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Abstract—The problem of noise reduction using multiple micro-
phones has long been an active area of research. Over the past
few decades, most efforts have been devoted to beamforming tech-
niques, which aim at recovering the desired source signal from
the outputs of an array of microphones. In order to work rea-
sonably well in reverberant environments, this approach often re-
quires such knowledge as the direction of arrival (DOA) or even the
room impulse responses, which are difficult to acquire reliably in
practice. In addition, beamforming has to compromise its noise re-
duction performance in order to achieve speech dereverberation at
the same time. This paper presents a new multichannel algorithm
for noise reduction, which formulates the problem as one of esti-
mating the speech component observed at one microphone using
the observations from all the available microphones. This new ap-
proach explicitly uses the idea of spatial–temporal prediction and
achieves noise reduction in two steps. The first step is to determine
a set of inter-sensor optimal spatial–temporal prediction transfor-
mations. These transformations are then exploited in the second
step to form an optimal noise-reduction filter. In comparison with
traditional beamforming techniques, this new method has many
appealing properties: it does not require DOA information or any
knowledge of either the reverberation condition or the channel im-
pulse responses; the multiple microphones do not have to be ar-
ranged into a specific array geometry; it works the same for both
the far-field and near-field cases; and, most importantly, it can pro-
duce very good and robust noise reduction with minimum speech
distortion in practical environments. Furthermore, with this new
approach, it is possible to apply postprocessing filtering for addi-
tional noise reduction when a specified level of speech distortion is
allowed.

Index Terms—Beamforming, generalized sidelobe canceller
(GSC), linearly constrained minimum variance (LCMV), micro-
phone arrays, minimum-mean-square error (MMSE), minimum
variance distortionless response (MVDR), noise reduction, speech
enhancement.

I. INTRODUCTION

ACOUSTIC noise is ubiquitous and can have a profound im-
pact on human-to-human and human-to-machine commu-

nications, including modifying the characteristics of the speech
signal, degrading speech quality and intelligibility, and affecting
the listener’s perception and a machine’s processing of recorded
speech. In order to make voice communication feasible, nat-
ural, and comfortable in the presence of noise regardless of the
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noise level, it is desirable to develop digital signal processing
techniques to “clean up” the noise-corrupted signal before it is
stored, analyzed, transmitted, or played out. This problem is
often referred to as either noise reduction or speech enhance-
ment. It has been an active research area since the spectral-sub-
traction technique was invented in the middle 1960s [1]–[3].
Over the past few decades, researchers and engineers have ap-
proached this challenging problem by exploiting different facets
of the properties of speech and noise signals, and a large number
of algorithms have been developed. By and large, the developed
solutions can be categorized into two broad classes depending
on the number of microphone channels: single-channel and mul-
tichannel techniques.

In the single-channel situation, the observed microphone
signal is modeled as a superposition of the clean speech and
noise. An estimate of the clean speech is obtained by passing
the noisy speech through a linear (time-varying) filter/transfor-
mation. Since speech and noise normally have very different
characteristics, the filter/transformation can be designed to
significantly attenuate the noise level without dramatically
distorting the speech signal. The representative algorithms in
this group include Wiener filters [3]–[7], subspace methods
[8], statistical estimators [9]–[11], and speech-model-based
approaches [12]–[15]. The single-channel techniques have
many appealing properties. For example, they can be integrated
into most existing communication devices without requiring
architectural changes, and they are in general economic to
implement. However, with this class of techniques, speech
distortion is unavoidable and the amount of speech distortion
is in general proportional to the amount of noise reduction
[16]. So, the more the noise is reduced, the more the speech is
distorted.

In order to control the amount of speech distortion while
achieving noise reduction, tremendous attention has been paid
to the use of multiple microphones. In this scenario, each mi-
crophone output can be modeled as the source speech signal
convolved with the corresponding acoustic channel impulse re-
sponse and then corrupted by background noise. The noise-re-
duction problem is typically formulated as one of estimating
the source signal from the multiple microphone observations.
The most straightforward approach to the problem is the delay-
and-sum beamformer [17]. The basic underlying idea can be
described as synchronizing-and-adding. If we assume that the
acoustic channels are free of reverberation, the signal compo-
nents across all sensors can be synchronized by delaying (or ad-
vancing) each microphone output by a proper amount of time.
When these aligned signals are weighted and summed together,
the signal components will be combined coherently and hence
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reinforced. In contrast, the noise signals are added up incoher-
ently (in power) due to their random nature. This results in a
gain factor for the signal-to-noise ratio (SNR).

