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ABSTRACT
This paper develops a single-channel noise reduction algorithm in
the short-time Fourier transform (STFT) domain, which attempts to
optimize the fullband output signal-to-noise ratio (SNR). We show
that the conventional Wiener filter, the maximum SNR filter, and the
ideal binary mask based method are particular cases of the developed
algorithm. Simulations are presented to illustrate the properties of
this algorithm.

Index Terms—Noise reduction, speech enhancement, STFT do-
main, optimal gains, fullband output SNR, ideal binary mask.

1. INTRODUCTION
Although significant efforts have been devoted to it over the last four
decades [1]–[13], noise reduction remains an open research problem.
In this paper, we investigate this problem in the short-time Fourier
transform (STFT) domain and develop an algorithm that can opti-
mize the fullband output signal-to-noise ratio (SNR). We show that
this algorithm is a generalized form of the widely used approaches
in the STFT domain such as the Wiener and maximum SNR filters.

2. SIGNAL MODEL AND PROBLEM FORMULATION
The noise reduction or speech enhancement problem considered in
this study is one of recovering the desired signal (or clean speech)
x(t), t being the time index, of zero mean from the noisy observation
(microphone signal) [4],[5]:

y(t) = x(t) + v(t), (1)

where v(t) is the unwanted additive noise, which is assumed to be
a zero-mean random process white or colored but uncorrelated with
x(t). All signals are considered to be real and broadband.

Using the STFT, (1) can be rewritten in the time-frequency do-
main as [6]

Y (k, n) = X(k, n) + V (k, n), (2)
where the zero-mean complex random variables Y (k, n), X(k, n),
and V (k, n) are the STFTs of y(t), x(t), and v(t), respectively, at
the frequency bin k ∈ {0, 1, . . . ,K − 1} and the time frame n.
Since x(t) and v(t) are uncorrelated by assumption, the variance of
Y (k, n) is

φY (k, n) = E
[
|Y (k, n)|2

]
(3)

= φX(k, n) + φV (k, n),

where E [·] denotes mathematical expectation, and φX(k, n) =
E
[
|X(k, n)|2

]
and φV (k, n) = E

[
|V (k, n)|2

]
are the variances

of X(k, n) and V (k, n), respectively.
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Then, the objective of single-channel noise reduction in the
STFT domain is to estimate the desired signal, X(k, n), from the
observation signal, Y (k, n), in the best possible way.

Before leaving this section, let us define the subband and full-
band input SNRs. The subband input SNR is defined as

iSNR(k, n) =
φX(k, n)
φV (k, n)

(4)

and the fullband input SNR is

iSNR(n) =

∑K−1
k=0 φX(k, n)

∑K−1
k=0 φV (k, n)

. (5)

It can be checked that

min
k

iSNR(k, n) ≤ iSNR(n) ≤ max
k

iSNR(k, n) (6)

In other words, the fullband input SNR can never exceed the maxi-
mum of the subband input SNRs and can never be smaller than the
minimum of the subband input SNRs.

3. NOISE REDUCTION WITH GAINS
In the most widely used approaches to noise reduction in the STFT
domain, a complex gain, H(k, n), is applied to the observation,
Y (k, n), i.e.,

Z(k, n) = H(k, n)Y (k, n) (7)
= Xfd(k, n) + Vrn(k, n),

where Z(k, n) is the estimate of X(k, n), Xfd(k, n) =
H(k, n)X(k, n) is the filtered desired signal, and Vrn(k, n) =
H(k, n)V (k, n) is the residual noise. The variance of Z(k, n) is
then

φZ(k, n) = |H(k, n)|2 φY (k, n) (8)
= φXfd(k, n) + φVrn(k, n),

where φXfd(k, n) = |H(k, n)|2 φX(k, n) and φVrn(k, n) =
|H(k, n)|2 φV (k, n) are the variances of Xfd(k, n) and Vrn(k, n),
respectively.

It is clear that the subband input and output SNRs are equal.
However, the fullband output SNR, which is given by

oSNR [H(:, n)] =

∑K−1
k=0 φXfd(k, n)∑K−1
k=0 φVrn(k, n)

, (9)

is generally different from the fullband input SNR.
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The objective of this work is to find the K subband gains,
H(k, n), k = 0, 1, . . . ,K − 1, in such a way that the fullband out-
put SNR is as large as possible or, at least, greater than the fullband
input SNR, i.e., oSNR [H(:, n)] > iSNR(n).

