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Abstract—Noise reduction has long been an active research
topic in signal processing and many algorithms have been devel-
oped over the last four decades. These algorithms were proved
to be successful in some degree to improve the signal-to-noise
ratio (SNR) and speech quality. However, there is one problem
common to all these algorithms: the volume of the enhanced
signal after noise reduction is often perceived lower than that of
the original signal. This phenomenon is particularly serious when
SNR is low. In this paper, we develop two constrained Wiener
gains and filters for noise reduction in the short-time Fourier
transform (STFT) domain. These Wiener gains and filters are
deduced by minimizing the mean-squared error (MSE) between
the clean speech and the speech estimate with the constraint that
the sum of the variances of the filtered speech and residual noise
is equal to the variance of the noisy observation.

I. CONSTRAINED WIENER GAINS FOR SINGLE- CHANNEL
NOISE REDUCTION

A. Signal Model
Let us first consider the single-channel noise reduction

problem, which is to recover the zero-mean desired signal x(t)
[1], [2], [3] from the following noisy signal:

y(t) = x(t) + v(t), (1)
where t is the time index and v(t) is the zero-mean unwanted
additive noise. The noise signal v(t) is assumed to be uncor-
related with x(t).

In the frequency domain and at the frequency index f , the
signal model in (1) is expressed as

Y (f) = X(f) + V (f), (2)
where Y (f), X(f), and V (f) are the frequency-domain
representations of y(t), x(t), and v(t), respectively. Since x(t)
and v(t) are uncorrelated and zero mean by assumption, the
variance of Y (f) is

φY (f) = E
[
|Y (f)|2

]
= φX(f) + φV (f), (3)

where E[·] denotes mathematical expectation, and φX(f) and
φV (f) are the variances of X(f) and V (f), respectively.

B. Conventional Wiener Gains
Traditionally, an estimate of the desired signal, X(f), is

obtained by applying a gain, H(f), to the observation, Y (f),
i.e.

X̂(f) = Y (f)H(f). (4)
The most widely used way to find an optimal gain so that
X̂(f) is a good estimate of X(f) is via the mean-squared
error (MSE) criterion given by

JX [H(f)] = E

[∣∣∣X̂(f)−X(f)
∣∣∣
2
]
. (5)

Minimizing JX [H(f)] gives the conventional Wiener gain [1]:
HW(f) =

φX(f)

φY (f)
=

iSNR(f)

1 + iSNR(f)
, (6)

where iSNR(f) = φX(f)/φV (f) is the narrowband input
SNR. It is clear that this gain is always real and 0 ≤
HW(f) ≤ 1. Therefore, the optimal estimate (in the minimum
MSE sense) of X(f) and the minimum MSE (MMSE) are,
respectively,

X̂W(f) = HW(f)Y (f) (7)
and

JX [HW(f)] = φX(f)− φ
X̂W

(f), (8)

where φ
X̂W

(f) = φ2
X(f)/φY (f) is the variance of X̂W(f).

Alternatively, we can also estimate the noise signal, V (f),
by applying a gain, H ′(f), to the observation, Y (f), i.e.,
V̂ (f) = Y (f)H ′(f) . Using the MSE criterion:

JV [H ′(f)] = E

[∣∣∣V̂ (f)− V (f)
∣∣∣
2
]
, (9)

we find the optimal gain and estimator:

H ′

W(f) =
φV (f)

φY (f)
=

1

1 + iSNR(f)
(10)

and
V̂W(f) = H ′

W(f)Y (f). (11)
The corresponding MMSE is

JV [H ′

W(f)] = φV (f)− φ
V̂W

(f), (12)

where φ
V̂W

(f) = φ2
V (f)/φY (f) is the variance of V̂W(f).

Giving the estimate of V (f), we can estimate X(f) as follows:
X̂ ′

W(f) = Y (f)− V̂W(f) = X̂W(f). (13)
So, the two estimators in (7) and (13) are strictly equivalent
here. It can be shown that

JX [HW(f)] = JV [H ′

W(f)] = E
[
X̂W(f)V̂ ∗

W(f)
]
, (14)

where the superscript ∗ denotes the complex conjugation. Also,
it is interesting to observe that the sum of the estimated speech
and noise signals is equal to the observation, i.e.,

X̂W(f) + V̂W(f) = Y (f), (15)



which implies that HW(f)+H ′

W(f) = 1 . However, the sum
of the variances of the estimated speech and noise signals is
not equal to the variance of the observation, i.e.,

φ
X̂W

(f) + φ
V̂W

(f) =
φ2
X(f) + φ2

V (f)

φY (f)
̸= φY (f). (16)

This is due to the fact that X̂W(f) and V̂W(f) are correlated
as shown in (14).