Because phase delay is frequency dependent, the
delay-and-sum idea is good only for narrowband signals. For
broadband speech, the directivity pattern of a delay-and-sum
beamformer would not be the same across a broad frequency
band. If we use such a beamformer, when the steering direction
is different from the source incident angle, the source signal
will be low-pass filtered. In addition, noise coming from a
direction different from the beamformer’s look direction will
not be uniformly attenuated over its entire spectrum. This
“spectral tilt” results in a disturbing artifact in the array output
[18]. One way to overcome this problem is to perform nar-
rowband decomposition and design narrowband beamformers
independently at each frequency. This structure is equivalent
to applying a finite-duration impulse response (FIR) filter to
each microphone output and then summing the filtered sig-
nals together. Therefore, this method is often referred to as
filter-and-sum beamforming, which was first introduced by
Frost [19].

Traditionally, the filter coefficients for a filter-and-sum beam-
former are determined based on a prespecified beampattern and
hence are independent of the signal characteristics and room
reverberation condition. This so-called fixed beamforming
method performs reasonably well in anechoic situations where
the speech component observed at each microphone is purely a
delayed and attenuated copy of the source signal. However, its
performance (in terms of noise reduction and speech distortion)
degrades significantly in practical acoustic environments where
reverberation is inevitable. One way to improve noise-reduction
performance in the presence of reverberation is to compute the
filter coefficients in an adaptive way based on the room prop-
agation condition. For example, if we know (or can estimate)
the signal incident angle, we can optimize the filter coefficients
and steer the beamformer’s look direction such that the desired
signal is passed through without attenuation while the signal
contributions from all other directions are minimized [21]. This
so-called minimum variance distortionless response (MVDR)
or Capon method can dramatically improve the beamformer’s
noise-reduction performance. However, the speech distortion
with this method is also substantial in real acoustic envi-
ronments [22]. In order to minimize speech distortion, more
sophisticated adaptive algorithms such as linearly constrained
minimum variance (LCMV) [19]–[29], generalized sidelobe
canceller (GSC) [25], [30], [31], and multiple-input/output in-
verse theorem (MINT) [32] were developed. These approaches
use the acoustic channel impulse responses from the desired
sources to the multiple microphones to determine the beam-
forming filter coefficients. They can achieve high performance
when the channel impulse responses are known a priori (or can
be estimated accurately) and the background noise level is low.
However, the performance is very sensitive to the measurement
error of channel impulse responses and a small amount of mea-
surement error can lead to significant performance degradation.

Note that the single-channel and beamforming techniques
formulate the noise-reduction problem in a very different
way. Specifically, the former expresses the problem as one of

estimating the speech component (speech source filtered by
the room impulse response) in the microphone observation,
while the latter formulates the problem as one of estimating the
original source signal. So, unlike the single-channel methods,
which exclusively focus on noise reduction, beamforming
actually tries to solve both speech dereverberation and noise
reduction at the same time. However, speech dereverberation
alone is a very difficult task, and there have not been any good,
practical solutions so far. If we consider both dereverberation
and noise reduction at the same time, this would only make the
problem more complicated.

Recently, much efforts have been made to reformulate the
beamforming problem so that noise reduction can be achieved
without performing speech dereverberation [33]–[36]. Similar
to the single-channel techniques, this new formulation focuses
on estimating the speech component observed at one micro-
phone using observations from an array of microphones, so it
can be viewed as a generalization of the single-channel noise re-
duction to the multichannel case. Among the recently developed
multichannel noise-reduction approaches, the so-called transfer
function GSC (TF-GSC) [33], [36] is of particular interest. This
approach approximates the linear convolution in the discrete-
Fourier-transform (DFT) domain using the circular convolu-
tion. It then explicitly exploits the channel diversity through
the so-called relative transfer function (RTF) to estimate the
short-time speech spectrum and achieves noise reduction. How-
ever, the estimation of RTF, which has to rely on the nonstation-
arity of the source signal [37]–[39], is not a trivial problem. So
further research efforts are indispensable to explore new signal
models and develop new algorithms.

In this paper, we develop a new noise-reduction approach.
Similarly to the single-channel and recently formulated mul-
tichannel techniques, we put aside speech dereverberation and
formulate the problem as one of estimating the speech compo-
nent observed at one of the multiple microphones. This new ap-
proach achieves noise reduction in two steps. The first step is
to determine a set of inter-sensor optimal spatial–temporal pre-
diction transformations, which takes into account not only the
channel diversity, but also the source self-correlation informa-
tion. These optimal transformations are then used in the second
step to form an optimal noise-reduction filter under the con-
straint of no speech distortion. It will be shown that our approach
has many appealing properties over beamforming techniques,
including but not limited to the following: 1) it does not require
array geometry information; 2) there is no need to estimate ei-
ther the DOA or the room impulse responses; 3) it works the
same for both the far-field and near-field cases; and, 4) it can
produce very good and robust noise reduction with practically
minimum speech distortion.

