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A Generalized MVDR Spectrum
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Abstract—The minimum variance distortionless response
(MVDR) approach is very popular in array processing. It is also
employed in spectral estimation where the Fourier matrix is used
in the optimization process. First, we give a general form of the
MVDR where any unitary matrix can be used to estimate the
spectrum. Second and most importantly, we show how the MVDR
method can be used to estimate the magnitude squared coherence
function, which is very useful in so many applications but so few
methods exist to estimate it. Simulations show that our algorithm
gives much more reliable results than the one based on the popular
Welch’s method.

Index Terms—Capon, coherence function, cross-spectrum, min-
imum variance distortionless response (MVDR), periodogram,
spectral estimation, spectrum.

I. INTRODUCTION

SPECTRAL estimation is a very important topic in signal
processing, and applications demanding it are countless

[1]–[3]. There are basically two broad categories of techniques
for spectral estimation. One is the nonparametric approach,
which is based on the concept of bandpass filtering. The other
is the parametric method, which assumes a model for the
data, and the spectral estimation then becomes a problem of
estimating the parameters in the assumed model. If the model
fits the data well, the latter may yield a more accurate spectral
estimate than the former. However, in the case that the model
does not satisfy the data, the parametric model will suffer sig-
nificant performance degradation and lead to a biased estimate.
Therefore, a great deal of research efforts are still devoted to
the nonparametric approaches.

One of the most well-known nonparametric spectral estima-
tion algorithms is the Capon’s approach, which is also known
as minimum variance distortionless response (MVDR) [4], [5].
This technique was extensively studied in the literature and is
considered as a high-resolution method. The MVDR spectrum
can be viewed as the output of a bank of filters, with each filter
centered at one of the analysis frequencies. Its bandpass filters
are both data and frequency dependent, which is the main dif-
ference with a periodogram-based approach where its bandpass
filters are a discrete Fourier matrix, which is both data and fre-
quency independent [3], [6].

The objective of this letter is twofold. First, we generalize the
concept of the MVDR spectrum. Second and most importantly,
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we show how to use this approach to estimate the magnitude
squared coherence (MSC) function as an alternative to the pop-
ular Welch’s method [7].

II. GENERAL FORM OF THE SPECTRUM

Let be a zero-mean stationary random process that is the
input of filters of length

where superscript denotes transposition.
If we denote by the output signal of the filter , its

power is

(1)

where is the mathematical expectation, superscript de-
notes transpose conjugate of a vector or a matrix

(2)

is the covariance matrix of the input signal , and

In the rest of this letter, we always assume that is positive
definite.

Consider the unitary matrix

with . In the proposed generalized MVDR
method, the filter coefficients are chosen so as to minimize the
variance of the filter output, subject to the constraint

(3)

Under this constraint, the process is passed through the
filter with no distortion along and signals along other
vectors than tend to be attenuated. Mathematically, this is
equivalent to minimizing the following cost function:

(4)

where is a Lagrange multiplier. The minimization of (4) leads
to the following solution:

(5)

We define the spectrum of along as

(6)
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Therefore, plugging (5) into (6), we find that

(7)

Expression (7) is a general definition of the spectrum of the
signal , which depends on the unitary matrix . Replacing
the previous equation in (5), we get

(8)

Taking into account all vectors , (8) has
the general form

(9)

where

and

diag

is a diagonal matrix.
Property 1: We have

(10)

Proof: This form follows immediately from (9).
Property 1 shows that there are an infinite number of ways

to decompose matrix , depending on how we choose the
unitary matrix . Each one of these decompositions gives a
representation of the square of the spectrum of the signal
in the subspace .

Property 2: We have

tr tr (11)

Proof: Indeed

tr tr

tr tr

Property 2 expresses the energy conservation. So no matter
what we take for the unitary matrix , the sum of all values of
the inverse spectrum is always the same.

A. Particular Cases

In this subsection, we propose to briefly discuss three impor-
tant particular cases of the general form of the MVDR spectrum.

The first obvious choice for the unitary matrix is the
Fourier matrix

where

and . Of course, is a
unitary matrix. With this choice, we obtain the classical Capon’s
method.

