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Abstract

A systematic overview of acoustic MIMO identification algorithms is presented in this paper, which explains why we

believe that the mother of all challenges in acoustic signal processing is how to accurately estimate room acoustic impulse

responses in real time. From non-blind to blind methods with respect to both single-channel and multichannel acoustic

systems, we scan the state of the art in acoustic channel identification technologies and outline fundamental challenges that

still are waiting for breakthroughs. A number of acoustic signal processing problems are briefly reviewed and their

connections to acoustic MIMO identification are clarified. Several successful real-time systems based on acoustic MIMO

identification are discussed to confirm the value of this technique.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

From analog to digital signals, from narrowband
to broadband speech, from wireline to wireless
terminals, and from circuit-switched to packet-
switched networks, there have been tremendous
advances in voice telecommunication technology
ever since Alexander Graham Bell invented the
telephone in 1876. However, conversation and
collaboration between people over long distance
who use today’s audio communication technology
are still unnatural and even clumsy. The distraction
of holding a superfluous device such as a close-talk
e front matter r 2005 Elsevier B.V. All rights reserved
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microphone and the lack of sensibility of remote
speaking environments lead to diminished interac-
tion and productivity, and eventually cause custo-
mer dissatisfaction. It is no longer a luxury but truly
a rational demand to create a lifelike voice
communication mode that gives the involved people
the impression of being in the same acoustic
environment, which is referred to as ‘‘immersive

experience’’ in the multimedia communication
literature [1]. To achieve this goal, the acoustic
interface at the transmitting end needs to acquire
high-fidelity speech and sound while synchronously
recording the source location information, while
still allowing the users to move freely without
holding or wearing a microphone. Consequently,
problems that must be addressed include, but are
.
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not limited to, (multichannel) echo cancellation,
(blind) source separation, source localization, noise
reduction, and speech dereverberation. At the
receiving end, a sound field is rendered such that
the local acoustic environment is masked, but the
remote (or virtual) environment is reproduced (or
constructed) in the human’s perception. All of these
problems are under active research, wherein acous-
tic signal processing plays a central role.

Acoustic waves studied in multimedia commu-
nications are simply pressure disturbances propa-
gating in the air. They carry information of the
sound source and their energy is radiated spherically
from the origin, i.e., the location of the sound
source. The governing law of physics in this
radiation process is the natural fall-off of the signal
level as a function of distance from the origin. As a
rule of thumb, the loss is 6 dB for doubling the
distance. This phenomenon makes distant acquisi-
tion of a speech signal vulnerable to interference
from other concurrent speech sources and ambient
noise. Moreover, in an enclosure, acoustic waves are
reflected possibly many times by boundaries before
they reach a microphone, leading to distortion
observed in microphone signals. Acoustic signal
processing helps extract and interpret the informa-
tion in these distorted microphone signals. There is
no doubt that acoustic signal processing problems
in these scenarios are difficult, and we believe that
the difficulties are essentially attributable to the
deficiency of knowledge by an acoustic signal
processing algorithm about the characteristics of
its surrounding acoustic environment. In other
words, the core difficulty of most of acoustic signal
processing problems is associated with our incap-
ability of dynamically identifying an acoustic
system.

An immersive acoustic communication system by
its nature involves multiple sound sources (including
loudspeakers) and multiple microphones [2], fitting
well into the multiple-input multiple-output
(MIMO) structure. Over the last several years, the
MIMO model has been extensively investigated in
wireless communications since a multiple-antenna
system holds the promise of much higher spectral
efficiencies for wireless channels [3,4]. Although
wireless and acoustic channels have many things in
common (e.g., time varying, frequency selective),
MIMO acoustic systems are substantially different
from that of wireless communications. As opposed
to communication receivers, the human ear has an
extremely wide dynamic range and is much more
sensitive to weak tails of the channel impulse
responses. As a result, the length of acoustic channel
impulse response models is significantly greater than
that in wireless communications. Filter lengths of
thousands of samples are not uncommon in MIMO
acoustic systems while wireless impulse responses
consist of usually not more than a few of taps. In
addition, since communication systems can use a
pilot signal for channel identification, such a problem
has never been an obstacle to developing practical
wireless MIMO communication systems. But, in
acoustics, we seek techniques for human talkers. The
source signals in acoustic systems are random and
their statistics are considerably different from that in
wireless communications. The speech signal is neither
stationary nor white, and does not form a known set
of signal alphabet as in wireless communications,
making the identification of a MIMO system
apparently much more challenging.

The methods for identifying a MIMO system can
be broadly dichotomized into two classes: the class
of non-blind methods and the class of blind
methods, depending on the availability of the
knowledge of source signals. While non-blind
system identification algorithms with known source
signals are not easy to develop (multichannel echo
cancellation is a good example), blind MIMO
identification is much more difficult although not
completely insolvable. But for many acoustic signal
processing problems, particularly in the design of an
immersive acoustic interface, source signals are
inaccessible in practice and a blind system identifi-
cation algorithm has to be developed. Clearly, the
challenges are great, but so are opportunities after
the identification of an acoustic system. In this
paper, we would like to shed some light onto the
question: what do we expect if the identification of a
MIMO acoustic system can be surmounted? We will
provide an overview of the technology for identify-
ing acoustic MIMO systems and explain the impact
of any possible progress in this technology on the
development of other acoustic signal processing
applications in the future.

