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ABSTRACT
This paper deals with the problem of single-channel noise reduction.
Thanks to the eigenvalue decomposition, we arrange the eigenvalues
of the speech correlation matrix in such a way that all the spectral
mode signal-to-noise ratios (SNRs) of the noisy speech are ordered
in a descending manner. By maintaining no speech distortion in the
spectral modes with high input SNRs while allowing some degree
of speech distortion in the modes with low input SNRs, we devel-
op a minimum variance partially distortionless response (MVPDR)
filter. We first formulate the problem and derive this filter within
the general filtering framework. Then, the MVPDR filter is applied
to the single-channel noise reduction problem in both the time and
time-frequency domains. In comparison with the minimum variance
distortionless response (MVDR) filter based on the subspace decom-
position, the developed MVPDR filter can provide much more free-
dom for controlling the compromise between noise reduction and
speech distortion to achieve higher speech quality. Simulations are
conducted and preliminary results justify the advantages of the de-
duced MVPDR filter.

Index Terms—Noise reduction, speech enhancement, single-
channel, optimal linear filtering, minimum variance partially distor-
tionless response filter.

1. INTRODUCTION
The existence of noise can cause significant degradation of speech
quality and impairment of speech intelligibility, thereby affecting
the normal functions of speech communication and processing sys-
tems. To mitigate the effect of noise, many noise reduction algo-
rithms have been developed over the past few decades [1–3] in-
cluding spectral subtractive algorithms [4–6], optimal filtering tech-
niques [7–9], statistical-model-based methods [10–13], subspace ap-
proaches [14–16], and deep neural networks (DNNs) based meth-
ods [17–19]. While those methods have achieved some degree of
success, noise reduction remains a challenging problem due to its
extreme difficulty.

This paper studies the problem of noise reduction. Following
the principle of the subspace method [14, 15], we apply the eigen-
value decomposition to the speech correlation matrix and then rear-
range the corresponding eigenvalues according to the spectral mode
signal-to-noise ratios (SNRs) of the noisy speech. By maintaining
no speech distortion in the spectral modes with high input SNRs
while allowing some degree of speech distortion in the modes with
low input SNRs, we develop a minimum variance partially distor-
tionless response (MVPDR) filter. This filter is first developed with-
in the general filtering framework. It is then applied to deal with the
problem of single-channel noise reduction in both the time and time-
frequency domains. This new filter can be viewed as an extension of
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the minimum variance distortionless response (MVDR) filter devel-
oped recently for single-channel noise reduction [7], which can be
viewed as a unification of the subspace and linear filtering methods.

2. SIGNAL MODEL AND PROBLEM FORMULATION
We consider the general signal model of an observation signal vector
of length L [7]:

y =
[
y1 y2 · · · yL

]T
= x+ v, (1)

where the superscript T is the transpose operator, and x and v are the
speech and additive noise signal vectors, respectively, which are de-
fined similarly to the noisy signal vector, y. We assume that the com-
ponents of the two vectors x and v are zero mean, stationary, and
circular. We further assume that these two vectors are uncorrelated,
i.e., E

(
xvH

)
= E

(
vxH

)
= 0L×L, where E(·) denotes math-

ematical expectation, the superscript H is the conjugate-transpose
operator, and 0L×L is a matrix of size L × L with all its elements
equal to 0. In this context, the correlation matrix (of size L × L) of
the observations is

Φy = E
(
yyH

)
= Φx +Φv, (2)

where Φx = E
(
xxH

)
and Φv = E

(
vvH

)
are the correlation

matrices of x and v, respectively. In the rest of this paper, it is
assumed that rank (Φx) ≤ L while rank (Φv) = L.

One of the most important measures in noise reduction is the
SNR; it gives a pretty accurate idea on how noisy the observations
are. With the signal model given in (1), the input SNR is defined as

iSNR =
tr (Φx)

tr (Φv)
, (3)

where tr(·) denotes the trace of a square matrix.
Here, what we consider as our desired signal is the first entry of

x, i.e., x1. Then, the objective of noise reduction is to estimate x1

from y. This should be done in such a way that the noise is reduced
as much as possible with no or little distortion to the desired signal
sample [2, 8, 9, 20].

