
Speech Communication 41 (2003) 469–484
www.elsevier.com/locate/specom
Cepstrum derived from differentiated power spectrum
for robust speech recognition q

Jingdong Chen a,*, Kuldip K. Paliwal b, Satoshi Nakamura c

a Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-0636, USA
b School of Microelectronic Engineering, Griffith University, Brisbane QLD 4111, Australia

c ATR Spoken Language Translation Research Laboratories, Kyoto 619-0288, Japan

Received 15 January 2002; accepted 5 January 2003
Abstract

In this paper, cepstral features derived from the differential power spectrum (DPS) are proposed for improving the

robustness of a speech recognizer in presence of background noise. These robust features are computed from the speech

signal of a given frame through the following four steps. First, the short-time power spectrum of speech signal is

computed from the speech signal through the fast Fourier transform algorithm. Second, DPS is obtained by differ-

entiating the power spectrum with respect to frequency. Third, the magnitude of DPS is projected from linear frequency

to the mel scale and smoothed by a filter bank. Finally, the outputs of the filter bank are transformed to cepstral

coefficients by the discrete cosine transform after a nonlinear transformation. It is shown that this new feature set can be

decomposed as the superposition of the standard cepstrum and its nonlinearly liftered counterpart. While a linear lifter

has no effect on the continuous density hidden Markov model based speech recognition, we show that the proposed

feature set embedded with a nonlinear liftering transformation is quite effective for robust speech recognition. For this,

we conduct a number of speech recognition experiments (including isolated word recognition, connected digits rec-

ognition, and large vocabulary continuous speech recognition) in various operating environments and compare the

DPS features with the standard mel-frequency cepstral coefficient features used with cepstral mean normalization and

spectral subtraction techniques.
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1. Introduction

Speech signal carries information from many

sources. But not all information is relevant or
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important for speech recognition. In speech rec-

ognition, the first crucial step is the feature ex-

traction, where the speech signal of a given frame

is converted to a set of acoustic features with the

hope that these features will encapsulate the

important information that is necessary for rec-

ognition. Once these features are computed, a back-
end classifier is used to recognize the input speech

signal into a sequence of words in light of the ex-

tracted features and pre-trained models.
erved.
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Acoustic features may greatly affect the per-

formance of a speech recognizer. Three criteria can

be used to evaluate a feature set. These are: dis-

criminability, robustness and complexity. The
discriminability requires the selected feature set to

have capability to discriminate among different

acoustic units. Though this can be evaluated

through separability, a more pertinent way is to

assess through speech recognition in matched

conditions. The robustness demands the feature

set to be resilient to acoustical distortions such

as additive noise and convolutive channel effect.
This can be tested through recognition in degraded

conditions. Since an ASR system is expected to

perform real time recognition, a computation-

ally efficient algorithm to extract the features is

essential. This is often examined by computa-

tional complexity of the feature extraction pro-

cess.

A great deal of work has been done for fea-
ture extraction (Davis and Mermelstein, 1980;

Furui, 1986; Soong and Rosenberg, 1986; Picone,

1993; Hermansky, 1990; Bourlard and Dupont,

1996; Kim et al., 1999). Among those features

that have been investigated and reported, the

mel-frequency cepstral coefficients (MFCCs), de-

veloped by Davis and Mermelstein (1980), are

used almost as ‘‘standard’’ acoustic parameters
in currently available speech recognition sys-

tems. Much evidence shows that MFCCs have

served as very successful front-ends for the hidden

Markov model (HMM) based speech recognition

in the past decade. Many speech recognition sys-

tems based on these front-ends have achieved a

very high level of accuracy in clean speech envi-

ronment.
Despite the de facto standardization of their use

as front-ends, MFCCs are widely acknowledged

not to cope well with noisy speech. In the litera-

ture, various approaches have been proposed to

improve the tolerance of an ASR system with re-

spect to noise, such as Wiener filtering (Vaseghi

and Milner, 1997), Kalman filtering (Popescu and

Zeljkovic, 1998), spectral subtraction (Boll, 1979;
Nolazco Flores and Young, 1994), RASTA (Her-

mansky et al., 1991; Hirsch et al., 1991), lin-log

RASTA (Hermansky and Morgan, 1994), cepstral

mean removal (Geller et al., 1992), signal bias re-
moval (Rahim and Juang, 1996), parallel model

compensation (PMC) (Gales and Young, 1996),

vector Taylor series approximation based model

compensation (Moreno et al., 1996), Jacobian
approach (Sagayama et al., 1997; Junqua et al.,

2001), maximum likelihood linear regression

(MLLR) (Woodland et al., 1996), and transfer

vector interpolation (Ohkura et al., 1992), to name

a few. These methods often take advantage of

the prior knowledge of noise to mask, cancel

or remove noise during front-end processing or

adjust the system parameters to match the new
noisy environment to improve recognition perfor-

mance.

