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ABSTRACT

Group zero-attracting LMS and its reweighted form have been pro-
posed for addressing system identification problems with structural
group sparsity in the parameters to estimate. Both algorithms how-
ever suffer from a trade-off between sparsity degree and estimation
bias and, in addition, between convergence speed and steady-state
performance like most adaptive filtering algorithms. It is therefore
necessary to properly set their step size and regularization param-
eter. Based on a model of their transient behavior, we introduce a
variable-parameter variant of both algorithms to address this issue.
By minimizing their mean-square deviation at each time instant, we
obtain closed-form expressions of the optimal step size and regular-
ization parameter. Simulation results illustrate the effectiveness of
the proposed algorithms.

Index Terms— Sparse system identification, group sparsity,
zero-attracting LMS, adaptive parameter adjustment

1. INTRODUCTION

Adaptive filtering algorithms are powerful tools for online system
identification [1, 2]. Among the set of existing solutions, the least-
mean-squares (LMS) algorithm plays a central role due to its robust-
ness, good performance and low complexity. A number of variants
have been proposed in the literature to endow the LMS with useful
additional characteristics such as the ability to promote sparse es-
timates. This property is required in applications such as channel
identification where, though the impulse responses can be long, only
a few coefficients may have significant values. Several algorithms
were derived, such as the proportionate NLMS (PNLMS) [3, 4],
the zero-attracting LMS algorithm (ZA-LMS) and its reweighted
form (RZA-LMS) [5]. They offer improved performance in sparse
scenarios provided that their parameters are appropriately set.

Beyond element-wise sparsity, a further consideration is that
some sparse systems may be group-sparse [6, 7]. Compared to gen-
eral sparse systems whose impulse response is not necessarily struc-
tured, group-sparse systems have an impulse response composed of a
few distinct clusters of nonzero coefficients. Applications are abun-
dant, e.g., specular multipath acoustic and wireless channels esti-
mation [6–8]. Using such structural prior information should lead
to enhanced performance. Based on mixed norm regularization, the
`1,∞-regularized RLS [6], the group ZA-LMS (GZA-LMS) and the

The work of Jie Chen was supported in part by NSFC grant 61671382.
The work of Cédric Richard was supported in part by ANR and in part by
DGA under Grant ANR-13-ASTR-0030 (ODISSEE Project). The work of
Jingdong Chen was supported in part by NSFC grant 61425005.

group reweighted ZA-LMS (GRZA-LMS) [7] were proposed to pro-
mote group-sparsity. Nevertheless, setting the algorithm parameters
such as the step size and the regularization parameter to ensure a per-
formance gain remains a tricky task [6, 7, 9]. On the one hand, the
step size plays a critical role in the trade-off between the convergence
speed and the steady-state performance. On the other hand, the reg-
ularization parameter controls the trade-off between the degree of
sparsity and the estimation bias. It is worth noting that setting one of
these parameters to an inappropriate value may deteriorate the esti-
mation performance.

Variable parameter strategies usually provide an efficient way to
achieve a reasonable trade-off between competing performance re-
quirements [10]. Several variable step size strategies have been pro-
posed for the LMS and ZA-LMS algorithms [10–14], mostly based
on estimation error. There are however few works addressing this
issue for group-sparse LMS. Motivated by our recent work [15],
we propose in this paper to derive the so-called variable-parameter
GZA-LMS (VP-GZA-LMS) and GRZA-LMS (VP-GRZA-LMS) al-
gorithms. The step size and the regularization parameter are both
adjusted in an online way, based on an optimization procedure that
minimizes the mean-square deviation (MSD) at each iteration. Ex-
periments illustrate the effectiveness of this strategy, which leads to
a faster convergence rate as well as a lower misadjustement error.

Notation. Normal font x denotes scalars. Boldface lowercase
letters x and uppercase letters X denote column vectors and matri-
ces, respectively. The superscript (·)> and (·)−1 denote the trans-
pose and inverse operators, respectively. 0N and 1N denote all-zero
vector and all-one vector of length N . The operator tr{·} takes the
trace of its matrix argument. The mathematical expectation is de-
noted by E{·}. The Gaussian distribution with mean µ and variance
σ2 is denoted by N (µ, σ2). The operator max{·, ·} and min{·, ·}
take the maximum or minimum of their arguments.

