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Optimal Step Size of the Adaptive Multichannel LMS
Algorithm for Blind SIMO Identification
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Abstract—Adaptive algorithms for blindly identifying
single-input multiple-output (SIMO) systems are appealing
because of their computational efficiency and capability of con-
tinuously tracking a time-varying system. Adaptive multichannel
least-mean-square (MCLMS) algorithms (with and without the
unit-norm constraint) are analyzed, and the optimal step size is de-
rived. A simple yet effective variable step-size MCLMS algorithm
is proposed, and its performance is evaluated with simulations.

Index Terms—Blind Channel Identification (BCI), Least Mean
Square (LMS), Multichannel Signal Processing, SIMO Systems,
Variable Step-Size Adaptive Algorithm.

I. INTRODUCTION

B LIND identification of single-input multiple-output
(SIMO) systems has a variety of potential applications

in wireless communications and other signal processing sys-
tems. As research in this area advances and demands for
efficient implementation emerge, developing adaptive blind
channel identification (BCI) algorithms becomes imperative
and has gained increased attention in the last several years.
Two important proposals, among others, in the literature are
least-mean-square (LMS)-type algorithms based only on the
second-order statistics of the system outputs. One is the adap-
tive multichannel LMS (MCLMS) algorithm (with a unit-norm
constraint on the channel impulse response vector) [1], and
the other is the unconstrained MCLMS (UMCLMS) algorithm
[2]. Both algorithms work well for an identifiable, slowly
time-varying SIMO system of moderately long channels like
most wireless communication systems. However, the step size
governs the rate of convergence and the steady-state misalign-
ment error. A fixed step size usually cannot meet the conflicting
requirement of fast convergence and low misalignment. More-
over, in order to prevent the algorithms from diverging, several
trials need to be conducted before a proper step size is found.
This drawback obviously will obstruct the use of these adaptive
algorithms in practice.

In this letter, we will derive the optimal step size for the UM-
CLMS algorithm, which minimizes the misalignment error in
each step of adaptation. Using this discovery, we will develop a
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variable step-size unconstrained MCLMS (VSS-UMCLMS) al-
gorithm. The effectiveness of this step-size control scheme will
be justified by simulations.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a SIMO finite impulse response (FIR) linear system,
as depicted in Fig. 1. The th observation is expressed as
follows:

(1)

where represents the common source signal, stands
for the true (subscript t) impulse response of the th channel,

is the additive noise signal captured by the th sensor, the
symbol denotes the linear convolution operator, and is the
number of channels. In a vector/matrix form, such a relationship
(1) becomes

(2)

where

...
. . .

. . .
...

. . .
. . .

...

denotes a vector/matrix transpose, and is set to the length
of the longest channel impulse response by assumption. Addi-
tive noise components in different channels are assumed to be
uncorrelated with the source signal. The channel parameter ma-
trix is of dimension and is constructed from
the channel’s impulse response

(3)

A BCI algorithm is used to estimate the channel impulse re-
sponses , , from the observations
without utilizing any knowledge about the source signal .

The following two assumptions (one on the channel diversity
and the other on the input source signal) are made throughout
this letter to guarantee an identifiable system [3].

1) The polynomials formed from , ,
are coprime, i.e., the channel transfer functions
do not share any common zeros.
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Fig. 1. Relationships between the input s(n) and the observations x (n) in a
SIMO FIR system.

2) The autocorrelation matrix of
the source signal is of full rank (such that the SIMO
system can be fully excited from a perspective of
system identification), where denotes mathemat-
ical expectation.

III. BCI FUNDAMENTALS AND ADAPTIVE MULTICHANNEL

LMS ALGORITHM

For a SIMO system, the vector of channel impulse responses
lies in the null space of the cross-correlation-like matrix of
channel outputs [4]

(4)

where

...
...

. . .
...

If the two conditions in Section II are met, Matrix is rank
deficient by 1 in the absence of noise and channel impulse
responses and can be uniquely determined from , which
contains only the second-order statistics of the system outputs.
When noise is present, would be the eigenvector of
corresponding to its smallest eigenvalue.

To develop an adaptive BCI implementation, a simple way
is to take advantage of the cross relations among the outputs,

as we did in an earlier study of the MCLMS algorithm [1]. By
following the fact that

(5)
we have, in the absence of noise, the following cross relation at
time :

(6)

When noise is present and/or the estimate of channel impulse
responses deviates from the true value, an a priori error signal
is produced:

(7)

where is the model filter for the th channel at time . In
order to avoid the trivial estimate of all zero elements, a unit-
norm constraint is imposed on

leading to the normalized error signal
. Accordingly, the cost function is formulated as

(8)

and the update equation of the MCLMS algorithm is deduced
as follows:

(9)

where is a small positive step size

(10)

and the rest is shown in the equation at the bottom of the page.

IV. OPTIMAL STEP SIZE AND THE PROPOSED VARIABLE

STEP-SIZE MCLMS ALGORITHM

It was shown in [1] that the MCLMS algorithm is able to con-
verge in the mean to the true channel impulse response vector

if the step size is properly specified. However, there is no
guide on how to choose in practice. In order to avoid diver-
gence, a conservatively small is usually used, which inevitably

...
...

