, particularly significant at low frequencies. This means that the
superdirective beamformer is very sensitive to sensors’ noise and array imperfections. In this
paper, we developed a parametric superdirective beamformer, which was obtained from the
maximization of a parametric SNR gain. Simulation results demonstrated the good properties
of this beamformer, which can compromise in a smooth way, thanks to and within a small range
of the parameter p, between the DF and the WNG.
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