To simplify the notation, we denote iSNR (k, n) by λ (k, n)
from now on. We also re-order the subband input SNRs in the fol-
lowing way:

λ (k0, n) ≥ λ (k1, n) ≥ · · · ≥ λ (kK−1, n) , (10)

where ki, i = 0, 1, . . . ,K − 1 and ki ∈ {0, 1, . . . ,K − 1}.
Given (7) and (10), one can write the fullband output SNR as

oSNR [h(n)] =
hH(n)DX(n)h(n)
hH(n)DV (n)h(n)

(11)

=

∑K−1
i=0 |H (ki, n)|2 φX (ki, n)∑K−1
i=0 |H(ki, n)|2 φV (ki, n)

,

where

h(n) = [H (k0, n) H (k1, n) . . . H (kK−1, n)]
T (12)

is a filter of length K containing all the subband gains, the super-
scripts T and H are the transpose and conjugate-transpose operators,
respectively, and

DX(n) = diag [φX (k0, n) ,φX (k1, n) , . . . ,φX (kK−1, n)] , (13)

DV (n) = diag [φV (k0, n) ,φV (k1, n), . . . ,φV (kK−1, n)] , (14)

are two diagonal matrices. It can be checked that

D−1
V (n)DX(n) = diag [λ (k0, n) ,λ (k1, n) , . . . ,λ (kK−1, n)]

is also a diagonal matrix containing all the K subband input SNRs
ordered from the largest to the smallest.

Now, we give two interesting properties.
Property 3.1: With λ (k0, n) ≥ λ (k1, n) ≥ · · · ≥

λ (kK−1, n) ≥ 0, we have
∑K−1

i=0 |αi(n)|2 λ (ki, n)∑K−1
i=0 |αi(n)|2

≤
∑K−2

i=0 |αi(n)|2 λ (ki, n)∑K−2
i=0 |αi(n)|2

≤ · · ·

· · · ≤
∑1

i=0 |αi(n)|2 λ (ki, n)∑1
i=0 |αi(n)|2

≤ λ (k0, n) (15)

or, equivalently,
∑K−1

i=0 |αi(n)|2 φX (ki, n)∑K−1
i=0 |αi(n)|2 φV (ki, n)

≤
∑K−2

i=0 |αi(n)|2 φX (ki, n)∑K−2
i=0 |αi(n)|2 φV (ki, n)

≤ · · ·

· · · ≤
∑1

i=0 |αi(n)|2 φX (ki, n)∑1
i=0 |αi(n)|2 φV (ki, n)

≤ φX (k0, n)
φV (k0, n)

, (16)

where αi(n), i = 0, 1, . . . ,K − 1 are arbitrary complex numbers
with at least one of them different from 0.

Property 3.2: With λ(k0, n) ≥ λ(k1, n) ≥ · · · ≥
λ(kK−1, n) ≥ 0, we have

λ (kK−1, n) ≤
∑1

i=0 |βK−1−i(n)|2 λ (kK−1−i, n)∑K−1
i=0 |βK−1−i(n)|2

≤ · · ·

· · · ≤
∑K−2

i=0 |βK−1−i(n)|2 λ (kK−1−i, n)∑K−2
i=0 |βK−1−i(n)|2

≤

∑K−1
i=0 |βK−1−i(n)|2 λ (kK−1−i, n)∑K−2

i=0 |βK−1−i(n)|2
(17)

or, equivalently,

φX (kK−1, n)
φV (kK−1, n)

≤
∑1

i=0 |βK−1−i(n)|2 φX (kK−1−i, n)∑1
i=0 |βK−1−i(n)|2 φV (kK−1−i, n)

≤

· · · ≤
∑K−2

i=0 |βK−1−i(n)|2 φX (kK−1−i, n)∑K−2
i=0 |βK−1−i(n)|2 φV (kK−1−i, n)

≤

∑K−1
i=0 |βK−1−i(n)|2 φX (kK−1−i, n)∑K−1
i=0 |βK−1−i(n)|2 φV (kK−1−i, n)

, (18)

where βK−1−i(n), i = 0, 1, . . . ,K − 1 are arbitrary complex num-
bers with at least one of them different from 0.

The previous inequalities can be easily shown by induction. It
follows then that1

λ (kK−1, n) ≤ oSNR [h(n)] ≤ λ (k0, n) ,∀h(n), (19)

as well as the inequalities in (6). Clearly, both the fullband input and
output SNRs can never exceed the maximum subband input SNR.