C. Constrained Wiener Gains

Let us define the MSE criterion:

J [H(f), H ′(f)] = JX [H(f)] + JV [H ′(f)] . (17)

The minimization of J [H(f), H ′(f)] without any constraint
or with the constraint that X̂(f)+ V̂ (f) = Y (f) [i.e., H(f)+
H ′(f) = 1] leads to HW(f) and H ′

W(f).
Another interesting possibility is to minimize

J [H(f), H ′(f)] with the constraint that the sum of the
variances of the estimated speech and noise signals is equal to
the variance of the observation, i.e., φ

X̂
(f)+φ

V̂
(f) = φY (f),

or, equivalently, |H(f)|2 + |H ′(f)|2 = 1. By using the
Lagrange multiplier technique, we find that the constrained
Wiener gains for the estimation of the speech and noise
signals are, respectively,

HcW(f) =
φX(f)√

φ2
X(f) + φ2

V (f)
=

√
iSNR2(f)

1 + iSNR2(f)
, (18)

H ′

cW(f) =
φV (f)√

φ2
X(f) + φ2

V (f)
=

√
1

1 + iSNR2(f)
. (19)

Then, we deduce two different estimators for X(f):

X̂cW(f) = HcW(f)Y (f) (20)

and

X̂ ′

cW(f) = Y (f)− V̂cW(f) = HcW(f)Y (f), (21)

where

V̂cW(f) = H ′

cW(f)Y (f) (22)

and

HcW(f) = 1−H ′

cW(f). (23)

Contrary to the conventional Wiener approach, X̂cW(f) ̸=
X̂ ′

cW(f). It can be verified that

E
[
X̂cW(f)V̂ ∗

cW(f)
]
≥ E

[
X̂W(f)V̂ ∗

W(f)
]

(24)

HcW(f) ≤ HW(f) ≤ HcW(f). (25)

As a consequence, we can state that X̂cW(f) [resp. X̂ ′

cW(f)]
is more (resp. less) noisy but less (resp. more) distorted than
X̂W(f) = X̂ ′

W(f).

II. CONSTRAINED WIENER FILTERS FOR MULTI-
CHANNEL NOISE REDUCTION

A. Signal Model
Now, we consider the multichannel signal model in which

an M -element microphone array captures a convolved source
signal in some noise field. The received signals, at the time
index t, are expressed as [4], [5]

ym(t) = gm(t) ∗ s(t) + vm(t) (26)
= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the room impulse response from the unknown
speech source, s(t), to the mth microphone, ∗ stands for linear
convolution, and vm(t) is the additive noise at microphone m.
We assume that the signals xm(t) = gm(t) ∗ s(t) and vm(t)
are uncorrelated and zero mean.

In this section, our desired signal is designated by the
clean (but convolved) speech signal received at microphone 1,
namely x1(t) [4], i.e., we attempt to recover x1(t) given ym(t),
m = 1, 2, . . . ,M .

Expression (26) can be written in the frequency domain, at
the frequency index f , as

Ym(f) = Xm(f) + Vm(f), m = 1, 2, . . . ,M, (27)
where Ym(f), Xm(f)and Vm(f) are the frequency-domain
representations of ym(t), xm(t), and vm(t), respectively. It
is more convenient to write the M frequency-domain micro-
phone signals in a vector notation as

y(f) =
[
Y1(f) Y2(f) · · · YM (f)

]T (28)
= x(f) + v(f),

where the superscript T denotes the transpose of a vector or
a matrix, and x(f) and v(f) are defined in a similar way to
y(f). From (28), we easily obtain the correlation matrix of
y(f):

Φy(f) = Φx(f) +Φv(f) (29)
where Φx(f) and Φv(f) are the correlation matrices of x(f)
and v(f), respectively.

B. Conventional Wiener Filters
In the multichannel scenario, the desired signal, X1(f), is

usually obtained by applying a complex-valued linear filter,
h(f), of length M , to the observation signal vector, y(f), i.e.,
X̂1(f) = hH(f)y(f). The minimization of the MSE criterion:

JX1
[h(f)] = E

[∣∣∣X̂1(f)−X1(f)
∣∣∣
2
]
, (30)

gives the multichannel Wiener filter [4]:
hW(f) = Φ−1

y (f)Φx(f)i, (31)
where i is the first column of the M ×M identity matrix, IM .
We deduce that the optimal estimate (in the minimum MSE
sense) of X1(f) and the MMSE are, respectively,

X̂1,W(f) = hH
W(f)y(f), (32)

JX1
[hW(f)] = φX1

(f)− φ
X̂1,W

(f), (33)

where φ
X̂1,W

(f) = iTΦx(f)Φ−1
y (f)Φx(f)i is the variance of

X̂1,W(f).