The rest of the paper is organized as follows.
Section 2 briefly presents the mathematical models
for describing an acoustic system and Section 3
summarizes both non-blind and blind channel
identification algorithms. In Section 4, we explain
how to approach many other acoustic signal
processing problems after the MIMO system is
identified. Five typical applications are discussed,
namely, acoustic echo cancellation, time delay
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estimation, cross-talk cancellation, source separa-
tion, and speech dereverberation. In Section 5, we
review several successful real-time, channel-identifi-
cation-based acoustic signal processing systems that
we developed in the past. Finally, we draw our
conclusions in Section 6.
2. Signal models for MIMO acoustics

System modeling is fundamental to signal-proces-
sing and control theories, and so is to acoustic
applications. Creating a mathematical representation
of the acoustic environment helps us to gain a better
understanding of what is going on and enables better
visualization of the main elements of an acoustic
signal processing problem. Certainly it also forms a
basis for discussion of various acoustic problems
using the same convenient language of mathematics
used in the rest of this paper.

Typically an acoustic environment is abstracted
into a linear system merely because a linear model is
simple enough to allow comprehensive analysis. An
acoustic channel is expressed by an FIR filter. Four
models for describing acoustic systems are depicted
as follows:
I.
 Single-input single-output (SISO) system

[Fig. 1(a)]. The output signal is given by

xðkÞ ¼ h � sðkÞ þ bðkÞ, (1)

where h is the channel impulse response, the
symbol � denotes the linear convolution opera-
tor, sðkÞ is the source signal at time k, and bðkÞ

is the additive noise at the output. The channel
can be time invariant or time varying, depend-
ing on the application. In vector/matrix form,
the SISO signal model (1) is written as:

xðkÞ ¼ hTsðkÞ þ bðkÞ, (2)

where

h ¼ ½h0 h1 � � � hL�1�
T,

sðkÞ ¼ ½sðkÞ sðk � 1Þ � � � sðk � Lþ 1Þ�T,

ð�Þ
T denotes the transpose of a matrix or a

vector, and L is the channel length.

II.
 Single-input multiple-output (SIMO) system

[Fig. 1(b)]. In this system, there are N outputs
from the same sound source as input and the
nth output is expressed as:

xnðkÞ ¼ hTn sðkÞ þ bnðkÞ; n ¼ 1; 2; . . . ;N, (3)
where xnðkÞ, hn, and bnðkÞ are defined in a
similar way to those in (2), and L is the length
of the longest channel impulse response in this
SIMO system.
III.
 Multiple-input single-output (MISO) system

[Fig. 1(c)]. There are M sound sources but only
one output:

xðkÞ ¼
XM
m¼1

hTmsmðkÞ þ bðkÞ,

¼ hTsðkÞ þ bðkÞ, ð4Þ

where

hm ¼ ½hm;0 hm;1 � � � hm;L�1�
T,

smðkÞ ¼ ½smðkÞ smðk � 1Þ � � � smðk � Lþ 1Þ�T,

h ¼ ½hT1 hT2 � � � hTM �
T,

sðkÞ ¼ ½sT1 ðkÞ s
T
2 ðkÞ � � � sTM ðkÞ�

T.
IV.
 Multiple-input multiple-output (MIMO) system

[Fig. 1(d)]. A MIMO system with M inputs and
N outputs is referred to as an M �N system.
At time k, we have

xðkÞ ¼ HsðkÞ þ bðkÞ, (5)

where

xðkÞ ¼ ½x1ðkÞ x2ðkÞ � � � xN ðkÞ�
T,

H ¼

hT11 hT12 � � � hT1M

hT21 hT22 � � � hT2M

..

. ..
. . .

. ..
.

hTN1 hTN2 � � � hTNM

2
666664

3
777775

N�ML

,

hnm ¼ ½hnm;0 hnm;1 � � � hnm;L�1�
T,

bðkÞ ¼ ½b1ðkÞ b2ðkÞ � � � bNðkÞ�
T,

hnm (n ¼ 1; 2; . . . ;N, m ¼ 1; 2; . . . ;M) is the
impulse response of the channel from input m

to output n, and sðkÞ is defined similarly to that
in (4).
Clearly the MIMO system is a more general
model and all other three systems can be treated
as special examples of a MIMO system. But the
difference among these models that looks trivial
here will lead to great divergence in difficulty
and complexity of their identification algorithms
as will be shown in the following sections.
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Fig. 1. Four mathematical models for describing acoustic systems: (a) single-input single-output (SISO), (b) single-input multiple-output

(SIMO), (c) multiple-input single-output (MISO), and (d) multiple-input multiple-output (MIMO) systems.

Y. Huang et al. / Signal Processing 86 (2006) 1278–1295 1281
3. Channel identification
In this section, we will briefly review channel
identification technologies. We begin with tradi-
tional non-blind methods and then discuss more
advanced blind algorithms.

3.1. Non-blind methods

System identification given the reference signal(s)
is one of the oldest problems in signal processing. Its
theory has been well developed but the adaptive
implementation technique continues progressing. In
the following, we will describe methods for identify-
ing single-input (SISO and SIMO) and multiple-
input (MISO and MIMO) systems separately.
I.
 Single-input systems

Visibly, a SIMO system can be decomposed into
M SISO systems and the identification of each
SISO system is independent of each other. For a
SISO system (2), we assume that the channel is
time-invariant during the process of identifica-
tion and the channel length L is known. Then we
define the error signal at time k as follows;

eðkÞ9xðkÞ � x̂ðkÞ ¼ xðkÞ � ĥ
T
sðkÞ, (6)
where

ĥ ¼ ½ĥ0 ĥ1 � � � ĥL�1�
T

is the model filter. The mean-square error
criterion with respect to the model filter is given
by