Now suppose . In this case, a Toeplitz matrix is
asymptotically equivalent to a circulant matrix if its elements
are absolutely summable [8], which is usually the case in most
applications. Hence, we can decompose as

(12)

so that . As a result, for a stationary signal and asymptot-
ically, Capon’s approach is equivalent to the periodogram. The
difference between the MVDR and periodogram approaches can
also be viewed as the difference between the eigenvalue decom-
positions of circulant and Toeplitz matrices. While for a circu-
lant matrix, its corresponding unitary matrix is data indepen-
dent, it is not for a Toeplitz matrix.

The second natural choice for is the matrix containing the
eigenvectors of the correlation matrix . Indeed, it is well
known that can be diagonalized as follows [9]:

(13)

where is a unitary matrix containing the eigenvectors , and
is a diagonal matrix containing the corresponding eigenvalues
. Thus, taking , we find that and

(14)

In many applications, the process signal is real, and it
may be more convenient to select an orthogonal matrix instead
of a unitary one. So our third and final particular case is the
discrete cosine transform

where the rest is shown in the equation at the bottom of the
page, with and for . We
can verify that . So with this orthogonal
transform, the spectrum is

diag (15)
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III. APPLICATION TO THE CROSS-SPECTRUM

AND MSC FUNCTION

In this section, we show how to use the generalized MVDR
approach for the estimation of the cross-spectrum and the MSC
function.

A. General Form of the Cross-Spectrum

We assume here that we have two zero-mean stationary
random signals and with respective spectra

and . As explained in Section II, we can
design two filters

(16)

to find the spectra of and along

(17)

where

(18)

is the covariance matrix of the signal and

Let and be the respective outputs of the filters
and . We define the cross-spectrum between and

along as

(19)

where the superscript is the complex conjugate operator.
Similarly

(20)

Now if we develop (19), we get

(21)

where

(22)

is the cross-correlation matrix between and . Re-
placing (16) in (21), we obtain the cross-spectrum

(23)

For (23) to have the true sense of the cross-spectrum definition,
the matrix should be complex (and unitary).

Property 3: We have

tr

(24)

Proof: This is easy to see from (23).
Property 3 is similar to property 2 and shows another form of

energy conservation.

B. General Form of the MSC Function

We define the MSC function between two signals and
as

(25)

From (23), we deduce the magnitude squared cross-spectrum

(26)

Using expressions (17) and (26) in (25), the MSC becomes

(27)

Property 4: We have

(28)

Proof: Since matrices and are assumed to
be positive definite, it is clear that . To prove that

, we need to rewrite the MSC function. Define
the vectors

(29)

and the normalized cross-correlation matrix

(30)

Using the previous definitions in (27), the MSC is now

(31)

Consider the Hermitian positive semidefinite matrix

(32)

and the vectors

(33)

(34)
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We can easily check that

(35)

(36)

Inserting these expressions in the Cauchy–Schwartz inequality

(37)

we see that .
Property 4 was, of course, expected in order that the definition

(27) of the MSC could have a sense.

C. Simulation Example

In this subsection, we compare the MSC function estimated
with our approach and with the MATLAB function “cohere”
that uses the Welch’s averaged periodogram method [7]. We
consider the illustrative example of two signals and
that do not have that much in common, except for two sinusoids
at frequencies and

(38)

(39)

where and are two independent zero-mean (real)
white Gaussian random processes with unit variance. The
phases and in the signal are random. In this
example, the theoretical coherence should be equal to at
the two frequencies and and at the others. Here we
chose and . For both algorithms, we
took 1024 samples and a window of length . As for
the choice of the unitary matrix in our approach, we took the
Fourier matrix. Fig. 1(a) and (b) give the MSC estimated with
MATLAB and our method, respectively. Clearly, the estimation
of the coherence function with our algorithm is much closer to
its theoretical values.

IV. CONCLUSION

The MVDR principle is very popular in array processing
and spectral estimation. In this letter, we have shown that this
concept can be generalized to unitary matrices other than the

Fig. 1. Estimation of the MSC function. (a) MATLAB function “cohere.” (b)
Proposed algorithm with U = F. Conditions of simulations: K = 100 and a
number of samples of 1024.

Fourier transform for spectrum evaluation. Most importantly,
we have given an alternative to the popular Welch’s method for
the estimation of the MSC function. Simulations show that the
new method works much better.
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