. . .
...
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sacrifices the convergence speed of the adaptive algorithm. In
this section, we will show the optimal step size for the MCLMS
algorithm and propose a variable step-size MCLMS algorithm.

We begin with re-examining the update equation (9). As the
adaptive algorithm proceeds, the cost function dimin-
ishes, and its gradient with respect to can be approximated
as

(11)

If we remove the unit-norm constraint, a simplified UMCLMS
adaptive algorithm is deduced

(12)

which is theoretically equivalent to the adaptive algorithm pro-
posed in [2], although the cost functions are defined in different
ways in these two adaptive BCI algorithms.

With such a simplified adaptive algorithm, the primary con-
cern is whether it would converge to the trivial all-zero estimate.
Fortunately, this will not happen, as long as the initial estimate

is not orthogonal to the true channel impulse response
vector , as shown in [2]. This can be easily demonstrated by
premultiplying (12) with :

(13)

Using the cross relation (6), we know in
the absence of noise. This implies that the gradient
is orthogonal to at any time . As a result, (13) turns out to
be

(14)

This indicates that is time invariant for the UMCLMS
algorithm. Provided that , would not converge
to zero.

Decompose the model filter as follows:

(15)

where and are perpendicular and parallel to ,
respectively. Since the gradient is orthogonal to ,
and is parallel to , obviously, is orthogonal
to as well. Therefore, the update equation (12) of the
UMCLMS algorithm can be decomposed into the following two
separate equations:

(16)

(17)

From (16) and (17), it is clear that the UMCLMS algorithm
adapts the model filter only in the direction that is perpendicular
to . The component is not altered in the process of
adaptation.

As far as a general system identification algorithm is con-
cerned, the most important performance measure apparently
should be the difference between the true channel impulse
response and the estimate. With a BCI method, the SIMO
FIR system can be blindly identified up to a scale. Therefore,

Fig. 2. Optimal step size � (n + 1) for the unconstrained MCLMS BCI
algorithm in a three-dimensional space.

the misalignment of an estimate with respect to the true
channel impulse response vector would be

min (18)

where is an arbitrary scale. Substituting (15) into (18) and
finding the minimum produces

min

(19)

Clearly, the ratio of over reflects how close
the estimate is from the desired solution. With this feature in
mind, the optimal step size for the UMCLMS algo-
rithm at time would be the one that makes have
a minimum norm, i.e.,

min

min (20)

Since is time invariant, and is orthogonal
to , minimizing the norm of is equivalent
to minimizing the norm of . As such, we have

min

min (21)

In order to minimize the norm of
, as illustrated in Fig. 2, should be chosen

such that is orthogonal to . Therefore, we
project onto and obtain the optimal step size

(22)

Finally, this new adaptive algorithm with the optimal step size
is referred to as the VSS-UMCLMS for BCI.

V. SIMULATIONS

In this section, we will evaluate the performance of the pro-
posed VSS-UMCLMS algorithm by simulations. A comparison
to the UMCLMS with a number of different prespecified step
sizes is also presented.
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Fig. 3. Impulse responses of a single-input three-output system used in the
simulation for BCI.

Similar to our earlier studies on BCI, we use the normalized
projection misalignment (NPM) as a performance measure in
this letter, which is given by

NPM (23)

where

is the projection misalignment vector. By projecting onto
and defining a projection error, we take into account only

the undesirable misalignment of the channel estimate, disre-
garding an arbitrary gain factor inherently associated with it [5].

The SIMO FIR system to be identified consists of
channels. The impulse response of each channel has
taps, and their coefficients are randomly generated. Fig. 3

plots these three impulse responses, which have been checked
to ensure that they do not share any common zeros. The source
and additive noise signals are uncorrelated, and both are white
Gaussian random sequences. The sampling rate is 8 kHz. The
model filter is initialized as for all investigated adap-
tive algorithms. Note that .

Fig. 4 shows the convergence in terms of the NPM for all the
algorithms. In panel (a), noise is absent, and in panel (b), the
signal-to-noise ratio (SNR) is 30 dB. Regarding the UMCLMS
algorithm, a number of different step sizes were tried, and three
results with , 0.01, and 0.005 are presented here.
We see that increasing the step size would accelerate the UM-
CLMS algorithm to converge. However, this trend fails when

is greater than 0.02, where the UMCLMS algorithm starts
diverging. The proposed VSS-UMCLMS algorithm converges
much faster than the UMCLMS algorithm, both in the absence
and presence of noise. Furthermore, the final NPM for the VSS-
UMCLMS algorithm is also smaller.

Fig. 4. Normalized projection misalignment of the VSS-UMCLMS and
UMCLMS algorithms with three different prespecified step sizes (� = 0:02,
0.01, and 0.005) (a) in the absence of noise and (b) at 30-dB SNR.

VI. CONCLUSIONS

The optimal step size of the adaptive MCLMS algorithm for
blind SIMO identification was derived, and a variable step-size
unconstrained MCLMS algorithm was proposed. Compared
with the conventional unconstrained MCLMS algorithm, the
proposed method converges much faster and yields a more
accurate estimate of the system’s channel impulse responses, as
demonstrated by simulations. In addition, the proposed method
is much easier to use in practice, since the step size does not
have to be specified in advance.
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