II. PROBLEM DESCRIPTION

The problem considered in this paper is illustrated in Fig. 1,
where we have a speech source in the sound field and use mi-
crophones to collect signals from their field of view. The output
of the th microphone is given by

(1)
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Fig. 1. Illustration of a multiple-microphone system.

where denotes convolution, is the source signal, rep-
resents the acoustic channel impulse response from the source
to microphone , and , and are, respec-
tively, the speech, the background noise, and their composite
observed at the th microphone. It is assumed that both
and are zero-mean random processes that are mutually
uncorrelated with each other. It is also assumed that the noise
signals are not completely coherent.

In traditional beamforming-based techniques, the problem is
formulated as one of estimating the source signal from the
observed noisy signals . This would involve two subtasks,
i.e., speech dereverberation and noise reduction. In this paper,
similar to some recently developed multichannel noise-reduc-
tion techniques [33]–[36], we put aside speech dereverberation
and focus exclusively on noise reduction. So, the problem con-
sidered here can be described as one of estimating the speech
component observed at one microphone from the noisy signals
received at all microphones. Let us assume that we want to
estimate the speech signal at the th micro-
phone. Then, the objective of this paper is to estimate ,
given .

Putting the signal model (1) into vector/matrix form, we have

(2)

where, as shown in (3a)–(3c) at the bottom of the page, is
the channel (Sylvester) matrix of size

is the length of the channel impulse responses, denotes
the transpose of a vector or a matrix, and and are
defined similarly to . With this vector/matrix form of the
signal model, the noise-reduction problem considered in this

paper can be described as one of estimating the speech signal
vector , given the observed signal vectors

.

III. SAMPLE-BY-SAMPLE-BASED MMSE ESTIMATOR

USING MULTIPLE MICROPHONES

In this section, we derive a minimum-mean-square-error
(MMSE) estimator of .

A. MMSE Estimator

With the signal model given in (1), an estimate of the speech
component can be obtained by passing the observed
signals through temporal filters, i.e.,

(4)

where

are the FIR filters of length , and ,
are the observation signal vectors as defined in (3a). The corre-
sponding error signal obtained by this estimation is written as

(5)

Substituting (2) into (5), we can decompose the above error
signal into the following form:

(6)

where

(7)

and

(8)

The term quantifies how much the speech sample
is distorted due to the filtering operation. The larger

the mean-square value of , the higher the speech

(3a)

(3b)

...
...

...
...

...
...

...
...

...
...

(3c)
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distortion. In comparison, the term tells how much
the noise is reduced. The smaller the mean-square value of

, the higher the noise reduction. So, ideally, noise
reduction is a problem of finding an optimal set of the filters

such that the mean-square error (MSE)
corresponding to the residual noise is minimized while keeping
the speech distortion close to 0.

From (8), we can write the MSE associated with the residual
noise as

(9)

where denotes mathematical expectation

(10)

(11)

is the noise correlation matrix, and

(12)

Now, the noise-reduction problem can be mathematically for-
mulated as follows:

subject to

(13)

The solution to (13) depends on the number of microphones. We
have two cases: and .

Case 1: : In this case, we have . If
the current speech sample cannot be completely predicted
from its past samples (which is generally true in practice), we
can easily check that the solution to (13) is

(14)

where

(15)

is a unit vector of length . With this degenerate filter, there
will be no noise reduction. So, in the single-channel scenario, if
we want to keep the speech undistorted, there will be no noise
reduction. However, if we still want to achieve some noise re-
duction, we need to loosen the constraint to allow some speech
distortion. Indeed, this is almost the de facto standard prac-
tice in the existing single-channel noise-reduction techniques,
where noise reduction is achieved by trading off speech distor-
tion [8], [16]

Case 1: : In the single-channel situation, there is a
fundamental compromise between noise reduction and speech
distortion. However, if we use multiple microphones, we can
take advantage of the redundancy among the microphones
to achieve noise reduction without introducing any speech
distortion.