3. LINEAR FILTERING
Our objective is to estimate x1 from y. From the conventional linear
filtering theory, we know that the desired signal is estimated as

z = hHy = hH (x+ v) = xfd + vrn, (4)

where z is the estimate of x1, h is a complex-valued filter of length
L, xfd = hHx is the filtered desired signal, and vrn = hHv is the
residual noise. We deduce that the variance of z is

φz = E
(|z|2) = φxfd + φvrn , (5)
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where φxfd = hHΦxh and φvrn = hHΦvh.
The output SNR, obtained from (5), helps quantify the SNR after

filtering. It is given by

oSNR (h) =
φxfd

φvrn

=
hHΦxh

hHΦvh
. (6)

Then, the main objective of noise reduction is to find an appropri-
ate h that makes the output SNR greater than the input SNR, i.e.,
oSNR (h) > iSNR. Consequently, the quality of the noisy signal
may be enhanced.
4. MINIMUM VARIANCE PARTIALLY DISTORTIONLESS

RESPONSE FILTER
To derive the new filter, we need to exploit the spectrum of Φx.
Using the well-known eigenvalue decomposition [21], the speech
correlation matrix can be diagonalized as

QHΦxQ = Λ, (7)

where

Q =
[
q1 q2 · · · qL

]
(8)

is a unitary matrix, i.e., QHQ = QQH = IL, with IL being the
L× L identity matrix, and

Λ = diag (λ1, λ2, . . . , λL) (9)

is a diagonal matrix. The orthogonal vectors q1,q2, . . . ,qL are
the eigenvectors corresponding, respectively, to the eigenvalues
λ1, λ2, . . . , λL of the matrix Φx, where λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0.

Using (7), we can express the input SNR as

iSNR =
tr
(
QHΦxQ

)
tr (QHΦvQ)

(10)

=

∑L
l=1 λl∑L

l=1 q
H
l Φvql

,

from which we deduce the lth spectral mode input SNR:

iSNRl =
λl

qH
l Φvql

, l = 1, 2, . . . , L. (11)

Let us denote by λ(l), l = 1, 2, . . . , L (with corresponding
eigenvectors q(l), l = 1, 2, . . . , L), the eigenvalues of Φx ordered
in such a way that the L spectral mode input SNRs are ordered from
the largest to the smallest, i.e.,

iSNR(1) ≥ iSNR(2) ≥ · · · ≥ iSNR(L), (12)

where

iSNR(l) =
λ(l)

qH
(l)Φvq(l)

, l = 1, 2, . . . , L. (13)

Our goal in this paper is to find a noise reduction filter that does not
distort the P spectral modes of the desired signal corresponding to
the P largest spectral mode input SNRs. We call this filter MVPDR.

Given the required ordering, we can reformulate the diagonal-
ization of Φx as

QH
(·)ΦxQ(·) = Λ(·), (14)

where

Q(·) =
[
q(1) · · · q(P ) q(P+1) · · · q(L)

]

=
[
Q(P ) Q′

(L−P )

]
(15)

and

Λ(·) = diag
(
λ(1), λ(2), . . . , λ(L)

)
. (16)

It is clear that

IL = Q(P )Q
H
(P ) +Q′

(L−P )Q
′H
(L−P ). (17)

The matrices Q(P )Q
H
(P ) and Q′

(L−P )Q
′H
(L−P ) are two orthogonal

projectors of rank P and L − P , respectively. Hence, Q(P )Q
H
(P )

is the orthogonal projector onto the speech subspace of Φx with the
P largest spectral mode input SNRs and Q′

(L−P )Q
′H
(L−P ) is the or-

thogonal projector onto the speech subspace of Φx with the L − P
smallest spectral mode input SNRs.

Using (17), we can write the speech vector as

x = Q(·)Q
H
(·)x

= Q(P )Q
H
(P )x+Q′

(L−P )Q
′H
(L−P )x

= xu + xd. (18)

As a result, the desired signal sample is decomposed as

x1 = iTx = xu,1 + xd,1, (19)

where i is the first column of IL, xu,1 = iTQ(P )Q
H
(P )x is the

desired signal component that we want undistorted, and xd,1 =
iTQ′

(L−P )Q
′H
(L−P )x is the desired signal component that we can

afford to distort. From (18), we observe that the distortionless con-
straint for the P spectral modes of interest of the desired signal is

hHQ(P ) = iTQ(P ). (20)

Indeed, left-multiplying (18) by hH and applying (20), we get the
estimate of the desired signal:

z = hHx = hHQ(P )Q
H
(P )x+ hHQ′

(L−P )Q
′H
(L−P )x

= iTQ(P )Q
H
(P )x+ hHQ′

(L−P )Q
′H
(L−P )x

= xu,1 + hHxd. (21)

It is clear from the previous expression [with the constraint given in
(20)] that the P spectral modes of the desired signal corresponding
to the P largest spectral mode input SNRs are not distorted at all
since they are not affected by the filtering operation.