JðĥÞ9Efe2ðkÞg, (7)

where Ef�g denotes mathematical expectation.
The minimization of (7) leads to the well-known
Wiener–Hopf equation [5]:

Rssĥ ¼ rsx, (8)

where Rss ¼ EfsðkÞsTðkÞg is the covariance ma-
trix of the input signal of size L� L, and rsx ¼

EfsðkÞxðkÞg is the cross-correlation vector of size
L� 1 between the input and output. From (8),
we see that if Rss is non-singular and therefore
invertible (which is usually true for speech
signals), the impulse response of a SISO (or
SIMO) system can be easily determined as
ĥ ¼ R�1ss rsx.
II.
 Multiple-input systems

The identification of a M �N MIMO system
can also be decomposed into N independent
MISO identification, but this decomposition is
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not as obvious as that for single-input systems.
Here we will develop the identification with
respect to a MIMO system and then build its
connection with that for MISO systems.
For the M �N MIMO system given in (5), we
define the error signal at time k as

eðkÞ9xðkÞ � x̂ðkÞ ¼ xðkÞ � ĤsðkÞ, (9)

where Ĥ is the channel matrix for the model
system defined similarly to H in (5). Having
written the error signal, we now define the mean-
square error criterion with respect to the model
system:

JðĤÞ9EfeTðkÞeðkÞg. (10)

Taking the derivative of (10) with respect to Ĥ

qJðĤÞ

qĤ
¼ �2EfeðkÞsTðkÞg (11)

and equating the result to zero produces the
multichannel Wiener–Hopf equations:

ĤRss ¼ Rxs, (12)
Gc;m ¼

gm;0 gm;1 � � � gm;L�1 0 � � � 0

0 gm;0 � � � gm;L�2 gm;L�1 � � � 0

..

. . .
. . .

. ..
. . .

. . .
. ..

.

0 � � � 0 gm;0 gm;1 � � � gm;L�1

2
66666664

3
77777775

L�ð2L�1Þ

,

m ¼ 1; 2; . . . ;M,
where Rss ¼ EfsðkÞsTðkÞg is of size ML�ML

and Rxs ¼ EfxðkÞsTðkÞg is of size N �ML.
It can easily be seen that the multichannel
Wiener–Hopf (12) can be written as N indepen-
dent Wiener–Hopf equations, each one corre-
sponding to a MISO system:

ĥ
T

n:Rss ¼ rTxns; n ¼ 1; 2; . . . ;N, (13)

where ĥ
T

n: is the nth row of matrix Ĥ and rxns ¼

EfxnðkÞsðkÞg is the cross-correlation vector
between the nth output and the input (which is
also the nth row of matrix Rxs). This result
implies that minimizing JðĤÞ is equivalent to
minimizing each Efe2nðkÞg independently. This
means that the identification of the MISO
subsystem at one MIMO output is completely
independent of the others and we can decom-
pose the identification of a M �N MIMO
system into N independent tasks of MISO
identification.
As we explained previously for single-input
systems, the input signal’s autocorrelation ma-
trix Rss needs to be non-singular so that a MISO
or MIMO system can be identified. While for
single-input acoustic systems this condition can
be met in most practical cases, input signals are
sometimes correlated or even perfectly coherent
in a MISO or MIMO system. For example in a
multichannel echo cancellation system, the
loudspeaker signals are obtained from a com-
mon source in the transmitting room:

snðkÞ ¼ gn � uðkÞ; n ¼ 1; 2; . . . ;N, (14)

where gn is the impulse response between the
source uðkÞ and the loudspeaker signal snðkÞ. It
can be shown that

sðkÞ ¼ GcuðkÞ, (15)

where

Gc ¼ ½G
T
c;1 GT

c;2 � � � GT
c;M �

T
ML�ð2L�1Þ,
are convolutive matrices (subscript c), and

uðkÞ ¼ ½uðkÞ uðk � 1Þ � � � uðk � Lþ 1Þ � � �

uðk � 2Lþ 2Þ�Tð2L�1Þ�1.

Therefore, the autocorrelation matrix of the
loudspeaker signals is given by

Rss ¼ EfsðkÞsTðkÞg ¼ GcEfuðkÞu
TðkÞgGT

c

¼ GcRuuG
T
c , ð16Þ

and its rank is bounded by

rankðRssÞprankðRuuÞp2L� 1. (17)

As a result, Rss is singular and the multiple-input
system cannot be uniquely identified. Since the
dimension of Rss’s null space depends on the
number of inputs and is equal to ML�

ð2L� 1Þ ¼ ðM � 2ÞLþ 1, this problem (referred
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to as the non-uniqueness problem in multi-
channel echo cancellation algorithms) becomes
worse as M increases.
3.2. Blind multichannel identification

The innovative idea of identifying a system
without reference signals was first proposed by Sato
in [6]. Early studies of blind channel identification
and equalization focused primarily on higher
(than second) order statistics (HOS) based methods.
Because HOS cannot be accurately computed
from a small number of observations, slow con-
vergence is the critical drawback of all existing
HOS methods. In addition, a cost function based on
the HOS is barely concave and an HOS algorithm
can be misled to a local minimum by corrupting
noise in the observations. Therefore, after it was
recognized that the problem can be solved in the
light of only second-order statistics of system
outputs [7], the focus of the blind channel identifica-
tion research has shifted to SOS methods. Here we
will briefly review only SOS algorithms that are
applicable to real-time acoustic signal processing
systems.