4. DETERMINATION OF THE GAINS FROM THE
FULLBAND OUTPUT SNR

The filter, h(n), that maximizes the fullband output SNR given in
(11) is simply the eigenvector corresponding to the maximum eigen-
value of the matrix D−1

V (n)DX(n). Since this matrix is diagonal, its
maximum eigenvalue is its largest diagonal element, i.e., λ (k0, n).
As a consequence, the maximum SNR filter is

hα0(n) = α0(n)i0, (20)

where α0(n) ̸= 0 is an arbitrary complex number and i0 is the first
column of the K × K identity matrix, IK . Equivalently, we can
write (20) as

{
Hα0 (k0, n) = α0(n)

H (ki, n) = 0, i = 1, 2, . . . ,K − 1
. (21)

With (20), we get the maximum possible fullband output SNR,
which is

oSNR [hα0(n)] = λ (k0, n)

= max
k

iSNR(k, n) ≥ iSNR(n). (22)

As a result,

oSNR [hα0(n)] ≥ oSNR [h(n)] ,∀h(n). (23)

The estimate of the desired signal with the filter given (20) is
{
X̂α0 (k0, n) = Hα0 (k0, n)Y (k0, n)

X̂ (ki, n) = 0, i = 1, 2, . . . ,K − 1
. (24)

Now, we need to determine α0(n). There are at least two ways
to find this parameter. The first one is by minimizing the mean-
squared error (MSE) between X(k0, n) and X̂α0(k0, n), i.e.,

J [Hα0 (k0, n)] = E
[
|X (k0, n)−Hα0 (k0, n)Y (k0, n)|2

]
.

(25)

1This is also a consequence of the fullband output SNR in (11), whose
form is the generalized Rayleigh quotient.
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The second possibility is to minimize the distortion-based MSE, i.e.,

Jd [Hα0 (k0, n)] = E
[
|X (k0, n)−Hα0 (k0, n)X (k0, n)|2

]
.

(26)

The minimization of J [Hα0(k0, n)] leads to

Hα0,W(n) =
iSNR (k0, n)

1 + iSNR (k0, n)
, (27)

which is the Wiener gain at the frequency bin k0. Similarly, the
minimization of Jd [Hα0 (k0, n)] gives

Hα0,U(n) = 1, (28)

which is the unitary gain at the frequency bin k0.
Expressions (27) and (28) give two different maximum fullband

SNR filters. While they both maximize the fullband output SNR,
these two filters may introduce a significant amount of distortion to
the desired signal, since all its frequency bins are forced to be 0 ex-
cept at k0. A much better approach when we deal with broadband
signals such as speech is to form the filter from a linear combination
of the eigenvectors corresponding to the P (≤ K) largest eigenval-
ues of D−1

V (n)DX(n), i.e.,

hα0:P−1(n) =
P−1∑

p=0

αp(n)ip (29)

= hα0:P−2(n) + αP−1(n)iP−1,

where αp(n), p = 0, 1, . . . , P − 1 are arbitrary complex numbers
with at least one of them different from 0 and ip is the (p + 1)th
column of IK . We can also write (29) as

{
Hαp (kp, n) = αp(n), p = 0, 1, . . . , P − 1

H (ki, n) = 0, i = P, P + 1, . . . ,K − 1
. (30)

Hence, an estimate of the desired signal is
{
X̂αp (kp, n) = Hαp (kp, n)Y (kp, n) , p = 0, 1, . . . , P − 1

X̂ (ki, n) = 0, i = P, P + 1, . . . ,K − 1
.

(31)

To find the αp’s, we can either optimize J [Hα0 (k0, n)] or
Jd [Hα0 (k0, n)]. The first one leads to the Wiener gains at the fre-
quency bins kp, p = 0, 1, . . . , P − 1, i.e.,

Hαp,W(kp, n) =
iSNR(kp, n)

1 + iSNR(kp, n)
, p = 0, 1, . . . , P − 1, (32)

while the second one gives the unitary gains at the frequency bins
kp, p = 0, 1, . . . , P − 1, i.e.,

Hαp,U (kp, n) = 1, p = 0, 1, . . . , P − 1. (33)

The filters (of length K) corresponding to (32) and (33) are, respec-
tively,

hW,P (n) =
[
Hαp,W (k0, n) . . . Hαp,W (kP−1, n) 0 . . . 0

]T

(34)

and
hU,P (n) = [1 . . . 1 0 . . . 0]T . (35)

For P = K, hW,K(n) corresponds to the classical Wiener approach
and hU,K(n) is the identity filter, which does not affect the obser-
vations. Clearly, hU,P (n) corresponds to the ideal binary mask [7],
since the subband observation signals with the P largest subband in-
put SNRs are not affected while the K − P others with the smallest
subband input SNRs are put to 0. We should always have

oSNR [hU,P (n)] ≤ oSNR [hW,P (n)] . (36)

From property 3.1, we deduce that

iSNR(n) ≤ oSNR [hW,K(n)] ≤ oSNR [hW,K−1(n)]

≤ · · · ≤ oSNR [hW,1(n)] = λ (k0, n) (37)

and

iSNR(n) = oSNR [hU,K(n)] ≤ oSNR [hU,K−1(n)]

≤ · · · ≤ oSNR [hU,1(n)] = λ (k0, n) . (38)