Alternatively, we can also estimate the noise signal at the
first microphone, i.e., V1(f), by applying a complex-valued
linear filter, h′(f), of length M , to the observation signal
vector, y(f), i.e.,

V̂1(f) = h′H(f)y(f). (34)
From the MSE criterion:

JV1
[h′(f)] = E

[∣∣∣V̂1(f)− V1(f)
∣∣∣
2
]
, (35)

we find that the optimal filter and estimator are, respectively,
h′

W(f) = Φ−1
y (f)Φv(f)i (36)

and
V̂1,W(f) = h′H

W (f)y(f). (37)
The corresponding MMSE is

JV1
[h′

W(f)] = φV1
(f)− φ

V̂1,W
(f), (38)

where φ
V̂1,W

(f) = iTΦv(f)Φ−1
y

(f)Φv(f)i is the variance of
V̂1,W(f). Now that we have an optimal estimate of V1(f), the
estimate X1(f) is obtained as follows:

X̂ ′

1,W(f) = Y1(f)− V̂1,W(f) = X̂1,W(f). (39)
So, the two estimators in (32) and (39) are strictly equivalent.
It is easy to show that

JX1
[hW(f)] = JV1

[h′

W(f)] = E
[
X̂1,W(f)V̂ ∗

1,W(f)
]

= iTΦx(f)Φ
−1
y

(f)Φv(f)i. (40)
Also, it is important to see that the sum of the estimated
speech and noise signals is equal to the observation at the
reference microphone, X̂1,W(f) + V̂1,W(f) = Y1(f). As a
result, hW(f) + h′

W(f) = i .
However, the sum of the variances of the estimated speech

and noise signals is not equal to the variance of the observation
at the reference microphone, i.e.,

φ
X̂1,W

(f) + φ
V̂1,W

(f) ̸= φY1
(f). (41)

C. Constrained Wiener Filters
Similar to the single-channel case, let us define the follow-

ing MSE criterion:
J [h(f),h′(f)] = JX1

[h(f)] + JV1
[h′(f)] . (42)

It is clear that the minimization of the previous criterion
without any constraint leads to hW(f) and h′

W(f). Now, we
wish to minimize J [h(f),h′(f)] subject to

φY1
(f) = φ

X̂1
(f) + φ

V̂1
(f) (43)

= hH(f)Φy(f)h(f) + h′H(f)Φy(f)h
′(f),

which means that the variance of the observation is equal to
the sum of the variances of the estimated speech and noise
signal at the reference microphone. Combining this constraint
to the MSE criterion with a Lagrange multiplier, we find that
the constrained Wiener filters for the estimation of the speech
and noise signals are, respectively,

hcW(f) = S(f)hW(f), (44)

h′

cW(f) = S(f)h′

W(f), (45)

where S(f) is
√

φY1
(f)

iTΦx(f)Φ
−1
y (f)Φx(f)i+ iTΦv(f)Φ

−1
y (f)Φv(f)i

.

It can be shown that S(f) ≥ 1. From these results, we can
deduce two different estimators for X1(f):

X̂1,cW(f) = hH
cW(f)y(f), (46)

X̂ ′

1,cW(f) = Y1(f)− V̂1,cW(f) = h
H

cW(f)y(f), (47)

where V̂1,cW(f) = h′H
cW(f)y(f) and hcW(f) = i− h′

cW(f).
Contrary to the Wiener case, X̂1,cW(f) ̸= X̂ ′

1,cW(f). We
can state that X̂1,cW(f) [resp. X̂ ′

1,cW(f)] is more (resp.
less) noisy but less (resp. more) distorted than X̂1,W(f) =
X̂ ′

1,W(f).

III. SIMULATIONS

In our simulations, the clean signal is partitioned into
overlapping frames with a frame size of K = 256 and an
overlapping factor of 75%. A Kaiser window is then applied
to each frame and the windowed frame signal is subsequently
transformed into the STFT domain using a 256-point FFT.
The clean speech used is recorded in a quiet office room.
It is sampled at 8 kHz. The overall length of the signal is
approximately 30-s long. The noisy speech is obtained by
adding white noise to the clean speech (the noise signal is
properly scaled to control the input SNR level).