Now, the MVPDR can be derived by minimizing the residual
noise, i.e., φvrn , subject to the distortionless constraint given in (20).
Mathematically, this is equivalent to

min
h

hHΦvh subject to hHQ(P ) = iTQ(P ). (22)

Solving the above constrained optimization problem, we find the
MVPDR filter:

hMVPDR,P = Φ−1
v Q(P )

(
QH

(P )Φ
−1
v Q(P )

)−1

QH
(P )i. (23)

Alternatively, we can express (23) as

hMVPDR,P = Φ−1
y Q(P )

(
QH

(P )Φ
−1
y Q(P )

)−1

QH
(P )i. (24)

There are two interesting particular cases of this filter. For
P = L, we get the identity vector, i.e., hMVPDR,L = i, which
does not affect the observations; as a consequence, there is neither
noise reduction nor speech distortion. The second case is when
P = rank (Φx) ≤ L, which changes hMVPDR,P to the MVDR
filter [7] since xd,1 = 0.

As far as the output SNR is concerned, we should always have

oSNR (hMVPDR,1) ≥ oSNR (hMVPDR,2) ≥ · · ·
≥ oSNR (hMVPDR,L) = iSNR. (25)

Therefore, the smaller P , the better the output SNR.
We remember that the MVPDR filter does not affect the compo-
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nent xu,1 but does affect the component xd,1. So we can evaluate
the overall distortion of the desired signal with the speech distortion
index [8]:

υ (hMVPDR,P ) =
E
(∣∣x1 − hH

MVPDR,Px
∣∣2)

φx1

=
E
(∣∣xd,1 − hH

MVPDR,Pxd

∣∣2)

φx1

, (26)

where φx1 = E
(|x1|2

)
is the variance of x1. The smaller the value

of υ (hMVPDR,P ), the smaller the distortion of the component xd,1.
We should also have

υ (hMVPDR,1) ≥ υ (hMVPDR,2) ≥ · · · ≥ υ (hMVPDR,L) = 0.
(27)

In the next two sections, we show how to apply this idea to
the single-channel noise reduction problem in the time and time-
frequency domains.

5. SINGLE-CHANNEL NOISE REDUCTION IN THE TIME
DOMAIN

The single-channel noise reduction problem in the time domain con-
sists of recovering the real-valued desired signal (or clean speech)
x(t), t being the discrete-time index, of zero mean from the noisy
observation (microphone signal) [8]:

y(t) = x(t) + v(t), (28)

where v(t), assumed to be a zero-mean real random process, is the
unwanted additive noise that can be either white or colored but is
uncorrelated with x(t).

The signal model given in (28) can be put into a vector form by
considering the L most recent successive time samples, i.e.,

y(t) =
[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
= x(t) + v(t), (29)

where x(t) and v(t) are defined in a similar way to y(t). Then, the
goal here is to estimate x(t) from y(t).

The estimate of x(t) with the proposed filter is

z(t) = hT
MVPDR,Py(t), (30)

where

hMVPDR,P = R−1
v Q(P )

(
QT

(P )R
−1
v Q(P )

)−1

QT
(P )i, (31)

Rv = E
[
v(t)vT (t)

]
is the correlation matrix of v(t), and Q(P ) is

derived from the correlation matrix, Rx = E
[
x(t)xT (t)

]
, of x(t)

as explained in Section 4.

6. SINGLE-CHANNEL NOISE REDUCTION IN THE
TIME-FREQUENCY DOMAIN

Using the short-time Fourier transform (STFT), (28) can be rewritten
in the time-frequency domain as [9, 22]

Y (k, n) = X(k, n) + V (k, n), (32)

where the zero-mean complex random variables Y (k, n), X(k, n),
and V (k, n) are the STFTs of y(t), x(t), and v(t), respectively, at
frequency bin k ∈ {0, 1, . . . ,K − 1} and time frame n. Here, the
sample X(k, n) is the desired signal.