Although the aforementioned efforts were ex-

perimented in speech recognition with certain

success, there remains a great need to investigate

new technologies to improve the basic ASR in

order to meet the high performance objectives set

for practical speech recognition applications. To
improve the performance of modern ASR sys-

tems, it is crucial to develop new features set since

all the succeeding processing in ASR systems are

highly dependent on the quality of the extracted

features.

In this paper, we present a new set of cepstral

coefficients derived from the differential power

spectrum (DPS) for speech recognition. First, the
short-time power spectrum of speech signal is

estimated through FFT. The power spectrum

estimate is then differentiated with respected to

frequency. Finally, the magnitude of DPS is con-

verted to some coefficients in the cepstral domain

by passing it through a mel-frequency filter bank

whose outputs are followed by a nonlinear trans-

formation and DCT.
We show that the new cepstrum can be ex-

pressed as the superposition of the conventional

cepstrum and its nonlinearly liftered counterpart.

While a linear liftering transform has no effect on

continuous density HMM-based speech recogni-

tion, experiments for various recognition tasks in

different noise conditions indicate that the pro-

posed feature set, which is embedded with a non-
linear lifter, is more tolerant to noise when

compared to MFCCs. Experiment is also per-

formed to compare the new feature with the widely

used spectral subtraction technique.
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2. Cepstrum derived from the differential power

spectrum

2.1. Definition of the differential power spectrum

If denoted by sðtÞ the original clean speech
signal, the received speech signal yðtÞ can be

modeled as

yðtÞ ¼ sðtÞ � hðtÞ þ nðtÞ ¼ xðtÞ þ vðtÞ; ð1Þ

where hðtÞ represents the impulse response of the
transmission channel, � indicates the convolution
operator, vðtÞ is the ambient noise, and xðtÞ the
noise-free speech signal.

Speech signal is time-variant and nonstationary.

It is usually analyzed on the frame-by-frame basis.
If we assume that yðnÞ ¼ xðnÞ þ vðnÞ (06 n < N ,
where N is the frame length) represents a given

frame of a speech signal that is pre-emphasized

and hamming-windowed, its power spectrum can

be formulated as

Y ðxÞ ¼ F½ryðsÞ� ¼
XN�1

s¼�Nþ1
ryðsÞe�jxs; ð2Þ

where F½	� indicates the Fourier transform, x de-

notes radian frequency, and ryðsÞ is the short-time
autocorrelation sequence which is given as

ryðsÞ ¼
1
N

PN�s�1
k¼0 yðkÞyðk þ sÞ; for s ¼ 0; 1; . . . ;N � 1;

ryð�sÞ; for s ¼ �N þ 1;�N þ 2; . . . ;�1:

�
ð3Þ

If we assume that the noise and speech signal

are mutually uncorrelated, (2) can be recast as

Y ðxÞ ¼ F½ryðsÞ� 
 F½rxðsÞ� þF½rvðsÞ�
¼ X ðxÞ þ V ðxÞ: ð4Þ

In current speech recognition systems, the power

spectrum is often represented into some cepstral

coefficients through the following transformation:

cðmÞ ¼ F�1½log Y ðxÞ�

¼ 1

2p

Z p

�p
½log Y ðxÞ�ejxm dx: ð5Þ

In this paper, we introduce another represen-
tation called differential power spectrum (DPS)

which is defined by
DðxÞ ¼ Y 0ðxÞ ¼ dY ðxÞ
dx

; ð6Þ

where the prime represents differentiation with
respect to x. If the uncorrelation assumption

holds, we see that, using (4),

DðxÞ ¼ dY ðxÞ
dx

¼ dX ðxÞ
dx

þ dV ðxÞ
dx

¼ DX ðxÞ þ DV ðxÞ; ð7Þ

where DX ðxÞ and DV ðxÞ are the differential power
spectra of the given frame of noise-free speech and

noise signal, respectively. This definition of DPS is

given in the continuous frequency domain. Its
discrete counterpart can be approximated in terms

of following difference equation:

DðkÞ 

XP
l¼�O

blY ðk þ lÞ



XP
l¼�O

bl½X ðk þ lÞ þ V ðk þ lÞ�

¼ DX ðkÞ þ DV ðkÞ; ð8Þ

where P and O are the orders of the differential

equation, bl�s some real-valued weighting coeffi-
cients, and 06 k < K, here K is the length of FFT.
Fig. 1 plots a frame of speech signal taken from

the TI46 database (see Section 3), its power spec-

trum and DPS. It can be seen from this figure that
for the selected difference equation, the spectral

peaks are retained in the DPS representation, ex-

cept that each peak is split into two, one positive

and one negative. The flat part of the power

spectrum however, is transformed into some val-

ues approximating to zero. This interesting ob-

servation motivates us to investigate DPS for

speech recognition since spectral peaks convey the
most important information in speech signal. The