2. SYSTEM MODEL AND GROUP-SPARSE LMS

Consider an unknown system defined by the linear model:

dn = u>nw
? + zn (1)

at time instant n, where w? ∈ RL is an unknown parameter vector,
un ∈ RL is a zero-mean regression vector with positive definite
covariance matrix, and dn is the output signal assumed to be zero-
mean. The error signal zn is assumed to be stationary, independent
and identically distributed (i.i.d.), with zero-mean and variance σ2

z ,
and independent of any other signal.

4294978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Consider the mean-square error (MSE) cost J(w), namely,

J(w) =
1

2
E
{
[dn −w>un]2

}
(2)

It can be checked that w? is the minimizer of J(w). In this paper
we consider the problem of estimating the unknown parameter vec-
tor w? when it is group-sparse. This problem can be addressed by
minimizing the following regularized MSE cost:

wo
GZA = argmin

w
JGZA(w)

with JGZA(w) =
1

2
E
{
[dn −w>un]2

}
+ λ‖w‖1,2

(3)

where λ ≥ 0 is the regularization parameter. The `1,2-norm of w,
defined below, allows to promote its group-sparsity:

‖w‖1,2 =

J∑
j=1

‖wGj‖2 (4)

where {Gj}Jj=1 is a partition of the index set G = {1, . . . , L}, and
wGj denotes the subvector of w with entries indexed by Gj . Calcu-
lating a subgradient of JGZA(w), then approximating second-order
moments by instantaneous estimates, leads to the following subgra-
dient update equation in subvector form:

wn+1,Gj = wn,Gj + µ enun,Gj − ρ sn,Gj (5)

for j ∈ {1, . . . , J}, with:

sn,Gj =

{ wn,Gj

‖wn,Gj
‖
2

for ‖wn,Gj‖2 6= 0

0 for ‖wn,Gj‖2 = 0,
(6)

with en = dn −w>n un the estimation error, un,Gj the subvector of
un with entries indexed by Gj , µ a positive step size, and ρ = µλ
the shrinkage parameter.

The GRZA-LMS was proposed to reinforce group-sparsity and
then get enhanced performance in group-sparse system identifica-
tion. Consider the optimization problem:

wo
GRZA = argmin

w
JGRZA(w)

with JGRZA(w) =
1

2
E
{
[dn −w>un]2

}
+ λ

J∑
j=1

log
[
1 +
‖wGj‖2

ε

] (7)

where the log-sum penalty term is used to make group-sparsity at-
tractor takes effort only for groups at the same level as ε [5]. Simi-
larly, using a stochastic subgradient update yields the GRZA-LMS:

wn+1,Gj = wn,Gj + µ enun,Gj − ρ βn,jsn,Gj , (8)

where βn,j = 1/[‖wn,Gj‖2 + ε] is a weighting coefficient. Equiva-
lently, equation (8) in vector form is given by:

wn+1 = wn + µ enun − ρβn ◦ sn, (9)

where βn and sn are vector forms of βn,j and sn,Gj , respectively,
with dimension L× 1. Symbol ◦ denotes the Hadamard product.

Observe from equations (5) and (8) that GRZA-LMS reduces to
GZA-LMS by replacing the parameters βn,j with 1, that is,

βn,j =

{
1

‖wn,Gj
‖
2
+ε

GRZA-LMS

1 GZA-LMS.
(10)

We shall derive a variable parameter strategy for both GZA-LMS
and GRZA-LMS algorithms based on the general form (9), while
specific algorithms can be obtained by setting βn,j according to (10).