Let us assume that we can find spatial–temporal prediction
matrices, , such that

(16)

Apparently, for , we have , where is the
identity matrix. We will discuss later how to determine an op-
timal estimate of the matrix for ; but for now,
we assume that are known. Substituting (16) into (7), we
obtain

(17)

where

(18)

With this expression of the speech distortion, we can rewrite the
constrained estimation problem (13) in the following form:

subject to

(19)

If we use a Lagrange multiplier to adjoin the constraint to the
cost function, the estimation problem in (19) can be written as

(20)

where

and vector is the Lagrange multiplier. Evaluating the gradient
of with respect to and equating the result to zero
produces

(21)

From (21) and using the constraint, we find the solution to (20)
(assuming that the noise signals at the microphones are not com-
pletely coherent so that the noise covariance matrix is full
rank):

(22)

We see that, in order to compute the optimal filter , we
need to know the two matrices and . The noise correla-
tion matrix can be estimated during periods where speech
is absent. In the next subsection, we will elaborate on this and
discuss how to determine the matrix.

B. Estimation of the Matrix

From (16), we can construct the following MSE cost function:

(23)
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Differentiating with respect to and equating the
result to zero, we can obtain an optimal estimate of the
matrix:

(24)

where and
are, respectively, the cross-correlation

and correlation matrices of the speech signals.
Using the signal model given in (2), we can easily see that

(25)

(26)

where is the source correlation matrix.
Substituting (25) and (26) into (24), we obtain

(27)

If the source signal is white, then

(28)

where is the variance of the source signal. The optimal pre-
diction matrix becomes

(29)

which depends solely on the channel information. In this par-
ticular case, the matrix can be viewed as the time-do-
main counterpart of the RTF, so the MMSE estimator given in
(22) is equivalent to the TF-GSC approach [33]. However, in
practical applications, speech signal is not white. Then,
depends not only on the channel impulse responses, but also on
the source correlation matrix. This indicates that the developed
MMSE estimator exploits both the spatial and temporal predic-
tion information for noise reduction.

In real applications, the signals and are not ob-
servable, so the direct computation of seems difficult.
However, using the relation and the
fact that the noise and speech are uncorrelated, we can verify
that

(30)

and

(31)

where and are defined similarly to , and
and are defined similarly to . As a result

(32)

Now the optimal filter matrix depends only on the second-order
statistics of the noise and noisy signals. The statistics of the
noisy signals can be directly computed from the observed sig-
nals. We assume that the noise is stationary or at least slowly-

varying so that its characteristics stay the same from a silence
period [i.e., when ] to the following period when
speech is active. In this case, if we use a voice activity detector
(VAD), the noise characteristics can be estimated during silence
periods.

Using either (24) or (32), we can obtain an optimal estimate
of the matrix, i.e., . Substituting into (22), the
optimal transformation can be rewritten as

(33)

If , applying to filter the observed
signals can reduce noise without introducing any speech distor-
tion. In practice, however, we in general do not have exactly

, so that some speech distortion is ex-
pected. However, for long filters, we can approach this equality
so that the distortion can be kept very low.

C. Particular Case

To enable a better understanding of the optimal filter given
in (22), let us study a special case where we have an equis-
paced linear array with microphones, and the noise signals

) are white Gaussian random processes
with zero mean and variance of and are uncorrelated with
each other. Let us choose the first microphone as the reference
and estimate the speech component at this microphone (i.e.,

). In this situation, we have , and
the optimal filter becomes

(34)

Substituting (24) into (34), we find that

(35)

Now let us assume that the application environment is free of
reverberation and the sound source is located in the far field. In
this case, if we neglect the propagation attenuation, the speech
component received at the th microphone can be written as

...

...
(36)

where is the propagation time (in samples) from the unknown
source to the reference microphone, and is the relative
delay (in samples) between adjacent microphones. In this situ-
ation, the cross-correlation matrix can be expressed as
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shown in (37) at the bottom of the page, where
is the correlation

coefficient of the source signal, and . Now
if we further assume that the source signal is a white Gaussian
random process with zero mean and variance of , the corre-
lation matrix can be simplified as

...
...

...
...

...
...

...

...
...

. . .
...

...
...

(38)

Substituting (38) into (35), we readily derive that

(39)

which is a unit impulse filter. So, in the ideal propagation
situation and when both the source signal and noise are
white Gaussian random processes, the solution is indeed
a delay-and-sum beamformer. If the source signal is not a
white random process, the optimal filter is no longer a
unit impulse filter; but the two filters and satisfy

. In other words,
the filter is a shifted (by ) version of the filter .
Therefore, if the application environment is free of reverbera-
tion, the optimal filter given in (22) can be viewed as a particular
case of the filter-and-sum beamformer. With reverberation,
however, the developed MMSE estimator differs significantly
from conventional beamforming techniques, which will be
furthered discussed in the following sections.

