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Analysis and Comparison of Multichannel Noise
Reduction Methods in a Common Framework
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Abstract—Noise reduction for speech enhancement is a useful
technique, but in general it is a challenging problem. While a
single-channel algorithm is easy to use in practice, it inevitably
introduces speech distortion to the desired speech signal while
reducing noise. Today, the explosive growth in computational
power and the continuous drop in the cost and size of acoustic
electric transducers are driving the interest of employing multiple
microphones in speech processing systems. This opens new oppor-
tunities for noise reduction. In this paper, we present an analysis
of three multichannel noise reduction algorithms, namely Wiener
filter, subspace, and spatial-temporal prediction, in a common
framework. We intend to investigate whether it is possible for the
multichannel noise reduction algorithms to reduce noise without
speech distortion. Finally, we justify what we learn via theoretical
analyses by simulations using real impulse responses measured in
the varechoic chamber at Bell Labs.

Index Terms—Microphone array signal processing, multi-
channel subspace method, multichannel Wiener filter, noise
reduction, spatial prediction, speech enhancement.

I. INTRODUCTION

WHEREVER we are, noise (originating from various
ambient sound sources) is permanently present. As a

result, speech signals cannot be acquired and processed, in gen-
eral, in pure form. It has been known for a long time that noise
can profoundly affect human-to-human and human-to-ma-
chine communications, including changing a talker’s speaking
pattern, modifying the characteristics of the speech signal,
degrading speech quality and intelligibility, and affecting the
listener’s perception and machine’s processing of the recorded
speech. In order to make voice communication feasible, nat-
ural, and comfortable in the presence of noise regardless of the
noise level, it is desirable to develop digital signal processing
techniques to “clean” the microphone signal before it is stored,
transmitted, or played out. This problem has been a major
challenge for many researchers and engineers for more than
four decades [1].

The signal picked up by the microphone can be modeled as
a superposition of the clean speech and noise. The objective
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of noise reduction then becomes to restore the original clean
speech from the mixed signal. The first single-channel noise re-
duction algorithm was developed more than 40 years ago by
Schroeder [2], [3]. He proposed an analog implementation of
the spectral magnitude subtraction. This work, however, has not
received much public attention, probably because it was never
published in journals or conferences. About 15 years later, Boll,
in his informative paper [4], reinvented the spectral subtraction
method but in the digital domain. Almost at the same time, Lim
and Oppenheim, in their landmark work [5], systematically for-
mulated the noise-reduction problem and studied and compared
the different algorithms known at that time. Since then many al-
gorithms have been derived in the time and frequency domains
[1], [6]–[8]. The main drawback of single-channel speech en-
hancement algorithms is that they distort the desired speech
signal. So researchers have proposed to use multiple micro-
phones or microphone arrays in order to better deal with this
fundamental problem.

In this paper, we present a common framework to study the
most important noise reduction algorithms in the multichannel
case. The main desire is to see whether, indeed, the use of
multiple microphones can help in minimizing speech distortion
while having a good amount of noise reduction at the same
time. This paper is organized as follows. Section II describes
the problem and the signal model while Section III gives some
very useful definitions that will help the reader understand how
noise reduction algorithms work. Section IV explains the multi-
channel Wiener filter. Section V develops the subspace method
with multiple microphones. In Section VI, the spatial-temporal
prediction approach is derived. In Section VII, we present some
simulations. Finally, we give our conclusions in Section VIII.

II. SIGNAL MODEL AND PROBLEM DESCRIPTION

In this section, we explain the problem that we are going to
tackle. We consider the general situation where we have mi-
crophone signals whose outputs, at the discrete time , are

(1)

where stands for convolution, is the impulse response of
length from the unknown source to the th microphone, and

is the additive background noise at microphone . We as-
sume that the noise signals and are uncorrelated
and zero-mean. Moreover, we further assume that the noise sig-
nals are not perfectly coherent. Without loss of generality, we
consider the first microphone signal as the reference. Our
main objective in this paper is noise reduction [1], [7]; hence,
we will try to recover the best way we can by using not
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just one microphone signal but rather signals. We do not at-
tempt here to recover (i.e., speech dereverberation). This
problem, although very important, is difficult and requires other
techniques to solve it [9]–[11]. Contrary to most beamforming
techniques, the knowledge about the geometry of the micro-
phone array is not required in the algorithms presented in this
paper. Therefore, measurement or estimation errors in the loca-
tions of the microphones have little or no impact on these mul-
tichannel noise reduction algorithms, and a calibration with re-
spect to microphone positions is not necessary.