fact that DPS preserves spectral peaks means that

the DPS representation does not lose information

contained in the speech signal. On the other hand,

noise spectrum is often quite flat. The differentia-

tion operation will cause the flat part of the spec-

trum to be near zero. Hence we can expect that

DPS based representation is robust with respect to
the noise whose spectrum is flat. In what follows,
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Fig. 1. The power spectrum and DPS for an �a� sound from the TI46 database: (a) waveform plot of a frame of the �a� sound; (b) the
power spectrum and DPS of the signal shown in (a). (The power spectrum is estimated through 512-point FFT. DPS is computed via

DðkÞ ¼ Y ðkÞ � Y ðk þ 1Þ. The radian frequency varies from 0 to p. Only range between 0 and 0.5p is shown here to enable a clear view
of peaks.)
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we will investigate the use of DPS for speech rec-

ognition.
2.2. Representing DPS into speech features

Before the use of DPS for speech recognition,

we have to resolve three problems. The first one is

the selection of proper orders of the difference

equations, namely the P and O parameters in (8).
The second one is the determination of weights bl�s
in (8). The third one is how DPS should be con-

verted into a few parameters that can best reflect

information contained in a speech signal, which

is necessary for recognition purpose.

Unfortunately, an optimal solution to any of

the three listed problems is difficult to achieve.

Rather than seeking some criteria to optimize

these problems, we will show only empirical solu-
tions for practical applications.
For the first two problems, we will investigate

and compare the use of following three special

forms of DPS:

DPS1: DðkÞ ¼ Y ðkÞ � Y ðk þ 1Þ; ð9Þ

DPS2: DðkÞ ¼ Y ðkÞ � Y ðk þ 2Þ; ð10Þ

DPS3: DðkÞ ¼ Y ðk � 2Þ þ Y ðk � 1Þ
� Y ðk þ 1Þ � Y ðk þ 2Þ: ð11Þ
The third problem is circumvented by convert-

ing DPS into cepstral coefficients. First, an abso-

lute operation is applied to DPS to make its

negative parts positive. Fig. 2 shows the magnitude

of DPS and the power spectrum of the frame of

speech signal presented in Fig. 1(a). One can see

that the magnitude of DPS has an envelope quite
similar to that of the power spectrum. This may
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indicate that the magnitude of DPS preserves

spectral shape information. Second, the magnitude

of DPS is passed through a mel-frequency filter

bank whose outputs are followed by a log opera-

tion. Finally, the logarithmic filter bank outputs

are compressed into a feature vector with much

lower dimensionality using DCT. In summary, the
schematic procedure to extract the new feature is

shown in Fig. 3. We refer this feature as DPS-

based cepstral coefficients. For simplicity, we de-

note them as DPSCC.
2.3. Comparison with the cepstral liftering technique

If the cepstral coefficients for a given frame of
speech signal is denoted as cðmÞ, m ¼ 1; 2; . . . ;D,
here D is the dimension of the feature vector, then
the corresponding liftered cepstral features are

defined by

1ðmÞ ¼ wðmÞcðmÞ; ð12Þ
where wðmÞ, m ¼ 1; 2; . . . ;D, defines the lifter. In a
more compact matrix-vector form, (12) can be

rewritten as

1
* ¼ Wc

*
; ð13Þ

where 1
* ¼ ½1ð1Þ; 1ð2Þ; . . . ; 1ðDÞ�T and c

* ¼ ½cð1Þ;
cð2Þ; . . . ; cðDÞ�T are the liftered and original ceps-
tral vectors, respectively. Here, the symbol T de-

notes vector or matrix transpose, and

W ¼

wð1Þ 0 	 	 	 0

0 wð2Þ 	 	 	 0

..

. ..
. . .

. ..
.

0 0 	 	 	 wðDÞ

26664
37775 ð14Þ

is the linear liftering transform.

The liftering technique was well investigated in

the 70�s and early 80�s for speech recognition

(Paliwal, 1992, 1999; Tohkura, 1987; Juang et al.,

1987). It has been found to give significant recog-

nition gains for dynamic time warping based
speech recognition systems.
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For continuous density HMM-based speech

recognizer, however, the linear liftering transform

has been shown to be ineffective (Paliwal, 1999).

This is due to the fact that a linear transformation
does not affect the logarithmic likelihood score. In

fact, the likelihood of the vector c
*
for a given class

is computed through the following Mahalanobis

distance

dðc*; l*c;RcÞ ¼ ðc* � l
*

cÞ
TR�1

c ðc* � l
*

cÞ; ð15Þ

where l
*

c and Rc are the mean vector and covari-

ance matrix, respectively, representing the given

class, and obtained from training process.