Using SOS to blindly identify a system requires
that the number of outputs would be greater than
the number of inputs. As a result, our discussion is
with respect to only SIMO and MIMO systems.
I.
 SIMO systems

A SIMO system can be blindly identified using
only SOS of the system’s output if the following
two conditions (one on the channel diversity
and the other on the input signals) are met [8]:

1. The polynomials formed from hn (n ¼
1; 2; . . . ;N) are co-prime, i.e., the channel
transfer functions HnðzÞ do not share any
common zeros;

2. The autocorrelation matrix Rss ¼ EfsðkÞsTðkÞg

of the input signal is of full rank (such that the

SIMO system can be fully excited).

There are many ways to approach the principle
of blind multichannel identification. Presented
here is one that we used in our own research.
For a SIMO system as described in Section 2–II,
the vector of channel impulse responses lies in
the null space of the cross-correlation-like
matrix of system outputs [9]

Rxþh ¼ 0, (18)
where

Rxþ ¼

P
na1Rxnxn

�Rx2x1
� � � �RxN x1

�Rx1x2

P
na2Rxnxn

� � � �RxN x2

..

. ..
. . .

. ..
.

�Rx1xN
�Rx2xN

� � �
P

naNRxnxn

2
666664

3
777775,

h ¼ ½hT1 hT2 � � � hTN �
T,

Rxixj
¼ EfxiðkÞx

T
j ðkÞg; i; j ¼ 1; 2; . . . ;N; and

xnðkÞ ¼ ½xnðkÞ xnðk � 1Þ � � � xnðk � Lþ 1Þ�T,

n ¼ 1; 2; . . . ;N.

If the SIMO system is blindly identifiable, the
matrix Rxþ is rank deficient by 1 (in the absence
of noise) and the channel impulse responses can
be uniquely determined. When additive noise is
present, h would be the eigenvector of Rxþ

corresponding to its smallest eigenvalue (here
we assume that the noise is incoherent or
uncorrelated and weaker than source signals).
Note that the estimated channel impulse re-
sponse vector is aligned to the true one, but up
to a scale.
A simple way to develop an adaptive imple-
mentation is to take advantage of the cross
relations among the outputs [10]. By following
the fact that

xi � hj ¼ s � hi � hj ¼ xj � hi,

i; j ¼ 1; 2; . . . ;N ; iaj, ð19Þ

we have, in the absence of noise, the following
cross relation at time k:

xTi ðkÞhj ¼ xTj ðkÞhi; i; j ¼ 1; 2; . . . ;N; iaj.

(20)

When noise is present and/or the estimate of
channel impulse responses is deviated from the
true value, an a priori error signal is produced:

eijðk þ 1Þ ¼ xTi ðk þ 1ÞĥjðkÞ � xTj ðk þ 1ÞĥiðkÞ,

i; j ¼ 1; 2; . . . ;N, (21)

where ĥiðkÞ is the model filter for the ith channel
at time k. In order to avoid the trivial estimate
of all zero elements, a unit-norm constraint is
imposed on

ĥðkÞ ¼ ½ĥT1 ðkÞ ĥ
T
2 ðkÞ � � � ĥTNðkÞ�

T,
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leading to the normalized error signal

�ijðk þ 1Þ ¼ eijðk þ 1Þ=kĥðkÞk.

Accordingly, the cost function is formulated as:

Jðk þ 1Þ9
XN�1
i¼1

XN

j¼iþ1

�2ijðk þ 1Þ, (22)

and the update equation of the multichannel
LMS (MCLMS) algorithm is deduced as follows
[10]:

ĥðk þ 1Þ ¼ ĥðkÞ � mrJðk þ 1Þ, (23)

where m is a small positive step size,

rJðk þ 1Þ ¼
qJðk þ 1Þ

qĥðkÞ

¼
2½ ~Rxþðk þ 1ÞĥðkÞ � Jðk þ 1ÞĥðkÞ�

kĥðkÞk2
,

ð24Þ
xþðkÞ ¼

P
na1

~Rxnxn
ðkÞ � ~Rx2x1

ðkÞ � � � � ~RxM x1
ðkÞ

� ~Rx1x2
ðkÞ

P
na2

~Rxnxn
ðkÞ � � � � ~RxN x2

ðkÞ

..

. ..
. . .

. ..
.

� ~Rx1xN
ðkÞ � ~Rx2xN

ðkÞ � � �
P

naN
~Rxnxn
ðkÞ

2
666664

3
777775,
and ~Rxixj
ðkÞ ¼ xiðkÞx

T
j ðkÞ; i; j ¼ 1; 2; . . . ;N, is

an instantaneous estimate of the correlation.

II.
 MIMO systems

Blind identification of a MIMO FIR system
with N4M is not just more complicated.
Actually it is much more difficult or might be
unfeasible. We will review the fundamentals
and comment on the state-of-the-art techniques
beginning with a close examination of the
SOS of the MIMO system outputs given
by (5):

RxxðkÞ9EfxðkÞxTðk � kÞg ¼ HRssðkÞHT þ RbbðkÞ,

(25)

where kX0 is a delay,

RssðkÞ9EfsðkÞsTðk � kÞgML�ML; and

RbbðkÞ9EfbðkÞbTðk � kÞgN�N .