3. MODEL-BASED PARAMETER DESIGN OF GRZA-LMS

3.1. Transient Behavior Model of GRZA-LMS

Define the weight error vector w̃n as the difference between the es-
timated weight vectorwn andw?:

w̃n = wn −w? (11)

To derive our variable parameter strategy, we analyze the transient
behavior of the mean-square deviation (MSD) of wn over time, de-
fined as: ξn = E{‖w̃n‖2}. To keep the calculations mathematically
tractable, we introduce the independence assumption [1]:

A1: The weight-error vector w̃n is statistically independent of
the input vector un.
This assumption is commonly used in the adaptive filtering literature
since it helps simplify the analysis, and the performance results ob-
tained under this assumption match well the actual performance of
filters for sufficiently small step sizes [1].

Subtractingw? from both sides of (9), using en = zn−w̃>n un,
leads to the update equation of w̃n:

w̃n+1 = w̃n + µunzn − µunu>n w̃n − ρβn ◦ sn. (12)

Using A1 and en = zn − w̃>n un, the MSE of the GRZA-LMS
is given by:

E{e2n} = σ2
z + tr{RuQn} (13)

with Qn = E{w̃nw̃>n }. The quantity tr{RuQn} is the excess
mean-square error (EMSE) at time instant n, denoted by ζn. Note
that ξn = tr{Qn}. Again, to keep the calculations mathematically
tractable, we introduce the following assumptions [1]:

A2: The input regressor un is a zero-mean white signal with
covariance matrixRu = σ2

uI .
A2’: The input regressor un is Gaussian distributed.
Though introducing A2 and A2’ simplify the derivation, as il-

lustrated with simulation results, it turns out that the resulting algo-
rithms work well in non-Gaussian correlated input scenarios where
these assumptions do not hold. As shown in the sequel, A2’ is only
used with (16) to make the calculation of g tractable. Under A2, we
can relate the MSD to the EMSE via a scaling factor:

ζn = σ2
u tr{Qn} = σ2

u ξn. (14)

We shall now determine a recursion for tr{Qn} in order to relate
the MSD at two consecutive time instants n and n + 1. Post-
multiplying (12) by its transpose, taking the expectation and matrix
trace, using A1 and A2, we get:

tr{Qn+1} = tr{Qn}+ µ2g + ρ2h+ 2µρ`− 2µr1 − 2ρr2 (15)

with
g = σ2

z tr{Ru}+ E{u>n w̃nw̃>n unu>nun} (16)

h = E
{
(βn ◦ sn)>(βn ◦ sn)

}
(17)

` = E
{
w̃>n unu

>
n (βn ◦ sn)

}
(18)

r1 = E
{
w̃>n unu

>
n w̃n

}
(19)

r2 = E
{
(βn ◦ sn)>w̃n

}
. (20)

We have dropped the time index n in the left-hand side of (16)–(20)
for compactness.
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3.2. Parameter Design Using Transient Behavior Model

We shall now derive our parameter design strategy for GRZA-LMS
using model (15). Given the MSD ξn at time instant n, we need to
determine the parameters {µn, ρn} that minimize the MSD ξn+1:

{µ?n, ρ?n} = argmin
µ,ρ

ξn+1 | ξn. (21)

Using recursion (15), the above optimization problem becomes:

{µ?n, ρ?n}=argmin
µ,ρ

tr{Qn+1}

=argmin
µ,ρ

tr{Qn}+µ2g+ρ2h+2µρ`−2µr1−2ρr2.

(22)
Equivalently, equation (22) can be written in matrix form as:

ξn+1 = [µρ]H [µ ρ]> − 2 [r1 r2] [µ ρ]
> + ξn, (23)

which is a quadratic function of [µ ρ], withH =

[
g `
` h

]
.

By decomposing g with respect to the two additive terms in the
right-hand side of (16), one can show that the Hessian matrixH can
be written as the sum of a covariance matrix and a positive semidef-
inite matrix. Matrix H is thus positive semidefinite. In practice,
since a covariance matrix is almost always positive definite [16], we
shall assume that H is positive definite, which allows us to obtain
the optimal parameters via:

[µ?n ρ
?
n]
> =H−1[r1 r2]

>. (24)

Some elementary algebra leads to:

µ?n =
hr1 − `r2
gh− `2 (25)

ρ?n =
gr2 − `r1
gh− `2 . (26)

This result cannot be used in practice since it requires statistics that
are not available in online learning scenarios. We shall now intro-
duce an approximation for these quantities. Time index n is added
in variables gn, hn, `n, r1n and r2n for clearance.