When the liftered cepstral vector is used as a

feature, the Mahalanobis distance is given by

dð1*; l*1;R1Þ ¼ ð1* � l
*

1Þ
TR�1

1 ð1* � l
*

1Þ: ð16Þ

Using (13), we can easily obtain

l
*

1 ¼ W l
*

c;

R1 ¼ W RcW T:
ð17Þ

Substituting (17) to (16) yields,

dð1*; l*1;R1Þ ¼ dðc*; l*c;RcÞ: ð18Þ

Therefore, the Mahalanobis distance, and

eventually the logarithmic likelihood score, is in-

variant under the linear liftering transform. This

proves that a linear lifter has no effect on contin-

uous density HMM-based speech recognition.
Knowing that the cepstral coefficients derived

from the power spectrum is expressed as

cðmÞ ¼ F�1½log Y ðxÞ�

¼ 1

2p

Z p

�p
½log Y ðxÞ�ejxm dx; ð19Þ

we can express from Fig. 3 the DPS based cep-

strum as (neglect the filter bank analysis),

gðmÞ ¼ F�1½logDðxÞ�

¼ 1

2p

Z p

�p
½log Y 0ðxÞ�ejxm dx: ð20Þ

Using the fact that

d logY ðxÞ
dx

¼ Y 0ðxÞ
Y ðxÞ ; ð21Þ
we can rewrite (20) as

gðmÞ ¼ 1

2p

Z p

�p
flog Y ðxÞ þ log½log Y ðxÞ�0gejxm dx

¼ 1

2p

Z p

�p
log Y ðxÞejxm dx

þ 1

2p

Z p

�p
log½log Y ðxÞ�0ejxm dx

¼ cðmÞ þF�1flogF½�jmcðmÞ�g: ð22Þ

It can be seen that the gðmÞ is the superposition
of two terms. The first one is the cepstral coeffi-

cient cðmÞ, and the second one is the Fourier
transform of the linearly liftered cepstral coeffi-

cients followed by a logarithm and an inverse
Fourier transform. The latter one can be treated as

nonlinearly liftered cepstral coefficients. While the

linear liftering does not alter the performance, the

effectiveness of this nonlinear liftering transform

for HMM-based speech recognition will be shown

through experimental results described later in this

paper.

2.4. Comparison with the spectral subtraction

The spectral subtraction (SS) technique has
been popularly employed to eliminate the detri-

mental effect of noise in robust speech recognition

and speech enhancement. This technique is used to

restore the spectrum of clean speech signal by

subtracting an estimated noise spectrum from that

of the noisy signal in the frequency domain,

thereby yielding noise-free spectrum. Recalling the

power spectra of noisy speech, noiseless speech
and the noisy signal defined in (2) and (4), SS can

be formulated as (Boll, 1979; Nolazco Flores and

Young, 1994):

bXX ðxÞ ¼ Y ðxÞ � abVV ðxÞ; if Y ðxÞ > a
1�b

bVV ðxÞ;
bbVV ðxÞ; otherwise;

(
ð23Þ

where bXX ðxÞ and bVV ðxÞ are speech signal estimate
and noise estimate respectively, b defines the

spectral flooring, and a controls the amount of
noise subtracted from the noisy signal. For full

noise subtraction, a ¼ 1, for over-subtraction
a > 1, and for under-subtraction, a < 1.
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SS can be performed either in each frequency

bin or on sub-band basis. For speech recognition,

it was found that SS operated in each band-pass

filter could yield more consistent improvement for
MFCC features against noise (Chen et al., 2001).

In brief, this SS is expressed as

bEEX ðkÞ ¼
EY ðkÞ � abEEV ðkÞ; if EY ðkÞ > a

1�b
bEEV ðkÞ;

bbEEV ðkÞ; otherwise;

(
ð24Þ

where EY ðkÞ is the output of the kth band-pass
filter when Y ðkÞ is passed though the triangular
filter bank, and bEEX ðkÞ and bEEV ðkÞ are estimated fil-
ter bank energies for clean speech and noise

signal.

The central issue for such a SS scheme is to

compute bEEV ðkÞ. In this paper, the bEEV ðkÞ is ob-
tained sequentially by

bEEV ðkÞ ¼ cbEE�
V ðkÞ þ ð1� cÞEY ðkÞ; ð25Þ

where bEE�
V ðkÞ suggests the noise estimate in previ-

ous frame, and c takes on different ‘‘attack’’ and
‘‘decay’’ values depending on the relationship of

EY ðkÞ to the previous estimate, i.e.,

c ¼ ca ¼ 0:99; if EY ðkÞ > bEE�
V ðkÞ;

cd ¼ 0:90; if EY ðkÞ6 bEE�
V ðkÞ:

(
ð26Þ

Recalling its definition given in (8), we can re-

write DPS as

DðkÞ ¼
XP
l¼�O

blY ðk þ lÞ

¼ b0Y ðkÞ �
XP
l¼�O
l 6¼0

blY ðk þ lÞ: ð27Þ

Comparing (27) with (23), one can see the differ-

ence between the DPS representation and the

spectral subtraction technique. In this paper, the

comparison between DPS and the spectral sub-

traction technique is made for noisy speech rec-

ognition. Results will be presented in the next
section.
3. Experiments

The proposed feature has been extensively tes-

ted on many tasks, which include various operat-
ing environments. For brevity, we cite only some

of them in this paper.