IV. BLOCK-BASED MMSE ESTIMATOR

USING MULTIPLE MICROPHONES

In the previous section, we developed an MMSE estimator
that estimates only one speech sample at a time. In many appli-
cations, it is also desirable to estimate a frame of speech from a
given frame of noisy observations. Now we consider the signal
model given in (2). An estimate of the speech vector can
be obtained through the following linear transformation:

(40)

where is a matrix of size . The error signal vector
obtained by this estimation is then written as

(41)

Substituting (2) into (41) gives

(42)

where

(43)

represents the speech distortion due to the linear transformation
and

(44)

is the residual noise. It is immediately clear that the objective
of noise reduction is to find an optimal set of the matrices

such that the MSE of is
minimized while keeping as close to as possible.

Inspecting (44), we can write the MSE of the residual noise
as

(45)

where

Again, we assume that we can find filter matrices,
so that (16) is satisfied. Substituting (16) into (43),

we obtain

(46)

where is composed of , as defined
in (18).

...
...

. . .
...

(37)
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Now the noise-reduction problem can be formulated as one of
estimating the optimal transformation to minimize
with the constraint that . Mathematically, this es-
timation problem is written as

subject to

(47)

In order to adjoin the constraint to the cost function, we break
the constraint on the right-hand side of (47) into the following
form:

(48)

where

(49)

is a unit vector. Now using the Lagrange method, we can rewrite
the constrained optimization problem in (47) as

(50)

where

(51)

and vectors are the Lagrange multipliers.
If the noise covariance matrix is full rank, we find from

(50) that

(52)

If holds, this transformation can reduce
noise without introducing any speech distortion. In practice, the
condition of may not hold exactly so
there will be some speech distortion. However, in general the
distortion can be kept to a very low level so that it cannot be
perceived by the human ear.

V. EXPERIMENTS

We have developed, respectively in Sections III and IV, two
multichannel algorithms for noise reduction. In this section, we
will assess their performance in real acoustic environments. It
can be easily checked that the optimal filter given in (22)
is the transpose of the first row of the optimal transformation
matrix given in (52). So, the two multichannel MMSE
estimators are closely related to each other and, in general, they
have similar performance. To make our presentation concise, we

Fig. 2. Layout of the experimental setup in the varechoic chamber (coordi-
nate values measured in meters). The sound source (a loudspeaker) is located
at (1.337, 3.162, 1.600). The ten microphones of the linear array are located,
respectively, at (x, 5.600, 1.400), where x = 2:437 : 0:1 : 3:337.

will only present the results obtained from the first estimator,
i.e., the sample-by-sample version.

A. Experimental Setup

The experiments were conducted with the acoustic impulse
responses measured in the varechoic chamber at Bell Labs. The
chamber is a rectangular room, which measures 6.7 m long by
6.1 m wide by 2.9 m high and is equipped with 368
electronically controlled panels. Each panel consists of two per-
forated sheets whose holes, if aligned, expose sound-absorbing
material (fiberglass) behind, but if shifted to misalign, form a
highly reflective surface. Each panel can be individually con-
trolled so that the holes on a particular panel are either fully open
(absorbing) or fully closed (reflective). As a result, a total of
different room characteristics can be generated by varying the
binary states of the 368 panels in different combinations. For a
detailed description of the varechoic chamber and how the re-
verberation time is controlled, see [40] and [41].

The layout of the experimental setup is illustrated in Fig. 2,
where a linear array of ten omni-directional microphones is
mounted 1.4 m above the floor and parallel to the
north wall at a distance of 0.5 m. The ten microphones are lo-
cated, respectively, at ( , 5.600, 1.400), where

. To simulate a sound source, we place a loudspeaker at
(1.337, 3.162, 1.600), playing back a speech signal prerecorded
from a female speaker. To make the experiments repeatable, we
first measured the acoustic channel impulse responses from the
source to the ten microphones (each impulse response is first
measured at 48 kHz and then downsampled to 8 kHz). These
measured impulse responses are then regarded as the true ones.
During experiments, the microphone outputs are generated by
convolving the source signal with the corresponding measured
impulse responses, and noise is then added to the convolved re-
sults to control the SNR level.