To compute the traditional and constrained Wiener gain-
s/filters, we need to know φY (f), φX(f), and φV (f). In
this work, an estimate of φY (f) at the nth frame, which is
denoted as φY (f, n), is computed using a short-time average
with samples from the most recent 200-ms signal.

The estimate of the noise variance at the nth frame, i.e.,
φV (f, n), is obtained using the minima controlled recursive
averaging (MCRA) method [6], [7]. Then, φX(f, n) is com-
puted as

φX(f, n) = φY (f, n)− φV (f, n), (48)

where φX(f, n) is forced to be zero when negative.
Substituting φY (f, n), φX(f, n), φV (f, n) into (6), (18),

and (23), we implemented the conventional and constrained
Wiener gains. The noisy speech spectra is then passed through
the Wiener gains to obtain the estimate of the desired signal,
i.e.,

X̂(f) = H(f)Y (f) = X̂fd(f) + V̂rn(f), (49)

where X̂fd(f) = H(f)X(f) is the filtered desired signal,
V̂rn(f) = H(f)V (f) is the residual noise. Finally, the inverse
FFT (with the overlap add technique) is used to obtain
the time-domain signals x̂(t), x̂fd(t), and v̂rn(t), which are
the time-domain counterparts of X̂(f), X̂fd(f), and V̂rn(f),
respectively.
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Fig. 1. Performance of the traditional (HW) and the two constrained (HcW

and HcW) Wiener gains in the single-channel case as a function of the input
SNR in white noise.

We use the output SNR and speech distortion index as the
performance criteria [8], which are defined as

oSNR =
E
[
x̂2
fd(t)

]

E [v̂2rn(t)]
, (50)

υsd =
E
{
[x̂fd(t)− x(t)]2

}

E [x2(t)]
. (51)

We also calculate the variance of the enhanced signal in the
time domain with different filters, and then compare the results
with that of the noisy signal.

The first simulation assesses the single-channel noise re-
duction performance as a function of the input SNR, i.e.,
iSNR. We use the conventional Wiener gain, HW, and the
two constrained Wiener gains, HcW and HcW. The results are
plotted in Fig. 1. One can see from Fig. 1(a) that the output
SNR (oSNR) of the three Wiener gains increases linearly with
iSNR. Figure 1(b) shows that the speech distortion index
of the Wiener gains decreases with iSNR. In comparison,
X̂cW(f) [resp. X̂ ′

cW(f)] is more (resp. less) noisy but less
(resp. more) distorted than X̂W(f) = X̂ ′

W(f). Also, one can
see from Fig. 1(c) that the variance of the enhanced speech is
approximately equal to the variance of the noisy signal with
the constrained Wiener gains. However, the variance of the
enhanced signal with the traditional Wiener method is much
smaller than that of the noisy signal, particularly when the
input SNR is low.

The second simulation studies the impact of the number of
microphones on the noise reduction performance. The simula-
tion is conducted with the real impulse responses measured
in the Varechoic Chamber at Bell Labs [9], [10]. In this
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Fig. 2. Performance of the traditional Wiener (hW) and the two constrained
(hcW and hcW) Wiener filters as a function of the number of microphones
in the multichannel case in white noise with input SNR = 10 dB and T60 =

380 ms.

simulation, we set T60 = 380 ms and spatially white noise
is added into each microphone with iSNR = 10 dB. We use
the conventional Wiener filter, hW, and the two constrained
Wiener filters, hcW and hcW. The results of this simulation
are plotted in Fig. 2. One can see that both the output SNR
and the speech distortion index increase with the number
of microphones, M . One can also see that X̂1,cW(f) [resp.
X̂ ′

1,cW(f)] is more (resp. less) noisy but less (resp. more)
distorted than X̂1,W(f) = X̂ ′

1,W(f).

IV. CONCLUSIONS

In this paper, we developed two constrained Wiener gains
for single-channel noise reduction and two constrained Wiener
filters for multichannel noise reduction in the frequency do-
main. These constrained Wiener gains and filters are deduced
by minimizing the mean-squared error (MSE) between the
clean speech and the speech estimate with the constraint that
the variance of the enhanced signal is equal to that of the noisy
signal. In comparison with the traditional Wiener gains and
filters, the advantage of the deduced ones is that the volume
of the enhanced signal after noise reduction is similar to that
of the noisy signal.
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