3.1. Isolated speech recognition

The first experiment uses the TI46 database to

find out which form of DPS given in (9)–(11) can

lead to a better recognition performance. TI46 is

an isolated spoken words database which was de-

signed and collected by Texas Instruments (TI).

The database contains 16 speakers including 8

males and 8 females. The vocabulary consists of 10
isolated digits from �ZERO� to �NINE�, 26 isolated
English alphabets from �A� to �Z�, and ten isolated
words including ‘‘ENTER, ERASE, GO, HELP,

NO, RUBOUT, REPEAT, STOP, START,

YES’’. There are 26 utterances of each word from

each speaker: 10 of them are designated as training

and the remaining 16 are designated as testing

tokens. Speech signal is digitized at a sampling rate
of 12.5 kHz with 12-bit quantization value for

each sample.

In this experiment, we take speech from 8 male

speakers to perform English alphabet recognition.

Four sets of features are considered, namely

MFCC, DPSCC1, DPSCC2, and DPSCC3.

MFCC: Speech signal is analyzed every 10 ms
with a frame width of 32 ms (with preem-

phasis and Hamming windowing). For

each frame, a 512-point FFT is per-

formed to estimate its power spectrum,

which is then fitted to a mel-frequency

filter bank consisting of 24 triangular

filters. 12 MFCCs are computed by ap-

plying a logarithm and a cosine trans-
form to the 24 filter bank energies (the

MFCC of order 0 is ignored).

DPSCC1: For each frame, the power spectrum is

estimated. The differential power spec-

trum is then calculated according to

(9). The magnitude of DPS is then

input to a same mel-frequency filter

bank and is converted to 12 cepstral
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coefficients. Similarly, we compute the

DPSCC2 and DPSCC3 according to

(10) and (11) respectively.

The recognition system used is a multi-speaker

whole-word-model based HMM recognizer.

Models are left-to-right with no skip state transi-

tion. Eight states are used for each model. A

mixture of four multivariate Gaussian distribu-

tions with diagonal covariance matrices is used for

each state to approximate its probability density

function. The training iterations begin with a
uniform segmentation. Experimental results are

shown in Table 1.

From above results, we can make several ob-

servations. First, the DPS based features can at

least yield comparable performance as the standard

MFCCs. This indicates that, just as power spec-

trum, DPS preserves the information of speech

signal necessary for speech recognition. Second, for
both MFCCs and DPSCCs, the inclusion of dy-

namic and acceleration features can greatly aug-

ment the recognition performance. Third, among

the three types of DPS definitions, DPS1 defined in

(9) yields the best performance. It gives 23% word

error rate reduction as compared to the MFCC

baseline.

In the subsequent experiments, we will evaluate
the DPS based cepstrum and its robustness with

respect to noise for various tasks. As we have shown

that DPSCC1 yields the most promising result, we

will only assess the DPSCC1 based features. For

brevity, we shall, from now on, drop the 1 from

DPSCC1 without introducing any confusion.

3.2. SNR improvement

Before we go on further to conduct noisy speech

recognition, let us first examine the frame based
Table 1

Word accuracy (%) using different feature sets

MFCC DPSCC1

12 S 84.1 86.1

12 S+12 D 90.4 92.1

12 S+12 D+12 A 91.8 93.6

S: static features; D: dynamic features which are calculated by subtr

vectors; A: accelerations which are calculated by subtracting the two
SNR for both power spectra and differential power

spectra of a speech signal. In this experiment, the

clean speech signals are taken from the speaker m1

in the TI46 database. We take Lynx noise from the
NOISEX database (Varga et al., 1992). The noise

signal is downsampled from 16 to 12.5 kHz to

match the bandwidth of speech signal and is then

added to control the utterance level SNR to a

certain dB.

For power spectrum based representation, by

assuming that the noise and speech signal are un-

correlated, we introduce frame level SNR which is
defined as

SNRY ðiÞ ¼ 10 log10
PK=2

k¼0 X ði; kÞPK=2
k¼0 V ði; kÞ

; ð28Þ

where X ði; kÞ, V ði; kÞ are power spectra for the ith
frame of noiseless speech and noise signal defined

in (4), and K is the length of FFT.
Similarly, we can define the frame SNR for DPS

if the same uncorrelation assumption is made,

SNRDðiÞ ¼ 10 log10
PK=2

k¼0 DX ði; kÞPK=2
k¼0 DV ði; kÞ

; ð29Þ

where DX ði; kÞ, DV ði; kÞ are differential power
spectra defined in (7).