The signal model given in (1) can be written in a vector/matrix
form if we process the data by blocks of samples

(2)

where

is a vector containing the most recent samples of the noisy
speech signal ,

...
. . .

. . .
. . .

. . .
...

is a Sylvester matrix of size with ,

is a vector containing the most recent samples of the source
signal, denotes a vector/matrix transpose, and and

are defined in a similar way to . Again, our ob-
jective is to estimate from the observations ,

.
Usually, we estimate the noise-free speech by applying

a linear transformation to the microphone signals, i.e.,

(3)
where

and , are the filtering matrices of size .
From this estimate, we define the error signal vector as

(4)

where

is an matrix with being the identity matrix of size

(5)

is the speech distortion due to the linear transformation, and

(6)

represents the residual noise.

III. SOME USEFUL DEFINITIONS

The simplest and most intuitive way to quantify the amount of
noise from an observed signal is the signal-to-noise ratio (SNR).
Since our reference microphone is the first one, we define the
input SNR as

SNR

(7)

where and denote mathematical expectation and the
trace of a matrix, respectively.

The primary issue that we must determine with noise reduc-
tion is how much noise is actually attenuated. The noise-reduc-
tion factor is a measure of this and its mathematical definition is

(8)

This factor should be lower bounded by 1. The larger the value
of , the more is the noise reduction.

Most, if not all, of the known methods achieve noise reduc-
tion at the price of distorting the speech signal. Therefore, it is
extremely useful to quantify this distortion. The speech-distor-
tion index is defined as follows:

(9)

This parameter is lower bounded by 0 and expected to be upper
bounded by 1. The higher the value of , the more the
speech signal is distorted.

Noise reduction is done at the expense of speech reduction.
Similar to the noise-reduction factor, we give the definition of
the speech-reduction factor

(10)

This factor is also lower bounded by 1.
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In order to know if the filtering matrix can improve the
SNR, we define the output SNR after noise reduction as

SNR (11)

It is nice to find a filter in such a way that SNR
SNR. SNR is a reliable and easily analyzed objective measure
for the evaluation of speech enhancement algorithms. In addi-
tion, it is also reasonable to assume, to some extent (a properly
frequency-dependent weighted SNR may correlate better with
speech intelligibility [12]), some correlation between SNR and
subjective listening. However, maximizing SNR is certainly
not the best thing to do since the distortion of the speech signal
will likely be maximized as well.

Using expressions (7), (8), (10), and (11), it is easy to see that
we always have

SNR
SNR

(12)

Hence, SNR SNR if and only if . So is
it possible that with a judicious choice of the filtering matrix
we can have ? The answer is yes. A generally
rough and intuitive justification to this answer is quite simple:
improvement of the output SNR is due to the fact that speech
signals are partly predictable. In this situation, is a kind of a
complex predictor or interpolator matrix and as a result,
can be close to 1 while can be much larger than 1. This
fact is very important for the single-microphone case and even
more important in the multichannel case where we can exploit
not only the temporal prediction of the speech signal but also
the spatial prediction of the observed signals from different mi-
crophones in order to improve the output SNR and minimize the
speech distortion.

IV. WIENER FILTER

In this section, we derive the classical optimal Wiener filter
for noise reduction yet in the multichannel case. Let us first write
the mean-square error (MSE) criterion

(13)

where is the correlation ma-
trix of the observation signals and is
the cross-correlation matrix between the observation
and speech signals. Differentiating the MSE criterion with re-
spect to and setting the result to zero, we find the Wiener
filter matrix [13], [14]

(14)

The previous equation is of little help in practice since the vector
is unobservable. However, it is easy to check that

(15)

with being the correlation
matrix of the noise signals. Now depends on the correla-
tion matrices and : the first one can be easily estimated

during speech-and-noise periods while the second one can be
estimated during noise-only intervals assuming that the statis-
tics of the noise change slowly over time. Substituting (15) into
(14), we get

(16)

The minimum MSE (MMSE) is obtained by replacing with
in (13), i.e., . There are different ways to express

this MMSE. One useful expression is

(17)

Now we can define the normalized MMSE (NMMSE)

(18)

where . This definition is related to the speech-
distortion index and the noise-reduction factor by the formula

SNR (19)

As a matter of fact, (19) is valid for any filter , i.e.,

SNR (20)

We deduce the two inequalities

SNR
(21)

SNR
(22)

It can be shown that SNR SNR for any filter matrix
dimension and for all possible speech and noise correlation ma-
trices [1], [15], [16]. Using this property and expression (12),
we deduce that

SNR SNR SNR (23)

In the Wiener formulation, we do not explicitly exploit the
spatial information. From (19) and (23), we can get this upper
bound for SNR

SNR

SNR

(24)

which shows that the output SNR is improved at the expense of
speech distortion.