Consider first the quantity gn. With A1 and A2-A2’, we obtain:

gn = σ2
z tr{σ2

uI}+ tr
{
2RuQnRu + tr{RuQn}Ru

}
= σ2

zσ
2
u L+ (2 + L)σ2

u ζn. (27)

Next, using A1 with r1,n yields:

r1,n = ζn. (28)

Then, approximating the expectations in (17), (18) and (20) by their
instantaneous argument yields:

hn ≈ (βn ◦ sn)>(βn ◦ sn) (29)

`n ≈ w̃>n unu>n (βn ◦ sn) (30)

r2,n ≈ (βn ◦ sn)>w̃n. (31)

Now we construct an approximation forw? at time instant n in order
to evaluating the weight error vector w̃n. As proposed in [17], one
strategy is to use a one-step approximation of the form:

ŵ?
n = wn − ηn∇J(wn) (32)

with ηn a positive step size to be determined. Given ξn, we seek ηn
that minimizes ξn+1. Following the same reasoning as (21)–(26)
leads to ηn = r1,n/gn. Then, we approximate the gradient∇J(wn)
with the instantaneous value−enun. Finally, we obtain the one-step
approximation ŵ?

n = wn − pn with pn = − r1,n
gn

enun.
Quantities gn and r1,n depend on the EMSE ζn, which is not

available. Given (13), we suggest to use the following estimator:

ζ̂n = max{ê2n − σ2
v, 0}, (33)

where: ên = (1− γ)en + γên−1 (34)

which provides an instantaneous approximation of the EMSE, with
γ a temporal smoothing factor in the interval [0, 1). To further im-
prove the estimation accuracy of ζn, we use ζnmin = σ2

u tr{Qn}
calculated with (22) as a lower bound for ζn. Indeed, since we mini-
mized tr{Qn} with respect to {µ, ρ} at iteration n−1, ζ̂n cannot be
less than ζnmin due to the approximation introduced in the derivation
and the inherent variability of signal realizations. This, rather than
(33), we suggest to use:

ζ̂n = max
{
ê2n − σ2

v, ζnmin

}
. (35)

Note that non-negativity of µ and ρ is also required. We did not
consider this constraint in (22) in order to get closed-form solutions
as given by (25) and (26). We further impose a temporal smoothing
over parameters µ?n and ρ?n, as well as a possible upper bound µmax

for the step size µ to ensure the stability of the algorithm:

µn = min
{
γ′µn−1 + (1− γ′)µ?n, µmax

}
(36)

ρn = γ′ρn−1 + (1− γ′)ρ?n (37)

with γ′ a temporal smoothing factor in [0, 1).

4. SIMULATION RESULTS

We shall now present simulation results to illustrate the effective-
ness of our algorithms in non-stationary system identification sce-
narios. In all the experiments, the initial weight vectorw0 was set to
the all-zero vector 0L. The MSD learning curves were obtained by
averaging results over 100 Monte-Carlo runs. The VP-GZA-LMS
and VP-GRZA-LMS were compared with the standard LMS, GZA-
LMS, GRZA-LMS, ZA-VSSLMS [11], and WZA-VSSLMS [11] al-
gorithms. Note that the last two algorithms are variable step size al-
gorithms for general sparse system identification. For group-sparse
algorithms, the group size |Gj | was set to 5 for all j, and ε in (10)
was set to 0.1. We set the parameters of all the algorithms so that
the initial convergence rate of their MSD was almost the same. Two
experiments were performed to compare their tracking behavior and
steady-state performance with uncorrelated and correlated inputs.