Having defined the frame level SNR, we now

start to compare SNRY ðiÞ and SNRDðiÞ for noisy
speech signal. Fig. 4(a) shows an �a� sound. We add
some Lynx noise to control the utterance level

SNR to be 10 dB. The noisy speech signal is shown

in Fig. 4(b). Fig. 4(c) plots both SNRY and SNRD

as a function of frame index i. One can see, from
the plot, that for speech part, SNRD is about

2–7 dB higher than SNRY . Fig. 5 plots a similar

graph but for an �i� sound. Again we found that for
the voiced part, SNRD is higher than SNRY .
DPSCC2 DPSCC3

85.1 85.7

90.9 92.1

91.7 92.8

acting the two preceding from the two following static feature

preceding from the two following dynamic feature vectors.
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We further examined many other sounds and

various types of noise in 10 dB condition. We
found that for voiced sound, the average SNRD is

approximately 4 dB higher than SNRY. For un-

voiced speech and silence, SNRD and SNRY are

quite similar. For this reason, we can expect the

DPS based feature to be more resilient to noise

than the power spectrum based features, in other

words, DPSCC should be more resilient to noise

than MFCC.

3.3. Connected digits recognition

This experiment is to recognize connected dig-

its. The TI connected digits database (Zue et al.,
1990) is used for this purpose. This database
contains digit strings uttered by adult and child

speakers. However, only digit strings from 225
adult speakers are used in this experiment. These

strings are originally divided into a training set and

a test set for consistency in comparison of results

among different researchers.

The vocabulary in this database consists of 11

words which include 10 digits and an ‘‘oh’’. Each

speaker uttered 77 sequences of these words, con-

sisting of 2 tokens of each of the 11 words in iso-
lation, and 11 strings of each of 2, 3, 4, 5, and

7 digits. The digit strings were recorded in

an acoustically treated sound room with a sam-

pling frequency of 20 kHz. We downsampled

speech to 8 kHz using the Matlab downsampling

function.



Fig. 5. Waveform plots of the clean and noisy signals and the frame level SNRs of the noisy signal of an �i� sound: (a) Waveform plot
of the clean �i� sound; (b) Waveform plot of the �i� sound in Lynx noise condition (SNR¼ 10 dB); (c) SNRD and SNRY in Lynx noise
environment.
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To test the robustness of different front-ends
with respect to noise, we directly add some noise to

the speech signal in the test set. The training

speech is kept clean. Noise signal is taken from the

NOISEX database (Varga et al., 1992). It consists

of various types of noise signals, among which

three representative types of noise are selected to

report here. They are wide-band stationary speech

noise, narrow-band stationary Lynx helicopter
noise, and nonstationary machine-gun noise. We

refer the reader to (Varga et al., 1992) for detailed

descriptions of the characteristics of these noises.

The noise signal provided in this database is

sampled at 16 kHz. To match its bandwidth to the

speech signal, we downsampled the noise signal to

8 kHz.
The HTK speech recognition system is used to
perform the recognition task. This was configured

as a speaker-independent mixture Gaussian HMM

system. The model set consists of 11 word-models,

a silence model and a short pause model. With the

exception of the short pause, each model has 6

emitting states. The short pause model has only

one emitting state. A mixture of 8 multivariate

Gaussian distributions with diagonal covariance
matrices is used for each emitting state to ap-

proximate its probability density function.

Four sets of feature vectors are investigated

in this experiment:

MFCC: Speech signal is analyzed every 15 ms

with a frame width of 32 ms (with preem-
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phasis and Hamming windowing). Each

frame is transformed into 12 MFCCs

using the same procedure as that in

Experiment 1. Moreover, the normalized
logarithmic short-time energy is also

added to 12 MFCCs to form a 13-dimen-

sional static vector. This static vector is

then expanded to produce a 39-dimen-

sional feature vector (static + delta + ac-

celeration).

DPSCC: Speech signal is split into frames as

described above. For each frame, the
power spectrum is estimated and the

differential power spectrum is then cal-

culated according to (9). The magnitude

of DPS is converted to 12 cepstral co-

efficients. This 12-dimensional vector is

further expanded to a 39-dimensional

feature vector using same strategy as

used to compute the MFCC features.
MFCC+CMN: MFCC features with cepstral

mean normalization (CMN).

DPSCC+CMN: DPSCC features with CMN.

The experiment results are shown in Fig. 6.