In Section III, we showed that the developed multichannel
noise-reduction algorithm degenerates to a delay-and-sum
beamformer if both the source signal and noise are white
random processes and the operating environment is free of
reverberation. To verify this, we carried out an experiment. In
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Fig. 3. Estimated filters (h ) in an anechoic environment when both
the source signal and noise are white Gaussian random processes and
SNR = 10 dB. (a) n = 1. (b) n = 5. (c) n = 10.

order to simulate the anechoic situation, we take the impulse re-
sponses measured when 89% of the varechoic-chamber panels
are open (the corresponding reverberation time ms).
We then keep only the direct path and set all the other taps into
zero. It is seen from (22) that we need to specify the filter length

before estimating the optimal filter. For the anechoic situa-
tion, the determination of is relatively easy, i.e., it only needs
to be long enough to cover the maximal TDOA between the
first and tenth microphone. In our setup, the maximal TDOA
is approximately 3 ms, which corresponds to 24 sampling
periods. So, we set the filter length to 32, which is slightly
larger than the maximal TDOA. The estimated filters for the
first, the fifth, and the tenth microphones (i.e., , and

) are shown in Fig. 3. As clearly seen, each estimated filter
has only one nonzero coefficient, whose location depends on
the TDOA relative to the reference microphone. Therefore, the
solution is indeed a delay-and-sum beamformer.

Also in anechoic environments, if the source signal is speech
(or any signal that has some temporal correlation), the devel-
oped multichannel algorithm can take advantage of both the
spatial redundancy among multiple microphones and the cor-
relation among neighboring signal samples for better noise re-
duction. In the second experiment, we examine the optimal filter
for speech sources. The experimental conditions are exactly the
same as those of the previous experiment except that this time
the source is a speech signal from a female speaker rather than a
white Gaussian signal. The estimated optimal filters are plotted
in Fig. 4. This time each filter is no longer a unit impulse re-
sponse filter, and it is clearly seen that both and are
a shifted version of . This confirms the analysis given in
Section III. So if the propagation environment is free of rever-
beration and when the source signal is speech, the developed
multichannel algorithm can be viewed as a particular case of the
filter-and-sum (or Frost) beamformer. In more generic acoustic
environments where there is reverberation and noise can be ei-
ther white or colored, the developed multichannel algorithm is
still a filter-and-sum structure; but differs significantly from the

Fig. 4. Estimated filters (h ) in an anechoic environment when the source is
a speech signal, noise at each microphone is a Gaussian random process, and
SNR = 10 dB. (a) n = 1. (b) n = 5. (c) n = 10.

traditional filter-and-sum beamformer in many respects, as has
been discussed in the previous sections.

We now begin to assess the noise-reduction performance of
the multichannel algorithm. Without loss of generality, let us
choose the first microphone as the reference microphone. Sub-
stituting the optimal filter into (4) and setting , we obtain
the optimal speech estimate as

where and
are, respectively, the speech and residual

noise filtered by the optimal filter. To assess the performance,
we evaluate two criteria, namely the a posteriori SNR and the
Itakura–Saito (IS) distance. The a posteriori SNR is defined as

SNR

This measurement, when compared with the a priori SNR, tells
us how much the noise is reduced. The IS distance is a speech-
distortion measure. For a detailed description of the IS distance,
we refer to [42] and [43]. Many studies have shown that the IS
measure is highly correlated with subjective quality judgments
and two speech signals would be perceptually nearly identical
if the IS distance between them is less than 0.1. In this experi-
ment, we compute the IS distance between and ,
which measures the degree of speech distortion due to the op-
timal filter.

As mentioned earlier, in order to estimate and use the optimal
filter given in (22), we need to specify the filter length . If there
is no reverberation, it is relatively easy to determine , i.e., it
needs only to be long enough to cover the maximal TDOA be-
tween the reference and the other microphones. In the presence
of reverberation, however, the determination of would become
more difficult and its value should, in theory, depend on the re-
verberation condition. Generally speaking, a longer filter has to
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Fig. 5. The a posteriori SNR and IS distance, both as a function of the filter
length L. (a) T = 240 ms and (b) T = 580 ms. The source is a speech
signal from a female speaker; the background noise at each microphone is a
computer-generated white Gaussian process, and SNR = 10 dB. The fitting
curve is a second-order polynomial.

be used if the environment is more reverberant. The next ex-
periment investigates the impact of the filter length on the al-
gorithm performance. Here, to eliminate the effect due to noise
estimation, we assume that the statistics of the noise signals are
known a priori. We consider two cases. In the first case, 89%
of the chamber panels are open. The corresponding reverbera-
tion time is approximately 240 ms. The results are plotted
in Fig. 5. One can see from Fig. 5(a) that the a posteriori SNR
(in dB) increases with . So, the longer the filter, the more the
noise reduction. Contrary to SNR , the IS distance decreases
with . This is understandable, since as increases, we will
get a better prediction of from . Consequently, as

increases, the algorithm achieves more noise reduction and
causes less speech distortion. We also see from Fig. 5(a) that
the a posteriori SNR (in dB) increases almost linearly with .
Unlike the SNR curve, the relationship between the IS distance
and the filter length is not linear. Instead, the curve first de-
creases quickly as the filter length increases, and then continues
to decrease but at a slower rate. After , continuing to
increase does not seem to further decrease the IS distance. So,

from a speech-distortion point of view, is long enough
for reasonably good performance.

