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Abstract—To find the position of an acoustic source in a room,
typically, a set of relative delays among different microphone pairs
needs to be determined. The generalized cross-correlation (GCC)
method is the most popular to do so and is well explained in a
landmark paper by Knapp and Carter. In this paper, the idea of
cross-correlation coefficient between two random signals is gener-
alized to the multichannel case by using the notion of spatial predic-
tion. The multichannel spatial correlation matrix is then deduced
and its properties are discussed. We then propose a new method
based on the multichannel spatial correlation matrix for time delay
estimation. It is shown that this new approach can take advantage
of the redundancy when more than two microphones are available
and this redundancy can help the estimator to better cope with
noise and reverberation.

Index Terms—Cross-correlation coefficient, linear prediction,
spatial correlation, time delay estimation.

I. INTRODUCTION

T RADITIONALLY, time delay estimation (TDE), from
measurements provided by an array of sensors, has played

an important role in radar, sonar, and seismology for localizing
radiating sources. Nowadays, with the increased development
of communications among humans and human–machine inter-
faces, the need for localizing and tracking acoustic sources in
a room has become essential. Two specific examples are auto-
matic camera tracking for video-conferencing and microphone
array beam steering for suppressing noise and reverberation in
all types of communication and voice processing systems. The
time delay estimation-based locator has become the technique
of choice in these applications, especially in recent digital
systems [1]–[7].

The generalized cross-correlation (GCC) method, proposed
by Knapp and Carter in 1976 [8], is the most popular technique
for TDE. The delay estimate is obtained as the time-lag that
maximizes the cross-correlation between filtered versions of the
received signals. Since then, many new ideas have been pro-
posed to deal better with noise and reverberation; see [9]–[15].
However, reverberation remains a problem and in a highly re-
verberant room, all known methods fail.

There are mainly two approaches to deal more efficiently with
reverberation. The first one is to blindly estimate the impulse
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responses from the source to the two microphones [14], [15].
The better this estimate is, the better the relative delay between
these two microphone signals can be estimated; but this is a dif-
ficult problem and the resulting time delay estimates are sen-
sitive to noise. The second approach is to use more than two
microphones and take advantage of the redundancy. This is the
choice that we have taken here.

In this paper, the idea of cross-correlation coefficient between
two random signals is generalized to the multichannel case by
using the notion of spatial prediction. The multichannel spatial
correlation matrix is then deduced and its properties are dis-
cussed. We then propose a new time delay estimator, which can
take advantage of the redundancy among multiple microphones.
It is believed that this redundancy can help to better deal with
both noise and reverberation. Numerical studies have been per-
formed and the results show that the effect of noise and rever-
beration is dramatically reduced when multiple microphones are
used. The relative delay estimation accuracy increases with the
number of microphones.

II. SIGNAL MODEL

Suppose that we have an array as shown in Fig. 1, which
consists of microphones whose outputs are denoted as

. Without loss of generality, we assume
that the wave is in-phase at microphone 0. We consider the fol-
lowing propagation model:

...

...
...

...
...

. . .
. . .

...
...

(1)

where , are the attenuation factors due to
propagation effects,is the propagation time from the unknown
source to microphone 0, is an additive noise signal at
the th microphone, is the relative delay between microphones
0 and 1, and is the relative delay between microphones 0
and . The function depends of but also of the microphone
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Fig. 1. Linear microphone array.

array geometry. For example, in the far-field case (plane wave
propagation), for a linear equispaced array, we have

(2)

and for a linear nonequispaced array, we have

(3)

where is the distance between microphonesand
. In the near-field case, depends also on the

position of the source. In generalis not known, but the ge-
ometry of the antenna is known such that the exact mathemat-
ical relation of the relative delay between microphones 0 and

is well defined and given. It is further assumed that and
, are zero-mean, mutually uncorrelated,

stationary Gaussian random processes.

III. SPATIAL PREDICTION AND INTERPOLATION

The notion of spatial prediction was presented in [16] but in
the simple case that makes the spatial prediction equivalent to the
classical linear prediction. In this section, we generalize this idea
inawaythat thegeometryof thearray is taken intoaccountaswell
as the relative delay among the elements of this array. As a result,
the spatial correlation matrix has a much more general form.