From Fig. 6, we can make following observa-

tions:

(1) As compared with the conventional MFCCs,

the new cepstral vector derived from DPS

yields at least comparable performance in clean,

as well as high, SNR conditions.

(2) In most strong noise conditions, DPSCC out-

performs MFCC.

(3) CMN is effective to augment the robustness of

both MFCC and DPSCC with respect to
noise.

(4) After CMN, the DPS features outperform

MFCC in both clean and noisy conditions.

3.4. Phone recognition

The fourth experiment is to perform phone

recognition. The speech data employed in this ex-

periment is the TIMIT phoneme based continuous

speech database (Lamel et al., 1986), which con-

tains a total of 6300 sentences, 10 sentences spoken
by each of 630 speakers from 8 major dialect re-
gions of the United States. This database is split

into a training set of 3696 utterances and a test set

which contains 1344 utterances. Speech signal is

sampled at 16 kHz with 16 bits per-word.
The TIMIT database is phonetically transcribed

using a set of 61 phones. To facilitate comparison

with the results reported in the literature (Lee and

Hon, 1989), we perform phonetic recognition on

this database over the set of 39 classes that are

commonly used for such evaluation. Again, the

HTK toolkit is configured to perform the recog-

nition task. The model set consists of 39 mono-
phone HMMs. Each model has three emitting

states. An eight-component mixture Gaussian

distribution is used for each emitting state to ap-

proximate the probability density function. Pho-

neme bigram is used as a language model.

We assess two feature sets: MFCC+CMN (39

coefficients) and DPSCC+CMN (39 coefficients).

The static MFCCs and DPS based cepstral co-
efficients are estimated using the same proce-

dure as described in the previous experiment. The

only difference is that analysis frame length in this

experiment is 32 ms with 10 ms overlap. Recog-

nition results for this experiment are shown in

Fig. 7.

We can make the following observations from

this figure:

(1) The MFCC and the DPSCC features yield

comparable results in clean and weak noise

conditions.

(2) DPSCC features slightly outperform the

MFCC features in strong noise conditions.

3.5. Evaluation on AURORA task

The AURORA task (Hirsch, 2000) has been

defined by the European Telecommunications
Standards (ETSI) as a cellular industry initiative to

standardize a robust feature extraction technique

for a distributed speech recognition framework.

This task used the TIDigits database downsam-

pled from the original sampling frequency of 20–8

kHz with an ‘‘ideal’’ low-pass filter and normal-

ized to the same amplitude level. To account for

the realistic frequency characteristics of terminals
and equipment in the telecommunication area, an
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error rate in the machine-gun noise conditions; (c) word error rate in the Lynx noise conditions. (SNR¼ Inf means no noise is added
to the original signal.)
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additional filtering is applied. The two ‘‘standard’’

frequency characteristics used are G.712 and

MIRS (Hirsch, 2000). Noise is artificially added to

the filtered TIDigits at SNRs of 20, 15, 10, 5, 0 and

)5 dB. Noise signals are recorded at different
places including suburban train, crowd of people

(babble), car, exhibition hall, restaurant, street,

airport and train station.

Two training modes are defined, i.e., training on

clean data only and training on clean as well as
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noisy data (multi-condition). For the first mode,

8440 utterances are selected from the training part
of the TIDigits containing the recording of 55 male

and 55 female adults. These signals are filtered

with the G. 712 characteristic without noise added.

For the second mode, 8440 utterances from TI-
Digits training parts are equally split into 20 sub-

sets with 422 utterances in each subset. Each
subset contains a few utterances of all training

speakers. Suburban train, babble, car, and exhi-

bition hall noises are added to 20 subsets at 5

different SNRs, namely, 20, 15, 10, 5 dB and the
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clean condition. Both speech and noise are filtered

before adding together.

Three test sets are defined. 4004 utterances from

52 male and 52 female speakers in the TIDigits test
part are divided into four subsets with 1001 ut-

terances in each. Recordings from all speakers are

present in each subset. One noise is added to each

subset at SNRs of 20 to )5 dB in decreasing steps
of 5 dB after speech and noise are being filtered

with the G. 712. The three subsets are as below:

Test Set A: Suburban train, babble, car and

exhibition noises are added to the four subsets. In
total, this set contains 4� 7� 1001 utterances.
This set leads to a high match of training and test

data as it contains the same noises as used for the

multi-condition training mode.

Test Set B: It is created in exactly the same way,

but using the four different noises, namely, res-

taurant, street, airport and train station.

Test Set C: It contains two of the four subsets.
Speech and noise are filtered with the MIRS

characteristic before adding. Two types of noise,

i.e., suburban train and street noise, are added

at 20, 15, 10, 5, 0, and )5 dB.
To facilitate comparison of results among dif-

ferent researchers (Zhu et al., 2001; Kotnik et al.,

2001; Andrassy et al., 2001; Droppo et al., 2001),

AURORA task provides a reference recognizer
which is based on the HTK software package. The

model set contains 11 whole word HMMs and two

pause models, i.e., ‘‘sil’’ and ‘‘sp’’. Each word

model has 16 states with each state having 3 mix-

tures. ‘‘sil’’ model has 3 states and each state has

6 mixtures. ‘‘sp’’ has only a single state.