Assuming that the inputs are uncorrelated with
each other and with the noise as well, and the
noise signals are white and spatially uncorre-
lated, we then get

Rsisj
ðkÞ9EfsðkÞsTðk � kÞg

¼ 0; if iaj ði; j ¼ 1; 2; . . . ;MÞ or kXL,

ð26Þ

RbbðkÞ ¼ dðkÞs2bIN�N , (27)

where dðkÞ is the delta function, s2b is the noise
power, and I is the identity matrix.
Let us first examine the simplest MIMO system
with memoryless channels and with white inputs
of the same power s2s . In this case, only Rxxð0Þ is
not equal to 0 and we get

Rxxð0Þ ¼ s2sHHT þ s2bI. (28)

By singular value decomposition (SVD), the
matrix H of size N �M can be written as a
product

H ¼ UDVT, (29)

where U and V are unitary matrices
(UTU ¼ UUT ¼ IN�N , VTV ¼ VVT ¼ IM�M ),
and D ¼ diagðl1; l2; . . . ; lMÞ is an N �M diag-
onal matrix where l1Xl2X � � �XlM40 (here,
H is assumed to be irreducible, i.e., H has full
column rank). Using this decomposition, we
obtain

HHT ¼ UDDTUT ¼ U1:MD2
cU

T
1:M , (30)

where U1:M is an N �M matrix collecting the
first M orthonormal columns of U and Dc ¼

diagðl1; l2; . . . ; lM Þ is an M �M diagonal
matrix by cropping D.
The eigenvalue decomposition (EVD) of Rxxð0Þ
is therefore expressed:

Rxxð0Þ ¼ UD2
xU

T, (31)

where D2
x ¼ diagðl2x;1; l

2
x;2; . . . ; l

2
x;NÞ is a diago-

nal matrix with l2x;1Xl2x;2X � � �Xl2x;N40 and,
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from (28), (30), and (31),

l2x;n ¼
s2sl

2
n þ s2b; n ¼ 1; 2; . . . ;M

s2b; n ¼M þ 1; . . . ;N:

(
(32)

Therefore, it is straightforward to determine
the variance of the noise: the smallest eigenvalue
of the received signal covariance matrix is equal
to s2b. Furthermore, the unitary matrix U in the
EVD of Rxxð0Þ is the same as the left unitary
matrix of the SVD of H.
Define the following matrices:

R
:

xxð0Þ9ðRxxð0Þ � l2x;NIN�NÞ ¼ HHT

¼ U1:MD2
cU

T
1:M , ð33Þ

H
:

9U1:MDc. (34)

Then we have

R
:

xxð0Þ ¼ H
:

H
: T

. (35)

It is easy to determine H
:

from Rxxð0Þ. But the
fact that R

:

xxð0Þ ¼ HHT ¼ H
:

H
: T

does not imply
that H is equal to H

:

. The only thing that we can
say is that:

H
:

¼ HV, (36)

where V is a unitary matrix. Equating (36) and
(34), we see that this unitary matrix is, in fact,
the right unitary matrix of the SVD of H.
Clearly from the above analysis, using SOS only,
we are able to determine the left unitary matrix
U1:M and the diagonal matrix Dc, but not the
right unitary matrix V, of the SVD of H. This
means that H can be determined up to an M �

M unitary matrix, which is not acceptable for the
blind identification problem. The channel matrix
H of a MIMO system that is claimed to be
blindly identifiable needs to be determined up to
only scaling and permutation. Consequently, a
memoryless MIMO system with white, uncorre-
lated inputs of the same power is not blindly
identifiable using SOS only. The question would
then naturally arise as to what MIMO systems
can be blindly identified.
It is already known that a memoryless, irreduci-
ble MIMO system with spatially white noise is
blindly identifiable using SOS only in two
circumstances:

� the input signals are uncorrelated but with
distinct power [11]; or
� the input signals are quasi-stationary [12].
For blind identification of a MIMO system with
memory (convolutive channels), a common
approach is to transform the signal model into
the frequency domain such that the MIMO
system is decomposed into a number of mem-
oryless MIMO systems at different frequency
points whose blind identifications are indepen-
dent. The motivation of this approach is to
simplify the problem and reduce the complexity
of its solution. However, this approach has a
fundamental problem termed permutation in-

consistency. This arises because independent
blind MIMO identifications at different fre-
quency points are only unique up to scaling and
possibly different permutation. There are also
attempts to solve this problem of blindly
identifying a convolutive MIMO system in the
time domain [13], leading to extremely compli-
cated implementations with intensive computa-
tional complexity. Although some filtering
processing can be carried out in the frequency
domain, it can only mildly reduce the complex-
ity since major operations are caused by
manipulation of matrices with a very large
dimension. Intuitively, time-domain (or full-
band) approaches might have less permutation
inconsistency problems. But it lacks rigorous
proof and has not yet been well understood nor
accepted whether time-domain approaches can
inherently overcome this ambiguity in permuta-
tion. It is our belief that blind MIMO identifica-
tion is still an unsolved challenge and we look
forward to breakthroughs.
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3.3. Frequency-domain adaptive implementations

Adaptive filters play an increasingly important
role in channel identification since they can identify
and track unknown and time-varying systems.
Time-domain adaptive algorithms, like the classical
least mean square (LMS) [14,15] and recursive least-
squares (RLS) [5], have been well developed and
widely used in various signal processing systems.
Adaptive filtering in the frequency domain, ever
since its first introduction by Dentino et al. [16] has
progressed rapidly and has become an essential
constituent of adaptive filter theory. Although the
idea of implementing an adaptive filter in the
frequency domain by taking advantage of the fast
Fourier transform (FFT) is easy to understand, the
derivation has been thought quite intricate until
[17]. Since then, a number of frequency-domain
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adaptive channel identification algorithms have
been proposed for such applications as multi-
channel echo cancellation [18] and time delay
estimation [19,20]. Due to space limitations, we
cannot detail the discussion on this important topic
but would like to refer the interested readers to the
above references and the references therein.

4. Applications of acoustic MIMO identification

In this section we discuss five applications of
acoustic MIMO identification and use them as
examples to explain why acoustic MIMO identifica-
tion techniques are essential for various acoustic
signal processing problems.