A. Linear Forward Spatial Prediction

Considering the microphone 0, we would like to align succes-
sive time samples of this microphone signal with spatial sam-
ples from the other microphone signals. It is clear that

is in-phase with the signals
. From these observations, we define the following

forward spatial prediction error signal:

(4)

where is any guessed relative delay, superscriptdenotes
transpose of a vector or a matrix and the first equation at the
bottom of the page is the linear forward spatial predictor. Con-
sider the criterion

(5)

where denotes mathematical expectation. Minimization
of (5) leads to the equation

(6)

where the second equation at the bottom of the page is the spatial
correlation matrix, and

...

...

is the spatial correlation vector. Note that the spatial correla-
tion matrix is not Toeplitz in general, except for some particular
cases.

For and for the noise free case where
, it can easily be checked that with our signal model,

the rank of matrix is equal to 1. This means that the sam-
ples can be perfectly predicted from any of one other
microphone samples. However, the noise is never zero in prac-
tice and is in general isotropic. The energy of the different noise

...
...

.. .
...
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signals at the microphones will be added at the main diagonal of
the correlation matrix , will regularize it, and this matrix
will become positive definite (which we suppose in the rest of
this paper). A unique solution to (6) is then guaranteed whatever
the number of microphones is. This solution is optimal from a
Wiener theory point of view.

B. Linear Backward Spatial Prediction

Considering the microphone, we would like to align suc-
cessive time samples of this microphone signal with spatial sam-
ples from the other microphone signals. It is clear that is
in-phase with the signals
. From these observations, we define the following backward

spatial prediction error signal:

(7)

where the first equation at the bottom of the page is the linear
backward spatial predictor. Minimization of the criterion

(8)

leads to the equation

(9)

where

C. Linear Spatial Interpolation

The ideas presented for spatial prediction can easily be ex-
tended to spatial interpolation, where we consider any micro-
phone element . The spatial interpolation
error signal is defined as

(10)

where the second equation at the bottom of the page with
, is the spatial interpolator. The criterion associated

with (10) is

(11)

The rest flows immediately from the previous sections on pre-
diction.

IV. A PPLICATION TOTIME DELAY ESTIMATION

In this section, we only use the forward spatial prediction idea
but of course backward spatial prediction and spatial interpola-
tion can also be used. So we consider the minimization of crite-
rion for different .

Let denote the minimum mean-squared error, for the
value , defined by

(12)

If we replace by in (4), we get

(13)

We deduce that

(14)

The value of that gives the minimum , for different
, corresponds to the time delay between microphone 0 and 1.

Mathematically, the solution to our problem is then given by

(15)

where is an estimate of .
Particular case: Two microphones . In this case, the

solution is

(16)

where is the cross-correlation coefficient be-
tween and . When the cross-correlation coeffi-
cient is close to 1, this means that the two signals that we com-
pare are highly correlated which happens when the signals are
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in-phase, i.e., and this implies that . This
approach is similar to the generalized cross-correlation method
proposed by Knapp and Carter [8]. Note that in the general case
with any number of microphones, the proposed approach can
be seen as a cross-correlation method, but we take advantage
of the knowledge of the microphone array to estimate only one
time delay (instead of estimating multiple time delays indepen-
dently) in an optimal way in a least mean square sense.

V. OTHER INFORMATION FROM THE SPATIAL CORRELATION

MATRIX

Consider the microphone signals ,
the corresponding spatial correlation matrix is

(17)

It can be shown that can be factored as

(18)

where

...
...

...
...

(19)

is a diagonal matrix

...
...

.. .
...

(20)

is a symmetric matrix, and

(21)

is the cross-correlation coefficient between and
.

We now give two propositions that will be useful for TDE.
Proposition 1: We have

(22)

where “det” stands fordeterminant.
Proof: Since is symmetric and is supposed to be pos-

itive definite, it is clear that which implies that
. To show that , we can use the

Cholesky factorization[17]. Since is symmetric and posi-

tive definite, there exists a unique lower triangular matrix
with positive diagonal entries such that , where

...
...

.. .
...