5. SIMULATIONS
We have presented the single-channel noise reduction problem in the
STFT domain and discussed the design of the optimal gains to re-
duce noise and improve the fullband output SNR. In this section, we
study the performance through experiments. The clean speech signal
used in the experiments is taken from the TIMIT database [8]. The
speech signals of twenty different speakers are used. The original
sampling rate of the TIMIT database is 16 kHz; but we downsam-
pled the signals into 8 kHz as we are interested in telecommunication
applications with narrowband speech. The noisy signal is then gen-
erated by adding either a simulated white Gaussian noise or a pre-
recorded real-environment noise to the clean speech with the noise
signal being properly scaled to control the input SNR. The signal is
split into short frames with a frame length of 128 (a Kaiser window
is applied) and an overlapping factor of 75%. A 128-point FFT is
subsequently used to transform each frame into the STFT domain.
An optimal filter is then constructed and applied to the noisy speech
signal to reduce noise. Finally, the time-domain speech estimate is
obtained by using the inverse STFT. In our simulations, the parame-
ter P is determined as follows. We set a threshold, δ, and the value
of P is equal to the number of subbands with subband input SNRs
being larger than or equal to δ.

The estimate of the noise variance is achieved with the mini-
ma controlled recursive averaging approach (MCRA) [9]. We also
need to know the variance of Y (k, n), which is estimated using the
following recursive method:

φ̂Y (k, n) = αyφ̂Y (k, n− 1) + (1− αy)|Y (k, n)|2, (39)

where 0 < αy < 1 is a forgetting factor. In our simulations, the
value of αy is set to 0.32. Once the variance of the noise and noisy
signals are computed, the noise reduction filter is then constructed
according to (34).

In order to evaluate the performance, we use three measures in
our simulations: the fullband output SNR, the fullband speech dis-
tortion index [11], and the perceptual evaluation of speech quality
(PESQ) [12]. Both the fullband output SNR and the fullband speech
distortion index are computed in the time domain. We have 20 s-
peakers and 10 sentences from each speaker. The fullband output
SNR and the fullband speech distortion index are computed for each
sentence with a long time average and results are then averaged over
to obtain the overall performance. The PESQ result is computed ac-
cording to [12], [13]. Briefly, for a given noise condition, the PESQ
score is computed for every speaker. The PESQ mean opinion score
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Fig. 1. Performance of the noise reduction filter, hW,P (n), as a
function of δ in three different types of noise (white Gaussian noise,
white Gaussian plus harmonic noise, and car noise): (a) output SNR,
(b) speech distortion index, and (c) PESQ MOS-LQO score. Simu-
lation conditions: iSNR = 10 dB, αy = 0.32, and the PESQ MOS-
LQO scores of the noisy signals are 1.7689, 1.8096, and 2.2097.

(MOS) is then computed by averaging all the PESQ scores. Finally,
the PESQ MOS score is mapped to a PESQ MOS-LQO (listening
quality objective) score with the following mapping function:

PESQMOS−LQO = 0.999 +
4

1 + e−1.4945×PESQMOS+4.6607
.

Various simulations were performed to evaluate the performance
of the deduced algorithm and the impact of the values of different pa-
rameters on the performance. Due to space limitation, only one set
of results with iSNR being 10 dB is presented, where three kinds of
noise are involved, i.e., white Gaussian noise, white Gaussian plus
harmonic noise (consisting of 20 sinusoid signals and their frequen-

cies ranging from 100 Hz to 2000 Hz with an interval of 100 Hz, and
the ratio between the variance of the periodic signals and that of the
white noise is 6 dB), and a pre-recorded car noise.

The results of this simulation are plotted in Fig. 1. One can see
that the output SNR increases dramatically with the value of δ in all
the three types of noise; however, the speech distortion index also
increases with δ. This is expected as when the value of δ increas-
es, more frequency bins are forced to be zero by the noise reduction
filter. Consequently, more noise is removed, but so is the speech,
leading to more speech distortion. The performances of the filter in
different types of noise are slightly different. In particular, one can
see that the improvement of the PESQ MOS-LQO score in the har-
monic noise case is higher than that in the other two types of noise,
showing that the deduced algorithm is more efficient in dealing with
noise that has narrowband components.

6. CONCLUSIONS
In this paper, we developed a single-channel noise reduction algo-
rithm in the STFT domain. Unlike traditional approaches, such as
the Wiener filter, that are derived by minimizing the MSE on a sub-
band basis, the noise reduction filter in this work is derived by opti-
mizing the fullband output SNR. The deduced filter has some resem-
blance to the traditional noise reduction filters in the STFT domain,
but has a more general form. Indeed, the traditional Wiener, maxi-
mum SNR, and ideal binary mask filters can be viewed as particular
cases.
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