Now we change the reverberation condition by opening 30%
of the chamber panels and the corresponding reverberation
time is approximately 580 ms. The results are plotted in
Fig. 5(b). Again, we see that the a posteriori SNR increases
with , whereas the IS distance decreases with . Similar to
the previous experiment, we see that after , further
increasing does not significantly reduce the IS distance. So
we see again that is long enough for reasonably good
noise-reduction performance.

Comparing Figs. 5(a) and (b), one can see that with the same
filter length , the a posteriori SNRs in the two reverberation
conditions are similar, which demonstrates the robustness of the
proposed algorithm with respect to reverberation. However, the
IS distance for ms is much higher than that for

ms. This is, of course, understandable. As the environment
becomes more reverberant, the prediction of from
would become more difficult. However, for , we see
that the IS distance in both conditions is less than 0.1, which
is rather small, as this level of speech distortion is perceptually
almost negligible.

Another important factor that would affect the algorithm per-
formance is the number of microphones. The next experiment
investigates the impact of the number of microphones on the
noise-reduction performance. From the previous results, we see
that good performance was achieved when the filter length is
250 or longer. Note that when we increase the filter length, the
computational complexity of the algorithm also grows. In ad-
dition, we also need more data to achieve a robust estimate of
the covariance matrices. Therefore, the selection of filter length
is basically a compromise between the noise-reduction perfor-
mance and the complexity and robustness of the algorithm. In
this experiment, we set . In addition, we assume again
that the statistics of the noise signals are known a priori. The
results are presented in Fig. 6.

If there is no reverberation, we can see, from Fig. 6(a) that
the a posteriori SNR increases (in dB) linearly with the number
of microphones. So the more the microphones, the higher the
SNR. In the anechoic propagation situation, the signal observed
at one microphone can, in principle, be perfectly predicted from
the signal received at another microphone. So, there should be
no speech distortion and the IS distance should be zero. How-
ever, we see that there is some minor speech distortion, and the
IS distance grows with the number of microphones. This is be-
cause we use a square matrix in (16) to predict a frame of signal

, i.e., from a frame of signal . In our setup,
most of the samples in can be perfectly predicted from

. However, there are a small number of samples at the end
of the vector that cannot be predicted (the number de-
pends the TDOA). It is this small unpredictable part that causes
some speech distortion. Since we use a linear array, the TDOA
between and increases with . Therefore, the IS
distance increases with .

In a reverberant environment, we see from Fig. 6(b) that
the a posteriori SNR also increases with the number of mi-
crophones. Similar to the previous experiment, the IS distance
grows slightly as more microphones are used. The reason
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Fig. 6. The a posteriori SNR and IS distance, both as a function of the number
of microphonesN . (a) In a condition where there is no reverberation and (b) in a
reverberation condition with T = 380 ms. The source is a speech signal from
a female speaker, and the background noise at each microphone is a computer-
generated white Gaussian process with SNR = 10 dB. The fitting curve is a
second-order polynomial.

is also attributed to the imperfect prediction of from
. However, we see from that beyond seven microphones,

the increase of IS distance with the number of microphone is
negligible. In addition, the overall IS distance is very small
(less than 0.1), so the resulting speech distortion is perceptually
almost negligible.

The next experiment tests the robustness of the multichannel
algorithm to reverberation. The parameters used are:

, and SNR dB. Compared with the previous
experiments, this one does not assume to know the noise sta-
tistics. Instead, we developed a short-term energy-based VAD
to distinguish speech-plus-noise from noise-only segments. The
noise covariance matrix is then computed from the noise-only
segments using a batch method and the optimal filter is subse-
quently estimated according to (33). We tested the algorithm in
two noise conditions: computer generated white Gaussian noise
and a noise signal recorded in a New York Stock Exchange
(NYSE) room. (This is a nonstationary bubbling noise, which

Fig. 7. Noise-reduction performance versus T (a) in white Gaussian noise
and (b) in NYSE noise. L = 250 and SNR = 10 dB. The fitting curve is a
second-order polynomial.

consists of sound from various sources such as speakers, tele-
phone rings, electric fans, etc. It is recorded using a single mi-
crophone. However, for the outputs of a microphone array, we
cut the whole recording into segments, with each segment
being added to one microphone.) The results are depicted in
Fig. 7. We see that the a posteriori SNR in both situations does
not vary much when the reverberation time is changed. This in-
deed demonstrates that the developed multichannel algorithm is
very immune to reverberation. In contrast to SNR, we see that
the IS distance grows with reverberation time. This result should
not come as a surprise, since as the reverberation time in-
creases, it becomes more difficult to predict the speech observed
at one microphone from that received at another microphone. As
a result, a higher level of speech distortion is unavoidable.