In the conventional approach, X(k, n) is estimated by simply
applying a positive (but less than 1) gain to Y (k, n). However, the
noise reduction performance may be limited.

A more general approach to estimate the desired signal is by
filtering the observation signal vector of length L [22]:

y(k, n) =
[
Y (k, n) Y (k, n− 1) · · · Y (k, n− L+ 1)

]T
= x(k, n) + v(k, n), (33)

where x(k, n) and v(k, n) resemble y(k, n). Thanks to this
method, the non-negligible interframe correlation is taken into ac-
count, which is not the case when just a gain is used. As a con-
sequence, we can better compromise between noise reduction and
speech distortion.

Then, with the proposed approach, the estimate of X(k, n) is

Z(k, n) = hH
MVPDR,P (k, n)y(k, n), (34)

where
hMVPDR,P (k, n) = Φ−1

v (k, n)Q(P )(k, n)
[
QH

(P )(k, n)Φ
−1
v (k, n)

×Q(P )(k, n)
]−1

QH
(P )(k, n)i, (35)

Φv(k, n) = E
[
v(k, n)vH(k, n)

]
is the correlation matrix of

v(k, n), and Q(P )(k, n) is derived from the correlation matrix,
Φx(k, n) = E

[
x(k, n)xH(k, n)

]
, of x(k, n) as explained in Sec-

tion 4.

7. SIMULATIONS
In this section, simulations are carried out to evaluate the perfor-
mance of the developed MVPDR noise reduction filter. Due to
space limitation, only results of the time-frequency domain filter
are presented. The clean speech signals are taken from the TIMIT
database [23]. All speech signals from the speakers MSDS0 (male
speaker) and FKSR0 (female speaker) are used. We downsampled
all the signals from the original sampling rate of 16 kHz to 8 kHz.
To obtain the noisy speech, a car noise recorded in a sedan running
at 50 MPH on a highway is added to the clean speech. The noise
signal is properly scaled to control the input SNR level.

The realization process of the noise reduction filter is the same
as that in [24]. In the implementation, the correlation matrices of the
clean speech and noise signals are needed to be known. In this pa-
per, estimates of the two matrices Φy(k, n) and Φv(k, n) are com-
puted directly from the noisy and noise signals, respectively, in the
time-frequency domain using a recursive method [9]. Then, the es-
timate of the correlation matrix of the clean speech is computed as
Φ̂x(k, n) = Φ̂y(k, n)− Φ̂v(k, n).

We use the output SNR defined in (6) and the speech distortion
index defined in (26) as the performance measures. They are com-
puted in the time domain, i.e., all the time-frequency domain signals
are converted back to the time domain and the performance mea-
sures are then computed by replacing the mathematical expectation
in their definitions by a long time average. Moreover, the percep-
tual evaluation of speech quality (PESQ) [25] standard is also used
to evaluate the overall quality of the processed speech signals by the
developed MVPDR filter. Note that the raw PESQ mean opinion
score (MOS) is mapped to the PESQ MOS-LQO (listening quality
objective) score in our simulations [26].

In the first simulation, we study the performance of the MVP-
DR filter as a function of P with different filter lengths (L = 2, 4, 6
and 8). The input SNR is 10 dB. The results are plotted in Fig. 1.
For the purpose of comparison, the results of the single-channel MV-
DR filer with P = rank(Φx) [7, 22, 24, 27, 28] are also plotted in the
figure. As seen in Fig. 1, both the output SNR and speech distor-
tion index decrease with the value of P monotonically for all the
studied filter lengths, which coincides with the theory analysis. In
contrast, the PESQ score decreases with P if the value of L is s-
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Fig. 1. Performance of hMVPDR,P , as a function of P , and the
single-channel MVDR filter in a car noise environment with differ-
ent filter lengths: (a) oSNR, (b) speech distortion, and (c) PESQ
score. The input SNR is 10 dB.

mall; but it first increases with the value of P and then decreases
if the filter length is not too small (> 4). In theory, better perfor-
mance should be achieved with a longer filter. In practice, however,
the choice of the filter length is a tradeoff between the noise reduc-
tion performance and computational complexity. There will be even
some performance degradation if the filter is too long. This is due to:
1) there is not much correlation between the current frame and the
far-distance ones; 2) the estimation error of the correlation matrices
grows with the increase of the filter length.