4.1. Acoustic echo cancellation

Acoustic echo is produced by voice coupling
between the earpiece or loudspeaker and micro-
phone in handsets and hands-free devices [21]. In a
long-distance communication system, acoustic
Fig. 2. Illustration of (a) single-channel and (b) mu
echoes are exacerbated by inherent transmission
delays, and would significantly lower the call
quality. When the delay approaches a quarter of a
second, most people find it difficult to carry on a
normal conversation [22]. Full-duplex telecommu-
nication was impossible until the birth of echo
cancellation theory given by Bell Labs researchers in
the 1960s [23–25].

In the center of any echo cancellation system sits
an adaptive filter as shown in Fig. 2(a), attempting
to dynamically identify the acoustic environment
that causes echoes. As long as we can obtain an
accurate mathematical representation of the echo
path, it would be straightforward to generate a good
estimate of the echo and subtract it from the
microphone signal. Since reference signals are
available in this problem, non-blind methods are
readily usable. However, we still have a long way to
go before reaching the point of designing a practical
system achieving acceptable results in various
acoustic environments. Acoustic echo cancellation
is an important application of MIMO identification
ltichannel acoustic echo cancellation systems.
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and in turn has greatly promoted the development
of adaptive filtering and system identification
theories.

The growth of bandwidth for data transmission
makes the demand for immersive experience more
reasonable in the future. As a result, multiple (at
least stereo) audio channels have to be included as
shown in Fig. 2(b) and multichannel (including
stereo) echo cancellation (MEC) becomes impera-
tive. Different from a traditional single-channel
system, an MEC system has the non-uniqueness
problem as explained before. Furthermore, for an
MEC system, more impulse responses and more
filter coefficients need to be determined. Therefore,
a successful design requires that the adaptive filters
converge faster to the true channel impulse
responses. For a good survey and analysis of the
MEC problem, the readers can refer to a widely
cited paper [26] and the references therein.
4.2. Time delay estimation

Time delay estimation (TDE) is essential to many
array and multichannel signal processing technolo-
gies. Relative time delay of arrival between two
microphone signals might be the most important
parameter, but at most is only one of many
parameters of a multichannel acoustic system.
Without directly identifying the surrounding acous-
tic environment, people have used a simplified
model of the acoustic system, where only propaga-
tion attenuation and delay are considered, as shown
in Fig. 3(a). With this model, the generalized cross-
correlation (GCC) algorithm was developed [27]
and is still widely used. But the GCC method cannot
cope well with room reverberation since the open-
space model is obviously unrealistic in a reverberant
enclosure. If a realistic reverberant acoustic model is
Fig. 3. Time delay estimation in two different acoustic environments: (

considerable room reverberation.
used and the multichannel system can be blindly
identified, the relative time delays of arrival can be
easily determined. This idea leads to the eigenvalue
decomposition algorithm for two channels [28,29]
and the multichannel LMS algorithm for multiple
channels [10] for time delay estimation in reverber-
ant environments. This idea is adopted more and
more by researchers and engineers around the
world.
4.3. Crosstalk cancellation

To deliver virtual sound to a single listener, either
a headphone can be used or with loudspeakers a
crosstalk cancellation system can let the listener
enjoy a lifelike acoustic interface without wearing
any cumbersome devices. A crosstalk cancellation
system is illustrated in Fig. 4 [30]. The desired
virtual sound effect would be obtained if sLðkÞ and
sRðkÞ are delivered exactly to the listener’s left and
right ears, respectively. But due to the room
acoustics, if those two signals are played out
through two loudspeakers, the listener’s left (right)
ear will hear signals from sRðkÞ (sLðkÞ respectively)
and the virtual sound effect would be impaired. The
crosstalk cancellation system processes sLðkÞ and
sRðkÞ with a group of g filters to get two loudspeaker
signals xmðkÞ (m ¼ 1; 2) such that yLðkÞ ¼ sLðkÞ

and yRðkÞ ¼ sRðkÞ, i.e., the crosstalk signals are
canceled.

Finding the filters giL and giR (i ¼ 1; 2) in a
crosstalk cancellation system requires accurate
knowledge of the room acoustic system with the
four impulse responses from two loudspeaker to
two ears being determined. Therefore acoustic
MIMO identification technique plays an important
role in the design of a crosstalk cancellation system.
If the estimates of the channel impulse responses are
a) open space with no room reverberation and (b) enclosure with
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Fig. 4. Schematic diagram of a crosstalk cancellation system.

Fig. 5. Two classes of conventional techniques for source separation: (a) beamforming and (b) blind source separation.
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inaccurate, the ideal virtual sound effect cannot be
achieved. In addition, since acoustic impulse re-
sponses would change with the location of the
listener, the performance of all crosstalk cancella-
tion systems is critically dependent on whether the
listener is in the fixed design position, the so-called
‘‘sweet-spot.’’ The readers can refer to [31,32], and
references therein for detailed discussions of the
problem of acoustic crosstalk cancellation.

4.4. Source separation

Recently, source separation has received increas-
ing attention since it can potentially be applied in a
number of speech processing and communication
systems. In the problem of source separation, we
have multiple talkers and microphones, naturally
forming an acoustic MIMO system. Since very little
is known about the source signals, identifying such a
system is extremely difficult as explained in
Section 3.2. Alternatively, researchers have in the
past tackled this problem without first trying to
identify the acoustic MIMO system.