(23)

It can be shown that the elements of the main diagonal of matrix
can be computed as follows:

(24)

It follows immediately from (24) that . Fur-
thermore, since is a triangular matrix, we have

That completes the proof.
Another way to show this proposition is by induction, i.e.,

(25)

Proposition 2: We have

(26)

Proof: The forward prediction error signal defined in (4)
can be rewritten as

(27)

where . Then the criterion shown in (5) can be
expressed as

(28)

where , and is the Lagrange multiplier. It is
then easily shown that

(29)

In this case, using (18), (29) becomes

(30)

Using (25), it is clear that proposition 2 is verified.
In the general case, for any interpolator, we have

(31)

As we can see, the determinant of the spatial correlation ma-
trix is related to the minimum mean-squared error and to the cor-
relation of the signals. Let’s take the two-channel case. It is ob-
vious that the cross-correlation coefficient between the two sig-
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nals and is linked to the determinant of the corresponding
spatial correlation matrix

(32)

By analogy to the cross-correlation coefficient definition be-
tween two random signals, we define the multichannel correla-
tion coefficient among the signals , as

(33)

From proposition 2, we give a new bound for

(34)

Basically, the coefficient will measure the amount of
correlation among all the channels. This coefficient has some
interesting properties. For example, if one of the signals, say

, is completely decorrelated from the others because the mi-
crophone is defective, or it picks up only noise, or the signal is
saturated, this signal will not affect since .
In this case

(35)

In other words, the measure “drops” the signals which have no
correlation with the others. This makes sense from a correlation
point of view, since we want to measure the degree of correlation
only from the channels who have something in common. In the
extreme cases where all the signals are uncorrelated, we have

, and where any two signals (or more) are perfectly
correlated, we have .

Obviously, the multichannel coefficient can be used
for time delay estimation in the following way:

(36)

This method can be seen as a multichannel correlation approach
for the estimation of time delay and it is clear that (36) is equiv-
alent to (15).

VI. SIMULATION EXPERIMENTS

We have proposed a multichannel correlation approach for
the time delay estimation problem. A series of Monte-Carlo sim-
ulation experiments were conducted to study the characteristics
of the proposed algorithm, and the difference in TDE perfor-
mance when more microphones are used. Three sets of experi-
mental results are presented here: one involves a set in noisy but
nonreverberant environment and the other two pertain to rever-
beration conditions.

A. Performance Criteria

Following [9] and [10], we distinguish an estimate as either
ananomalyor anonanomalyaccording to its absolute error. If
the absolute error , the estimate is identified as an
anomaly; otherwise it is declared as a nonanomaly, whereand

are the true delay and-th delay estimate respectively, and
is the signal correlation time. In our experiment,is computed

as the 3 dB width of the main lobe of the source signal autocorre-
lation function, which is equal to four (4) samples. The TDE per-
formance is evaluated in terms of the percentage of anomalous
estimates over the total estimates , the bias , and the
standard deviation of the nonanomalous estimates. These
measures are defined as

(37)

where denotes the total number of estimates, is the
number of estimates that are identified as anomalies, is
the number of nonanomalous estimates, andrepresents the
subset of nonanomalous estimates. The smaller are the ,
and , the better the estimator is.

B. Experiment Setup

In an attempt to simulate real reverberant acoustic environ-
ments, the image model technology [18] is used. We consider
a rectangular room with plane reflective boundaries (walls,
ceiling and floor). Each boundary is characterized by a uniform
reflection coefficient, which is independent of the frequency
and the incidence angle of the source signal. The following
parameter values are used.

• Room dimension: 120 180 150 inch .
• Reflection coefficients: varying be-

tween 0 and 1.
• Source Position: a point omnidirectional source is located

at (22.5, 150.0, 112.5).
• Microphone positions: a linear microphone array which

consists of ten (10) ideal point receivers (microphones) is
placed in parallel with the -axis. The first microphone
(microphone 0) is located at (60.0, 7.5, 30.0), and the tenth
at (100.5, 7.5, 30.0). The spacing between two adjacent
microphones is 4.5 in. The directivity pattern of each mi-
crophone is assumed to be omnidirectional.

• SNR: varying between dB and 0 dB.
An illustration of the setup is shown in Fig. 2. A low-pass

sampled version of the impulse response of the acoustic trans-
mission channel between the source and each microphone is
generated using the image method. A 4-min speech signal from
a female speaker, digitized with 16-bit resolution at 16 kHz, is
then convolved with the ten synthetic impulse responses. Fi-
nally, mutually independent white Gaussian noise is properly
scaled and added to each microphone signal to control the SNR.