A. Particular Case: Single Microphone and White Noise

We assume here that only one microphone signal is available
(i.e., ) and the noise picked up by this microphone is
white (i.e., ). In this situation, the Wiener
filter matrix becomes

(25)

where
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It is well known that the inverse of the Toeplitz matrix
can be factorized as follows [17], [18]:

...
...

. . .
...

...
...

. . .
...

(26)

where the columns of the first matrix on the right-hand side of
(26) are the linear interpolators of the signal and the el-
ements in the diagonal matrix are the respective interpola-
tion-error powers.

Using the factorization of in (17), the MMSE and
NMMSE can be rewritten, respectively, as

(27)

(28)

Assume that the noise-free speech signal is very well
predictable. In this scenario, , , and replacing
this value in (28) we find that . From (19), we
then deduce that (almost no speech distortion)
and (almost infinite noise reduction). Notice
that this result seems independent of the SNR. Also, since

, this means that ; as a result
SNR and we can almost perfectly recover the
signal .

In the other extreme case, let us see now what happens when
the source signal is not predictable at all. In this situation,

, and , . Using these values, we get

SNR
SNR

(29)

SNR
SNR

(30)

With the help of the two previous equations, it’s straightforward
to obtain

SNR
(31)

SNR
(32)

SNR SNR (33)

While some noise reduction is achieved (at the price of speech
distortion), there is no improvement in the output SNR, meaning
that the Wiener filter has no positive effect on the microphone
signal .

This analysis, even though simple, is quite insightful. It shows
that the Wiener filter can really help achieve noise reduction

as long as the source signal is somewhat predictable. However,
in practice some discontinuities could be heard from a voiced
signal to an unvoiced one, since for the former the noise will be
mostly removed while it will not for the latter.

A surprising consequence of this analysis is the effect of re-
verberation. Indeed, even if the source signal is white,
thanks to the effect of the impulse response , the signal
is not and becomes more “predictable.” Hence, we make the fol-
lowing claim: for white source signal, reverberation helps make
it more predictable and hence helps the Wiener filter for better
noise reduction. We can draw the same kind of conclusion for
any number of microphones.

V. SUBSPACE METHOD

In the Wiener filter, we cannot control the compromise be-
tween noise reduction and speech distortion. So this filter de-
rived from the classical MSE criterion may be limited in prac-
tice because of its lack of flexibility. Ephraim and Van Trees
proposed, in the single-channel case, a more meaningful crite-
rion which consists of minimizing the speech distortion while
keeping the residual noise power below some given threshold
[19]. The deduced optimal estimator is shown to be a Wiener
filter with adjustable input noise level. This filter was developed
in the white noise case. Since then, many algorithms have been
proposed to deal with the general colored noise [20], [22]–[25].
We think that the most elegant algorithm is the one proposed by
Hu and Loizou [22], [26] using the generalized eigenvalue de-
composition.

Using the same signal model described in Section II, the op-
timal filter with the subspace technique can be mathematically
derived from the optimization problem

subject to (34)

where

(35)

(36)

and in order to have some noise reduction. If we
use a Lagrange multiplier to adjoin the constraint to the cost
function, (34) can be rewritten as

(37)

where

(38)

and . We can easily prove from (37) that the optimal filter
is

(39)

where is the correlation
matrix of the speech signal at the different microphones and the
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Lagrange multiplier satisfies , which implies
that

(40)

From (21), we get

(41)

Since , , we also have

SNR
(42)

Therefore, implies that
. However, does not imply that

.
In practice, it is not easy to determine an optimal value of .

Therefore, when this parameter is chosen in an ad hoc way, we
can see that for

• , ;
• , ;
• , results in low residual noise at the expense of high

speech distortion;
• , we get little speech distortion but not so much noise

reduction.
In the single-channel case, it can be shown that SNR

SNR [27]. The same kind of proof holds for any number of
microphones [16].