As a part of our daily experience, we know that
distinguishing and even separating components of a
mixture or collection depends on their distinctions.
In a multi-talker environment, the sound sources
are different in location and statistics in addition to
spectrum, which leads to two different categories of
source separation methods in the literature: beam-
forming and blind source separation (BSS).

Beamforming is a form of spatial filtering that
enhances the signal from a specified ‘‘look direc-
tion’’ and attenuates signals that propagate
from other directions [33], as shown in Fig. 5(a).
Therefore a beamformer cannot only separate
multiple sound sources in different directions with
respect to the microphone array but also suppress
reverberation. However, in practice its performance
is limited by a number of factors. Beamforming
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relies on knowledge of the speaker’s position, which
is seldom available. While the position of the
speaker can be estimated by analyzing the micro-
phone outputs, errors are inevitable, particularly
when the room is considerably reverberant [34].
Furthermore, current microphone array technolo-
gies including beamforming originated from radar
and sonar array signal processing. But compared to
classical sensor array processing with antenna
arrays [35], the basic conditions are significantly
different in acoustics: speech is a baseband signal
spanning almost three decades in frequency and the
localization and recording take place in the nearfield
with respect to the microphone array.

Alternatively BSS methods solve this problem by
taking advantage of the difference in statistics
among multiple sound sources under investigation.
BSS that is typically accomplished by independent
component analysis (ICA) algorithms assumes
mutually independent sound sources [36,37]. An
ICA processes microphone signals with a de-mixing
system whose outputs are estimates of the separated
source signals satisfying the independent assump-
tion, as illustrated in Fig. 5(b). Existing ICA
algorithms differ in the way the dependence of the
separated source signals is defined, i.e., the em-
ployed criteria for minimization, which include
second-order statistics [38], higher (than second)
order statistics [39], and information-theory-based
measures [40] (please refer to the book [41] and
references therein for a more detailed discussion on
various ICA methods). BSS methods allow for near-
field sources and reverberant acoustic environments.
But in reverberant environments, they are either
very complex (for time-domain approaches [42])
or have the inherent permutation inconsistency
problem as encountered in the problem of blind
MIMO identification [37,43–45] (for frequency-
domain algorithms [46]). Similarly to blind
MIMO identification, convolution operations in
the time-domain BSS method for convolutive
mixtures can be carried out in the frequency domain
by using the FFT [47,48], but the complexity is still
intensive. Moreover, current BSS methods do not
work for arbitrary source positions. When sources
are at positions such that the mixing matrix is
singular, the de-mixing system (the inverse of
the mixing matrix) does not exist and source
separation cannot be attained. Finally, it should
be noted that, in addition to the above drawbacks,
independent but distorted source signals are valid
solutions for BSS methods. Therefore deconvolu-
tion is usually needed to mitigate convolutive
distortion and reconstruct the original speech
signals.

From the above discussion, it is clear that existing
source separation methods cannot fundamentally
achieve satisfactory results because of the lack of
effective algorithms to blindly identify an acoustic
MIMO system. If a breakthrough in this area is
achieved, source separation can be readily solved
with generalized zero-forcing or minimum mean-
square error (MMSE) equalizers [49], in which
source signals are separated and equalized in one
single step. This procedure is better understood by
decomposing the processings of separation and
equalization using the technique proposed in [50].
In that approach, multiple sources are separated by
converting the M �N MIMO system into M

interference-free SIMO systems. A simple example
of this algorithm with respect to a 2� 3 MIMO
system is shown in Fig. 6. The generalization to an
arbitrary M �N MIMO system with MoN can be
found in [50] as well. Apparently the separated
signals using this approach are distorted and speech
dereverberation is necessary, as will be discussed in
the following section.

4.5. Speech dereverberation

Acoustic channels are rarely ideal and speech
signals are linearly distorted by room reverberation
before they reach microphones. The goal of speech
dereverberation is to equalize the acoustic channels
and to recover the original source speech signals.
Even after three decades of continuous research,
speech dereverberation remains a challenging pro-
blem. While there have been a number of ways to
classify current speech dereverberation methods, we
believe that an insightful approach is based on
whether the channel impulse responses need to be
known or estimated beforehand. If the channel
impulse responses are not known or the acoustic
system cannot be identified, either cepstral-domain
processing techniques can be chosen [51] or
the characteristics of speech (usually in statistical
forms) can be exploited in an attempt to recover
the energy envelope of the original speech
[52]. As expected, these methods achieve only
moderate success. For acoustic systems with
known or accurately estimated channel impulse
responses, there are three approaches to speech
dereverberation, as illustrated in Fig. 7. The most
straightforward is the direct inverse method. But it
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Fig. 6. Illustration of the conversion from a 2� 3 MIMO system to two interference-free SIMO systems with respect to (a) s1ðkÞ and

(b) s2ðkÞ.

Fig. 7. Illustration of three widely-used approaches to speech dereverberation: (a) direct inverse, (b) least squares, and (c) the MINT

method.
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is well known that the impulse response of a single
acoustic channel needs to be a minimum-phase
sequence for stable and causal exact inversion [53].
Otherwise by using an all-pass filter, the resultant
inverse filter g would be IIR which is non-causal and
has a long delay. The second approach is the least
squares (LS) method, which essentially equalizes the
channel by inverting only those components whose
zeros are inside the unit circle. In addition, in the
process of determining the LS inverse filter, a
reference signal needs to be accessible. Although
the LS method has these constraints, it is quite
useful in practice and has been widely employed in
different systems. The third method is based on the
MINT (multichannel inverse theorem) technique
[54] for speech dereverberation with respect to a
SIMO system [55]. As shown in Fig. 7(c), as long as
the channel impulse responses hn (n ¼ 1; 2; . . . ;N)
are coprime (even though they may not be minimum
phase), i.e., the SIMO system is irreducible, there
exists a group of g filters to perfectly dereverberate
the distorted speech signals. This feature is indeed
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appealing and therefore it received a lot of attention
immediately after it was proposed. However, this
method is very sensitive to errors in the estimates of
channel impulse responses and the computational
complexity of determining the inverse filters is
intensive. Further research needs to be carried out
to overcome these drawbacks.