C. Results and Interpretation

The algorithm used to obtain the time delay estimates can be
summarized as follows.

• The microphone signals are partitioned into nonoverlap-
ping frames with a frame width of 128 ms (2048 samples).
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Fig. 2. Layout of the microphone array and source positions in the simulation
environment.

Fig. 3. Comparison ofdet( ~R ) as a function of lag-timem for different
microphones in a noisy environment whereSNR = �5 dB. Arrow shows the
position of the true delay.

• A voice activity detector (VAD) based on the short-time
energy and zero crossing rate is then applied to the signal
at microphone 0 to identify regions of speech and non-
speech. These automatically labeled regions are then man-
ually checked for accuracy and consistency.

• For each speech frame, the multichannel correlation ap-
proach given by (36) is applied to obtain a time delay es-
timate. The noise-only frame is disregarded.

In the absence of reverberation, the performance of the TDE
algorithm is mainly influenced by the level (SNR) and the char-
acteristics of noise. Fig. 3 plots the as a function
of lag-time for the case where dB. It shows the
results using two, three, four, and ten microphones respectively.
The true time delay is (samples). When two and three
microphones are employed, the estimated delay is 3 (samples).
As the number of microphones is increased to four, the esti-
mated delay is equal to the true delay. It is remarkable that as the
number of microphones is increased, the valley of the cost func-
tion tends to be sharper, which will enable an easier search of
the minimum. This demonstrates the effectiveness of the multi-
channel correlation approach in taking advantage of the redun-

Fig. 4. Percentage of (a) anomalous time delay estimates, (b) bias, and (c)
standard deviation of nonanomalous time delay estimates versus different
number of microphones in nonreverberant environments.

dant information provided by multiple microphones to mitigate
the effect of noise.

Fig. 4 presents the TDE results obtained in the white
Gaussian noise condition in the absence of reverberation,
where the percentage of anomalies, the bias and standard
deviation of nonanomalous estimates are plotted, respectively,
all as a function of the number of microphones.

As clearly shown in Fig. 4, when the number of microphones
is fixed, the TDE performance deteriorates as the level of noise
increases. For example, for two microphones (in this case the
multichannel correlation approach is equivalent to the GCC
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method), when dB, no anomaly is observed. As
SNR decreases to dB, the probability of anomalies grows
up to nearly 4%. As SNR further drops down to dB,
the anomalies reach 16%, which is more than 4 times that of

dB. Similarly, both the absolute value of bias and
standard deviation of the nonanomalous estimates grow as
SNR decreases.

In the same SNR condition, the number of anomalies, the bias
and standard deviation of nonanomalous estimates, all reduce as
more microphones are employed. For instance, in the condition
where dB, the percentage of anomalies is over
16% for two microphones, but it diminishes to approximately 0
when more than 8 microphones are used. Similarly, the bias of
the nonanomalous estimates is nearly 0.5 when only two micro-
phones are available. Its value vanishes as the number of micro-
phones is increased up to 6. It is remarkable that the performance
obtained using 6 microphones in dB condition is
almost as good as that achieved by two microphones in 0 dB.
This demonstrates the powerfulness of the multichannel corre-
lation approach in taking advantage of the redundancy among
multiple microphones to deal with noise.

In reverberation condition, each microphone receives delayed
and attenuated replicas of source signal due to reflections of
the source wave from room boundaries in addition to the direc-
tional path signal. In such a case, the transmission of an acous-
tical signal between a source and microphones is not accurately
characterized by the signal model given in (1). The TDE per-
formance will be affected by not only background noise, but
reverberation as well. Fig. 5 presents the results obtained in a
light reverberation condition where all boundary reflection co-
efficients are . The reverberation
time , which is defined as the time for the sound to die away
to a level 60 dB below its original level and is measured by the
Schroeder’s method [19] using the reverse-time integrated im-
pulse response, is approximately 0.12 s. Each set of measured
data points is fitted by a third order polynomial curve, displaying
a clear trend of dependence of the TDE performance on the
number of microphones.