As shown in [28], the two symmetric matrices and
can be jointly diagonalized if is positive definite. This joint
diagonalization was first used [21], [22], [26], [29] in the single-
channel case. In our multichannel context as shown in [30], [31],
we have

(43)

(44)

(45)

where is a full rank square matrix but not necessarily orthog-
onal, and the diagonal matrix

(46)

are the eigenvalues of the matrix with
.

Applying the decompositions (43)–(45) in (39), the optimal
estimator becomes

(47)

Therefore, the estimation of the speech signal is done in
three steps: first we apply the transform to the noisy signal;
second the transformed signal is modified by the gain function

; and finally we modify back the signal to
the time domain by applying the transform .

Usually, a speech signal can be modeled as a linear combi-
nation of a number of some (linearly independent) basis vec-
tors smaller than the dimension of these vectors. As a result,

the vector space of the noisy signal can be decomposed in two
subspaces: the signal-plus-noise subspace of length and the
noise subspace of length , with . This implies
that the last eigenvalues of the matrix are equal to
zero. Therefore, we can rewrite (47) as

(48)

where

(49)

is an diagonal matrix. We now clearly see that noise
reduction with the subspace method is achieved by nulling the
noise subspace and cleaning the speech-plus-noise subspace via
a reweighted reconstruction [32].

Like the Wiener filter, the optimal filter based on the subspace
approach does not take fully advantage of the spatial informa-
tion in order to minimize the distortion of the speech signal.

VI. SPATIAL–TEMPORAL PREDICTION APPROACH

As explained in the previous sections, the fact that speech is
partially predictable helps all algorithms in reducing the level
of noise in the microphone signal . Implicitly, temporal
prediction of the signal of interest plays a fundamental role in
speech enhancement. What about spatial prediction? Is its role
as important as temporal prediction? Since the speech signals
picked up by the microphones come from a unique source, the
same signals at microphones can be predicted from
the first microphone signal. Can this help?

In an earlier study of the authors [33], we proposed a novel
algorithm in which both spatial and temporal prediction are ex-
plicitly exploited. We assume that we can find an filter
matrix such that

(50)

We will see later on how to determine the optimal matrix .
Expression (50) can be seen as spatial–temporal prediction
(STP), where we try to predict the microphone signal samples

from .
Substituting (50) into (5), we find that

(51)

where

is a matrix of size .
In the single-channel case, there is no way we can reduce

the level of the background noise without distorting the speech
signal. In the Wiener filter (with one or more microphones),
we minimize the classical MSE without much concern on the
residual noise and speech distortion. In the subspace approach,
we minimize the speech distortion while keeping the residual
noise power below a threshold. However, from the STP ap-
proach, we see clearly that by using at least two microphones
it is possible to have noise reduction with no speech distortion
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[if (50) is met] by simply minimizing with the constraint
that . Therefore, our optimization problem is

subject to (52)

By using Lagrange multipliers, we easily find the optimal
solution

(53)

where we assumed that the noise signals ,
, are not perfectly coherent so that is not

singular. Equation (53) has the same form as the linearly con-
strained minimum variance (LCMV) beamformer [34], [35];
however, the STP based-approach and the LCMV beamformer
deal with two different problems.

The second step is to determine the filter matrix for spa-
tial-temporal prediction. An optimal estimator, in the Wiener
sense, can be obtained by minimizing the following cost
function:

(54)

We easily find the optimal STP filter

(55)

where and
are the cross-correlation and autocorrelation matrices of the mi-
crophone signals, respectively. Using (2), we know that

(56)

where is the autocorrelation matrix
of the source signal. Substituting (56) into (55) produces

(57)

If the source signal is white, then , where is
the variance of the source signal, and (57) becomes

(58)

which is a function merely of the channel impulse responses.
In this particular case, the STP matrix can be seen as the
time-domain counterpart of the transfer-function ratio (TFR),
and hence the STP solution (53) is in principle equivalent to the
TF-GSC approach [36]. However, in the real world, speech is
not white, and so depends not only on the channel im-
pulse responses, but also on the second-order statistics of the
speech source. This indicates that the prediction matrix
has exploited both spatial correlation between the channels and
short-term temporal audio-correlation of speech.