5. Successful real-time acoustic signal processing

systems

In the above, we have discussed various channel
identification techniques with respect to acoustic
MIMO systems and have explained how they could
positively impact on the research of a number of
acoustic signal processing problems. In the follow-
ing, we would like to present three successful real-
time acoustic systems that we developed in our
research, based on channel identification methods.
Hopefully these systems can inspire the develop-
ment of more advanced and practical acoustic signal
processing algorithms in the future.

5.1. Stereo acoustic echo cancellation system for

teleconferencing

Research on stereo acoustic echo cancellation
(SAEC) can be traced back to the early 1990s as the
need developed for multichannel audio communica-
tions, which at least involves stereo sound. How-
ever, SAEC is not a straightforward generalization
of the monophonic acoustic echo cancellation
Fig. 8. The world’s first real-time stereo acoustic echo cancellation
principle and the non-uniqueness problem needs to
be solved. A number of methods to decorrelate
stereo loudspeaker signals without perceptible dis-
tortion were proposed but they are all unsatisfac-
tory. A breakthrough was achieved with the
introduction of a non-linear device into each
loudspeaker signal path [26]. Among several non-
linear transformations that were evaluated, the half-
wave rectifier was suggested as the simplest, yet
effective type [56]. In addition, computational
complexity is another challenging problem in
implementing a practical SAEC system. A real-time
SAEC system was possible only by using specially
designed digital signal processors (DSPs) until the
development of efficient frequency-domain multi-
channel adaptive algorithms. The year of 1998 saw
the world’s first real-time SAEC system working
between two conference rooms at Bell Labs [57],
as illustrated in Fig. 8. This system was running
on a Texas Instruments’ TMS320C44 DSP and
incorporated the non-linear transformation method
and a two-channel subband fast recursive least
squares (FRLS) algorithm. Meanwhile real-time
DSP-based SAEC systems were also successfully
developed by other research groups such as [58].
Later in 2000, a more efficient, more economical
SAEC system based on Intel CPU’s was developed
using a two-channel frequency-domain adaptive
algorithm [59]. These systems show great
promises of wide deployment of SAEC technology
in future audio communications, particularly tele-
conferencing.
system working between two conference rooms at Bell Labs.
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5.2. Synthesized stereo audio bridge system for

multi-party conferencing

Using multiple microphones and loudspeakers
can ideally help an audio communication system
deliver sound realism. But this requires new invest-
ments in audio hardware for such a sophisticated
acoustic interface. Nowadays all personal compu-
ters (desktops or laptops) have at least one
microphone and a pair of loudspeakers. They can
be readily employed for lifelike multi-party confer-
encing with the support of a synthesized stereo
audio bridge [60], as shown in Fig. 9. Although this
system does not work well for the case in which
there are multiple participants at one location, it is
cheap and can improve the sound realism by
presenting speech signals from different sites to the
listener with different spatial cues and impressions.
5.3. Passive acoustic speaker tracking system for

automatic camera steering in video conferencing

Recently, the technique of acoustic source localiza-
tion and tracking has gained increasing attention since
acoustic tracking systems have some advantages that
vision-based systems do not possess: microphones can
Fig. 9. The synthesized stereo audio bridge system combined with aco

Bell Labs.
receive propagating sound omni-directionally and can
function in dark or poor lighting conditions. Time-
delay-estimation-based approaches have become the
technique of choice since they are simple and can be
implemented in real time with current digital systems.
The difficulty of building a TDE-based acoustic
source localization and tracking system lies in two
areas: developing an accurate TDE algorithm that is
robust to room reverberation and solving a group of
non-linear equations of the estimated relative time
delays of arrival for the source location. Without
effective methods to solve these two problems, the size
of microphone arrays has to be large to meet the
performance requirement [61–63]. This situation
changed after the invention of channel-identification-
based TDE algorithms and a linear-correction least-
squares source localization algorithm [64]. A real-time
system for automatic camera steering in video
conferencing using these techniques was successfully
developed in 2000 [65] and Fig. 10 provides a
schematic diagram of this system. A unique, small-
size six-element microphone array makes this system
portable and facilitates setup after being moved to a
new room. The performance of this system in various
acoustic environments justifies the effectiveness of
applying channel identification techniques in time
delay estimation.
ustic echo cancellation for multi-party conferencing developed at
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Fig. 10. The passive acoustic speaker tracking system for automatic camera steering in video conferencing developed at Bell Labs.
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6. Conclusions

How to estimate accurately room acoustic im-
pulse responses in real time is the mother of all
challenges in acoustic signal processing and we have
presented a systematic overview of acoustic MIMO
identification algorithms in this paper. We have also
discussed a wide range of technological problems
that define MIMO acoustics or multichannel
acoustic signal processing, including acoustic echo
cancellation, time delay estimation, acoustic cross-
talk cancellation, source separation, and speech
dereverberation. In all these problems, system
identification via either non-blind or blind methods
plays a central role. This implies that any break-
throughs in acoustic MIMO identification would
make a significant impact on the advancement of
acoustic signal processing. Three real-time acoustic
systems for different applications, all based on
system identification, were given and their success
confirmed our belief this approach.
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