Again when the number of microphones is fixed, the TDE
performance degrades as the SNR drops. In the same SNR con-
dition, a better performance is obtained when more microphones
are available. It is noted that the probability of anomalies and the
bias of nonanomalous estimates obtained in this reverberant en-
vironment are similar to those achieved in the nonreverberant
condition. This is due to the fact that even though noise and
reverberation coexist, in the studied SNR conditions, the back-
ground noise is the dominant distortion source that degrades the
TDE performance.

As seen from Fig. 5, the probability of anomalies decreased
monotonously as the number of microphones is increased. The
trend of bias is in general downwards as more microphones are
employed. We notice however, in some occasional situations
such as eight microphones, its bias is slightly higher than that
for seven microphones. This is mainly because that when eight
as opposed to seven microphones are used, some anomalous
estimates will become nonanomalies. This part of nonanomalies
due to one more microphones may have a higher bias than other
nonanomalies.

Fig. 5. Percentage of (a) anomalous time delay estimates, (b) bias,
and (c) standard deviation of nonanomalous time delay estimates versus
different number of microphones in reverberation conditions where
r = 0:5; i = 1; 2; . . . ; 6. The fitting curve is a third order polynomial.

Like the probability of anamolies and the bias, when the SNR
is fixed, the standard deviation of the nonanomalous estimates
in this light reverberation circumstance also reduces when the
number of microphones is increased. It is interesting to notice
that, by comparing Fig. 5 with Fig. 4, the standard deviation
obtained in the reverberant environment is higher than that in
nonreverberant condition and the former reduces slower than
the latter as the number of microphones increases. Even worse,
the deviation in the reverberation condition does not vary much
when more than six microphones are employed. This is under-
standable. In the reverberant environment, reflected signals with
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Fig. 6. Percentage of (a) anomalous time delay estimates, (b) bias, and (c)
standard deviation of nonanomalous time delay estimates versus different
number of microphones in highly reverberant environments where boundary
r = 0:8; i = 1; 2; . . . ; 6. The fitting curve is a third-order polynomial.

different delay reach the microphone sensors, which will shift
the peaks (or valleys) of the cost function.

In many practical situations, the boundary reflection coef-
ficients are very likely to be greater than 0.5. The reverbera-
tion time is therefore much longer than 0.1 s. The third experi-
ment tests the TDE performance in a moderate condition where

respectively. The corresponding
reverberation time is approximately 0.23 s. The results ob-
tained are plotted in Fig. 6. Again, a third-order polynomial
curve is fitted to the data to display the trend of dependence of
TDE performance on the number of microphones.

It can be seen that, in the same SNR condition, this moderate
reverberation condition exhibits much higher percentage of
anomalies as compared to the nonreverberant and lightly rever-
berant environments. This is due to the fact that as the boundary
reflection coefficients grow, more reflected signals will reach
the microphones with a stronger level and a different delay.
As a result, the erroneous peaks of the cost function increase,
which will eventually lead to mistakes in extremum searching.
Likewise, the bias and deviation in this moderate reverberation
condition are larger than that obtained in previous experiments.

It is worthwhile pointing out that even in this stronger rever-
beration situation, a better performance is achieved as more mi-
crophones are used. This again confirms the effectiveness of the
multichannel correlation approach in fully utilizing the redun-
dant information provided by multiple sensors to eliminate the
effect of noise and reverberation.

VII. CONCLUSION

Although many research efforts have been devoted to it, time
delay estimation remains to be a difficult problem in practical
noisy and reverberant environments.

In this paper, the linear spatial prediction and linear spatial
interpolation techniques were readdressed from the point view
of time delay estimation. The spatial correlation matrix is then
introduced and its properties were discussed.

The spatial correlation matrix can be written in different ways.
We proposed a way which had included some a priori informa-
tion of the microphone array geometry and the relation among
the different time delays. Given the relative delay,, between
microphones0and1,wesupposed that therelativedelaybetween
microphone 0 andis a function of . Thus, if is known, any
microphone signal can be predicted from the others. This can
be useful for multichannel coding. If is not known, it can be
estimated by minimizing the spatial prediction error or, equiva-
lently, by using the determinant of the spatial correlation matrix.
It was shown that this multichannel correlation TDE algorithm
is a generalized version of the popularly used GCC method. The
advantage of the new approach, as compared to the GCC method,
is that it can take intoaccount the redundant informationprovided
by multiple microphones. Experimental results demonstrated
that this redundancy can make the estimation ofmore robust to
noise and reverberation.
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