In practice, the signals , are not ob-
servable. So the Wiener filter matrix, as given in (55), cannot
be estimated. However, using , we can
verify that

(59)

where and .
As a result

(60)

The optimal filter matrix depends now only on the second order
statistics of the observation and noise signals. The statistics of
the noise signals can be estimated during silences [when

] if we assume that the noise is stationary so that its statistics
can be used for a next frame when the speech is active. We also
assume that a voice activity detector (VAD) is available so that
the optimal STP filter matrix is estimated only when the speech
source is active. Finally, the optimal filter matrix based on STP
is given by

(61)

where

In general, we do not have exactly , so
that some speech distortion is expected. However, for large filter
matrices, we can approach this equality so that this distortion
can be kept low. In this case, it can be verified that

(62)

(63)

(64)

which implies that

SNR SNR SNR (65)

Also, since , we have .
Clearly, we see that this approach has the potential to intro-

duce minimum distortion to the speech signal thanks to the fact
that the microphone observations of the source signal are spa-
tially predictable.

VII. SIMULATIONS

We have carried out a number of simulations to experimen-
tally study the three main multichannel noise reduction algo-
rithms (Wiener filter, subspace, and spatial-temporal prediction)
in real acoustic environments under different operation condi-
tions. In this section, we will present the results, which high-
light the merits and limitations inherent in these techniques, and
justify what we learned through theoretical analyses in the pre-
vious sections. In these experiments, we use the output SNR
and speech-distortion index defined in Section III as the perfor-
mance measures.

A. Acoustic Environments and Experimental Setup

The simulations were conducted with the impulse responses
measured in the varechoic chamber at Bell Labs [37]. A diagram
of the floor plan layout is shown in Fig. 1. For convenience,
positions in the floor plan are designated by ( ) coordinates
with reference to the southwest corner and corresponding to
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Fig. 1. Floor plan of the varechoic chamber at Bell Labs (coordinate values
measured in meters).

meters along the (South, West) walls. The chamber measures
m wide by m deep by m high. It

is a rectangular room with 368 electronically controlled panels
that vary the acoustic absorption of the walls, floor, and ceiling
[38]. Each panel consists of two perforated sheets whose holes,
if aligned, expose sound absorbing material (fiberglass) behind,
but if shifted to misalign, form a highly reflective surface. The
panels are individually controlled so that the holes on one partic-
ular panel are either fully open (absorbing state) or fully closed
(reflective state). Therefore, by varying the binary state of each
panel in any combination, different room characteristics
can be simulated. In the database of channel impulse responses
from [37], there are four panel configurations with 89%, 75%,
30%, and 0% of panels open, respectively corresponding to ap-
proximately 240, 310, 380, and 580 ms 60-dB reverberation
time in the 20–4000 Hz band. In our study, all four config-
urations were used to evaluate the performance of the noise-re-
duction algorithms. However, for conciseness and also due to
space limitations, we present here only the results for the least
and the most reverberant environments, i.e., ms and
580 ms, respectively.

A linear microphone array which consists of 22 omnidirec-
tional microphones was employed in the measurement and the
spacing between adjacent microphones is about 10 cm. The
array was mounted 1.4 m above the floor and parallel to the
North wall at a distance of 50 cm. A loudspeaker was placed
at 31 different prespecified positions to measure the impulse re-
sponse to each microphone. In the simulations, no more than
eight microphones will be chosen, and the sound source is fixed
at one loudspeaker position. The positions of the microphones
and the sound source are shown in Fig. 1.

Signals were sampled at 8 kHz, and the length of the mea-
sured impulse responses is of 4096 samples. We have tried dif-
ferent source signals. However, again due to space limitations,
we present in this paper only the results using a female speech

Fig. 2. Autocorrelation coefficient � (�) of the additive NYSE babbling
noise at the first microphone.

Fig. 3. Waveforms of (a) x (k) and (b) y (k) for SNR = 10dB and T =
240 ms.

signal as the source. We compute the microphone outputs by
convolving the source signal and the corresponding channel im-
pulse responses. The additive noise is babbling noise recorded in
the New York Stock Exchange (NYSE). Different segments of
the recorded babbling noise were used at different microphones
to avoid perfectly coherent additive noise. The NYSE babbling
noise is colored as seen by its autocorrelation coefficient

(66)

which is computed with a batch method and plotted in Fig. 2.
The SNR at the microphones is fixed at 10 dB. Fig. 3 shows the
first 5 s of and obtained in the environment with

ms.
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The source signal is 30 s long. The first 5 s of the microphone
outputs are used to compute the initial estimates of and

. The last 21 s are then used for performance evaluation of
the noise-reduction algorithms. In this procedure, the estimates
of and are recursively updated according to

(67)

(68)

where and are the forgetting fac-
tors. Note that in these simulations, VAD was not implemented
and the additive noise sequence was directly used to estimate

.