In the first experiment, we considered a zero-mean white Gaus-
sian input signal un to be consistent with A2-A2’. The variance of
un was set to σ2

u = 1. The additive noise zn was an i.i.d. zero-mean
white Gaussian noise with variance σ2

z = 0.01. The order of the
unknown time-varying system was set to L = 35. At time instant
n = 1, 8000 and 16000, we set the system parameter vector to w?

1 ,
w?

2 and w?
3 , respectively. Parameter vector w?

2 was a non-sparse
vector, whilew?

1 andw?
3 were group-sparse. They were defined as:

w?
1 = [0.8, 0.5, 0.3, 0.2, 0.1, 015, −0.05, −0.1, −0.2, −0.3,

− 0.5, 05, 0.5, 0.25, 0.5, −0.25, −0.5]>;
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w?
2 = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 117, −0.1, −0.2,

− 0.3, −0.4, −0.5, −0.6, −0.7, −0.8 − 0.9]>;

w?
3 = [1.2, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.5, 0.4, 015, −0.4,

− 0.5, −0.2, −0.4, −0.5, −0.6 − 0.7, −0.8, −0.9, −1.2]>.

The results are provided in Fig. 1. Observe that all the algorithms
outperformed the LMS in stages w?

1 and w?
3 , demonstrating their

effectiveness for group-sparse system identification. VP-GZA-LMS
and VP-GRZA-LMS algorithms converged as fast as the other al-
gorithms when estimating w?

1 but reached a lower misadjustement
error, especially for VP-GRZA-LMS. The estimation of the non-
sparse w?

2 caused a moderate performance degradation, mainly in
their convergence speed. Indeed, their convergence speeds slowed
down compared to the other algorithms but they however reached a
smaller MSD. The estimation ofw?

3 confirms improved performance
and tracking ability of VP-GZA-LMS and VP-GRZA-LMS.
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Fig. 1. MSD learning curves for experiment 1 (white input).

In the second experiment, we used the same setting except that
the input signal was generated with a first-order AR process given
by un = αun−1 + vn, where vn was an i.i.d. zero-mean random
variable distributed according to the following Gaussian mixture dis-
tribution: 0.5N (a · σv, σ2

v) + 0.5N (−a · σv, σ2
v). Its parameters

were set to a = 3/2 and σ2
v = 4/13, so that σ2

u = 1. The corre-
lation coefficient of un was set to α = 1/2. In this way, assump-
tions A2–A2’ were both relaxed in order to test the robustness of
our approach. The learning curves of all the algorithms are pro-
vided in Fig. 2. The evolution of the step size and the regularization
parameter over time of VP-GZA-LMS and VP-GRZA-LMS are pro-
vided in Fig. 3. Though there was some performance degradation of
VP-GZA-LMS and VP-GRZA-LMS algorithms compared with the
first experiment, the VP-GRZA-LMS algorithm still led to the lowest
steady-state MSD along with the fastest convergence speed among
all the competing algorithms for w?

1 and w?
3 . The performance of

VP-GZA-LMS was almost at the same level as the best of the com-
peting algorithms. Despite the loss of assumptions A2–A2’, VP-
GZA-LMS and VP-GRZA-LMS algorithms still worked well with
non-Gaussian correlated inputs. The results in Fig. 3 show that VP-
GZA-LMS and VP-GRZA-LMS set the step size and regularization
parameter to large values at the beginning of each estimation stage
in order to ensure tracking ability and promote sparsity. Then they
gradually reduced them to ensure small MSD.
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Fig. 2. MSD learning curves for experiment 2 (non-Gaussian col-
ored input).
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5. CONCLUSION

In this paper, we introduced VP-GZA-LMS and VP-GRZA-LMS al-
gorithms to address online group-sparse system identification prob-
lems. Based on a model of the transient behavior of the GRZA-
LMS algorithm, we proposed to minimize the MSD with respect to
the step size and regularization parameter, simultaneously, at each
iteration. This led to a convex optimization problem with a closed-
form solution. Simulation results demonstrated the effectiveness of
VP-GZA-LMS and VP-GRZA-LMS algorithms over other existing
variable step size methods, even for non-Gaussian correlated inputs.
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