In the final experiment, we compare the new multichannel
noise-reduction approach with two widely used beamforming
algorithms: a delay-and-sum and an LCMV. Here, we choose

and . The noise at each microphone is white
Gaussian. To use the delay-and-sum beamformer, we need to
know the TDOA information. In our experiment, the real room
impulse responses have been measured so we computed the
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TABLE I
PERFORMANCE OF NOISE REDUCTION AND SPEECH DISTORTION

TDOAs by examining the direct paths of the room impulse re-
sponses. This is equivalent to saying that the TDOA informa-
tion is known a priori. The LCMV algorithm in a reverberant
room environment is given in [22]. Here, we assume that the
room impulse responses are known a priori and we construct
the LCMV filter according to [22] [(16)]. Note that in our ex-
perimental setup, there is only one source in the sound field,
and the number of microphones is equal to ten. In this case, it
is easily checked that the LCMV solution is the same as the
multiple input/output inverse theorem (MINT). The connection
between LCMV and MINT is explained in [22].

It should be pointed out here that it is not easy to fairly com-
pare the above algorithms, as they aim at estimating different
signal components. Specifically, the new algorithm is formu-
lated to estimate the speech component received at one of the
multiple microphones, while the beamforming techniques focus
on estimating the source signal. The only condition for a fair
comparison is when the environment is free of reverberation.
Such a condition, however, is not very realistic. It is often more
interesting to see a comparison in reverberation conditions. In
order to make comparison results more meaningful, we eval-
uate three performance criteria for the beamforming techniques:
the a posterori SNR, the IS distance (ISD) between the speech
component observed at the reference microphone and that in the
beamforming output, and the IS distance (ISD ) between the
source signal and the speech component in the beamforming
output.

The results of this experiment are shown in Table I. When
there is no reverberation, one can see that all the algorithms yield
similar performance. This should not come as a surprise. As a
matter of fact, in an anechoic environment and if the background
noise is white Gaussian, all of the algorithms will degenerate
to the delay-and-sum structure, one way or another. Notice that
when the environment is free of reverberation, the ISD and ISD
are the same since in this case the speech component at the ref-
erence microphone is just a delayed and attenuated version of
the source signal.

In reverberant environments, we see that the delay-and-sum
beamformer can still improve the SNR, where the degree of

improvement depends on the reverberation condition. How-
ever, this method introduces significant speech distortion. The
ISD for the LCMV method is approximately zero, which in-
dicates that the LCMV method has achieved perfect speech
dereverberation. However, the SNR with this approach has
been significantly degraded. The reason behind this can be
explained as follows. When there is only one source in the
sound field and if the room impulse responses are known a
priori, the LCMV is the same as the MINT method, which
basically achieves speech estimation by inverting the channel
matrix. This inverse process may boost the background noise
and hence causes SNR degradation. In comparison, the new
multichannel algorithm achieves the highest SNR gain. Addi-
tionally, the resulting ISD shows that the speech distortion with
this method is almost negligible.

VI. CONCLUSION

In this paper, we have focused on the noise-reduction problem
using multiple microphones. We have formulated the problem
as one of estimating the speech component received at one of the
multiple microphones. We have developed two MMSE estima-
tors, namely a sample-by-sample-based estimator and a block-
based estimator. These two estimators are closely related to
each other. Specifically, the optimal filter from the sample-by-
sample-based method is the transpose of the first row of the op-
timal matrix in the block-based technique. Various experiments
were carried out, and the results demonstrated that the devel-
oped techniques can achieve significant noise reduction while
the resulting speech distortion is perceptually almost negligible.
Compared with the traditional beamforming techniques, the de-
veloped algorithms have many appealing properties including
but not limited to: they do not require the DOA information
or any knowledge of either the reverberation condition or the
channel impulse responses; the multiple microphones do not
have to be arranged into a specific array geometry; they work
the same for both the far-field and near-field cases; and they can
produce very good and robust noise reduction with minimum
speech distortion in practical environments.
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