As seen, the MVPDR filter achieves a higher a PESQ score than
the MVDR filter if the value of P is properly chosen.

In the second simulation, we consider a more practical acous-
tic environment where there is reverberation. We first measured the
acoustic impulse response of a reverberant room. The reverbera-
tion time T60 of this room is approximately 240 ms. Then, we con-
volved the speech signals from the speakers MSDS0 and FKSR0 in
the TIMIT database with the measured impulse response and this
convolved speech was used as the desired, target clean speech. The
car noise was subsequently added to control the input SNR. In this
simulation, the impact of the value of P on noise reduction is stud-
ied with different input SNR levels. The filter length is set to be 6.
Figure 2 plots the output SNR, the speech distortion index, and the
PESQ score, all as a function of P . Again, results of both the MVP-
DR and the single-channel MVDR filters are presented. As seen, the
trends of both the output SNR and the speech distortion index are
similar to those in the previous simulation, which, again, coincides
with our theoretical analysis.

Again, the PESQ score obtained by the MVPDR filter is higher
than that of the MVDR filter when P is appropriately selected.

8. CONCLUSIONS

Through eigenvalue analysis of the speech correlation matrix and
arrangement of the spectral mode input SNRs, a minimum vari-
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Fig. 2. Performance of hMVPDR,P , as a function of P , and the
single-channel MVDR filter in a car noise environment in different
iSNR conditions: (a) oSNR, (b) speech distortion, and (c) PESQ
score. The filter length L = 6 and T60 ≈ 240 ms.

ance partially distortionless response (MVPDR) filter was develope-
d, which maintains no speech distortion for spectral modes with high
input SNRs and allows some speech distortion for spectral modes
with low input SNRs. We showed how to apply this MVPDR filter
to the noise reduction problem in both the time and time-frequency
domains. Simulations showed that this MVPDR filter can yield sig-
nificant improvement in PESQ score and outperforms the recently
developed MVDR filter for single-channel noise reduction if the pa-
rameter is properly chosen.

9. RELATION TO PRIOR WORK
Noise reduction, which aims at improving either speech quality or
speech intelligibility or both at the same time, has been an active
area of research in speech and signal processing for decades. Re-
searchers and engineers have attempted to attack this problem from
different perspectives and many algorithms have been developed
such as spectral subtraction algorithms [4–6], optimal filtering tech-
niques [7–9], statistical-model-based methods [10–13], subspace ap-
proaches [14–16], and deep neural networks (DNNs) based method-
s [17–19]. However, due to the complicated and unknown nature
of noise, noise reduction remains a challenging problem. Recently,
a framework that unifies the widely studied subspace and linear fil-
tering methods was investigated and a single-channel MVDR filter
was developed [7, 22, 24, 27, 28]. This filter was shown to be able to
improve performance of the traditional subspace and linear filtering
methods. In this paper, the idea of the single-channel MVDR filter
is further generalized and an MVPDR filter was developed, which
maintains no speech distortion for spectral modes with high input
SNRs and allows some distortion for spectral modes with low in-
put SNRs. In comparison with the single-channel MVDR filter, this
MVPDR filter can provide more freedom for controlling the com-
promise between noise reduction and speech distortion to achieve
higher speech quality, which is corroborated with simulations.

4968



10. REFERENCES

[1] J. Benesty, S. Makino, and J. Chen, Speech Enhancement.
Berlin, Germany: Springer-Verlag, 2005.

[2] P. C. Loizou, Speech Enhancement: Theory and Practice. Boca
Raton, FL: CRC, 2007.

[3] J. Chen, J. Benesty, Y. Huang, and E. J. Diethorn, “Fundamen-
tals of noise reduction,” in Springer Handbook of Speech Pro-
cessing, J. Benesty, M. M. Sondhi, and Y. Huang, Eds., Berlin,
Germany: Springer-Verlag, 2008, pp. 843–871.

[4] M. R. Schroeder, “Apparatus for suppressing noise and dis-
tortion in communication signals,” Apr. 27, 1965. US Patent
3,180,936.