AURORA task also provides a baseline per-

formance which uses conventional MFCCs and
MFCCs after CMN as front-end features. The

details for calculating MFCCs are given below:

(1) Frame length of 25 ms. Frame shift of 10 ms.

(2) Preemphasis with a factor of 0.97.

(3) Application with a Hamming window.

(4) FFT based mel-frequency filter bank with 23

frequency bands in the range from 64 Hz up
to 4 kHz.

The logarithmic frame energy is added to 12

MFCCs (the MFCC of order 0 is ignored) to
construct 13-dimensional static feature vector.

This vector is further expanded to a 39-dimen-

sional vector by including its delta and accelera-

tion coefficients.
We assess the proposed feature on this task.

DPSCCs are computed in exactly the same way

except that our mel-frequency filter bank consists

of 24 frequency bands rather than 23 bands. We

also include the logarithmic frame energy to aug-

ment recognition performance. The final feature

vector also contains 39 coefficients including 13

static, 13 delta and 13 acceleration coefficients.
The average word recognition accuracies for

three test sets in different noisy conditions are

presented in Table 2. From the results, we can

make the following observations:

(1) With the use of CMN, the average word error

rate is reduced 8.8%. This shows the effective-

ness of the CMN on robust speech recogni-
tion.

(2) SS is effective in dealing with additive noise.

Used together with the CMN, it increases the

average performance by 19.3%.

(3) The DPS based cepstrum outperforms MFCC.

It also yields a slightly better performance than

SS.
4. Discussion and conclusion

The concept of the differential power spectrum

(DPS) was introduced and a new set of cepstral

features was proposed in this paper for improving

the robustness of speech recognition. We note that

just like the power spectrum, DPS can also pre-

serve spectral information to discriminate among

different linguistic units (e.g., phonemes and

words). Based on the analysis of the frame level
SNR, we found that DPS had a higher SNR than

the power spectrum, specially for voiced frames.

This suggests that the DPS based features should

be more resilient to noise than the power spectrum

based features.

Compared with the linear liftering technique,

the DPS based features can be decomposed as the

superposition of conventional cepstral coefficients
and their nonlinearly liftered counterpart. While a



Table 2

Recognition performance for different feature sets

A B C Overall

ave

Sub-

way

Bab-

ble

Car Exhib. Rest. Street Air-

port

Sta-

tion

Sub. Street

Average word accuracy (%)

MFCC 89.1 88.4 86.8 88.0 86.6 87.8 88.3 86.2 83.5 85.7 87.0

MFCC+CMN 90.1 88.4 87.2 87.9 86.4 87.9 88.9 86.0 87.3 85.7 87.6

MFCC+SS+CMN 90.4 89.0 89.7 88.8 88.2 88.4 91.0 87.4 89.5 87.8 89.0

DPSCC+CMN 91.5 89.2 89.0 89.2 87.6 89.4 90.3 87.5 90.7 88.8 89.3

Relative error rate reduction (%) in comparison with the baseline MFCC

MFCC – – – – – – – – – – –

MFCC+CMN 11.6 3.9 4.9 )1.1 6.9 6.8 10.5 6.8 24.1 8.9 8.8

MFCC+SS+CMN 14.89 8.7 23.4 6.4 19.5 10.6 27.3 15.7 37.2 22.0 19.3

DPSCC+CMN 24.6 10.7 18.4 9.6 15.26 18.5 21.8 16.8 44.6 28.5 21.6

Recognition is performed for various conditions including clean speech and SNRs at 20, 15, 10, 5, 0 and )5 dB. According to the
AURORA standard, the average in each type of noise is computed by averaging the word accuracy in 20, 15, 10, 5, and 0 dB, while

both clean and )5 dB conditions are ignored.
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linear liftering transform was shown to have no

effect on continuous density HMM-based speech

recognition, the DPS based cepstrum can increase

recognition performance in various noise condi-

tions. The proposed features were also found to

outperform the spectral subtraction technique.
The DPSCC feature was extensively evaluated

on many recognition tasks, which include various

operating environments. Results reveal that the

proposed feature can yield at least comparable

performance when compared to the conventional

MFCCs. In most cases, it outperforms MFCC.

Compared to the estimation of MFCC, the ex-

traction of DPSCC only requires (K=2� 1) more
addition (subtraction) and absolute operations for

each frame signal (where K is the length of FFT).
This increase in computational complexity is neg-

ligible for today�s computer.
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