[5] M. R. Schroeder, “Processing of communications signals to re-
duce effects of noise,” Sept. 24 1968. US Patent 3,403,224.

[6] S. F. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP–27, pp. 113–120, Apr. 1979.

[7] J. Benesty, M. G. Christensen, J. R. Jensen, and J. Chen, “A
brief overview of speech enhancement with linear filtering,”
EURASIP J. Adv. Signal Process., vol. 2014, 10 pages, Nov.
2014.

[8] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into
the noise reduction wiener filter,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 14, pp. 1218–1234, Jul. 2006.

[9] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Noise Reduction in
Speech Processing. Berlin, Germany: Springer-Verlag, 2009.

[10] R. J. McAulay and M. L. Malpass, “Speech enhancement us-
ing a soft-decision noise suppression filter,” IEEE Trans. A-
coust., Speech, Signal Process., vol. ASSP–28, pp. 137–145,
Apr. 1980.

[11] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error short-time spectral amplitude estima-
tor,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP–
32, pp. 1109–1121, Dec. 1984.

[12] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error log-spectral amplitude estimator,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP–33,
pp. 443–445, Apr. 1985.

[13] P. J. Wolfe and S. J. Godsill, “Simple alternatives to the
Ephraim and Malah suppression rule for speech ehancemnet,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (I-
CASSP), 2001, pp. 496–499.

[14] Y. Ephraim and H. L. V. Trees, “A signal subspace approach
for speech enhancement,” IEEE Trans. Speech Audio Process.,
vol. 3, pp. 251–266, Jul. 1995.

[15] P. C. Hansen and S. H. Jensen, “Subspace-based noise reduc-
tion for speech signals via diagonal and triangular matrix de-
compositions: survey and analysis,” EURASIP J. Adv. Signal
Process., vol. 2007, p. 24, Jun. 2007.

[16] S. Doclo and M. Moonen, “GSVD-based optimal filtering for
single and multimicrophone speech enhancement,” IEEE Tran-
s. Signal Process., vol. 50, pp. 2230–2244, Sept. 2002.

[17] Y. Xu, J. Du, L. Dai, and C. Lee, “A regression approach to
speech enhancement based on deep neural networks,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 23, pp. 7–19, Jan.
2014.

[18] J. Du, Y. Tu, L. Dai, and C. Lee, “A regression approach
to single-channel speech separation via high-resolution deep
neural networks,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 24, pp. 1424–1437, Aug. 2016.

[19] X. Zhang and D. Wang, “A deep ensemble learning method
for monaural speech separation,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 24, pp. 967–977, May 2016.

[20] P. Vary and R. Martin, Digital Speech Transmission: Enhance-
ment, Coding and Error Concealment. Chichester, U.K.: Wi-
ley, 2006.

[21] J. N. Franklin, Matrix Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1968.

[22] J. Benesty, J. Chen, and E. Habets, Speech Enhancement in the
STFT Domain. Berlin, Germany: Springer Briefs in Electrical
and Computer Engineering, 2011.

[23] J. W. Lyons, “DARPA TIMIT acoustic-phonetic continuous
speech corpus,” Technical Report NISTIR 4930, National In-
stitute of Standards and Technology, 1993.

[24] X. Wang, J. Benesty, and J. Chen, “A single-channel noise can-
celation filter in the short-time-fourier-transform domain,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICAS-
SP), 2016, pp. 5235–5239.

[25] Perceptual Evaluation of Speech Quality (PESQ), an Objec-
tive Method for End-to-End Speech Quality Assessment of Nar-
rowband Telephone Networks and Speech Codecs, ITU-T Rec.
P.862, 2001.

[26] Mapping Function for Transforming Raw Result Scores to
MOS-LQO, ITU-T Rec. P.862.1, 2003.

[27] J. Benesty and J. Chen, Optimal Time-domain Noise Reduction
Filters–A Theoretical Study. Berlin, Germany: Springer Briefs
in Electrical and Computer Engineering, 2011.

[28] S. M. Nørholm, J. Benesty, J. R. Jensen, and M. G. Chris-
tensen, “Single-channel noise reduction using unified joint di-
agonalization and optimal filtering,” EURASIP J. Adv. Signal
Process., vol. 2014, 11 pages, Dec. 2014.

4969