B. Experimental Results

1) Wiener Filter With Various Numbers of Microphones and
Filter Lengths: Let us first investigate the Wiener filter algo-
rithm for noise reduction using various numbers of microphones
and filter lengths. The performance of the optimal Wiener filter
obtained here will be used as a benchmark for comparison with
other noise-reduction algorithms in the following experiments.
We take . The output SNR and speech-dis-
tortion index are plotted in Fig. 4.

It is clearly demonstrated that by using moderately more mi-
crophones and longer filters, the Wiener filter can effectively
boost the output SNR at the price of introducing more speech
distortion. However, this trend is not monotonic over and .
We see that for , the output SNR drops after exceeds
20. Note that the relative time delay of arrival between the first
and the eighth microphones is about 18 samples.

2) Effect of the Forgetting Factor on the Performance of the
Wiener Filter: In the development of the Wiener filter as well as
other algorithms for noise reduction, we assume the knowledge
of and . As a result, one may unfortunately overlook
the importance and under-evaluate the difficulty of accurately
estimating these statistics (though they are only second order)
in practice. Actually the forgetting factor plays a critical role
in tuning a noise-reduction algorithm. On one hand, if the for-
getting factor is too large (close to 1), the recursive estimate of

according to (67) is essentially a long-term average and
cannot follow the short-term variation of speech signals. Con-
sequently, the potential for greater noise reduction is not fully
taken advantage of. On the other hand, if the forgetting factor
is too small (much less than 1), then the recursive estimate of

is more likely rank deficient. This leads to the numer-
ical stability problem when computing the inverse of ,
and hence causes performance degradation. Therefore, a proper
forgetting factor is the one that helps achieve the balance be-
tween tracking capability and numerical stability. In this ex-
periment, we would like to study this effect of the forgetting
factor. We consider the Wiener filter again in the environment
of ms.

Fig. 5 depicts the results of six systems under investigation.
These curves visibly justify the tradeoff effect mentioned above.
Note that the size of is . It is clear from Fig. 5
that the greater and the larger the size of , the greater
is the optimal forgetting factor. The Wiener filters with the same

Fig. 4. Performance of the Wiener filter for noise reduction using various num-
bers of microphones N = 1, 2, 4, and 8, respectively. (a) Output SNR, and
(b) speech-distortion index. Input SNR = 10 dB, room reverberation time
T = 240 ms, and the forgetting factor � = � = 0:9975.

value of perform almost identically against the forgetting
factor regardless of the combination of and .

3) Performance Evaluation of the Subspace Method: In the
first two experiments, we studied the Wiener filter for noise re-
duction under various operation conditions. Now we turn to the
subspace method. Again, we take and

. This experiment was carried out in two acoustic en-
vironments with ms and 580 ms, respectively, and

varies from 0.5, 1.0, to 2.0. Note that when , the sub-
space method is theoretically equivalent to the Wiener filter. The
results are plotted in Fig. 6. It is evident that by decreasing ,
speech distortion is reduced but we gain little noise reduction. In
the opposite direction, increasing results in low residual noise
at the expense of high speech distortion.

4) Performance Evaluation of the Spatial–Temporal Predic-
tion Approach: In the last but probably the most interesting ex-
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Fig. 5. Effect of the forgetting factors (� = � ) on the performance of the
Wiener filter for noise reduction. (a) Output SNR. (b) Speech-distortion index.
Input SNR = 10 dB and room reverberation time T = 240 ms.

periment, we tested the STP approach to noise reduction in com-
parison with the Wiener filter.

In our study, we learned that the performance of the Wiener
filter and the subspace method is limited by the aforementioned
numerical stability problem. By inspecting (16) and (39), we
know that in the Wiener filter and subspace algorithms, we need
to compute the inverse of , which is of dimension .
When we intend to use more microphones and longer filters (i.e.,
larger and ) for a greater output SNR as well as less speech
distortion, the covariance matrix becomes larger in size,
which leads to the following two drawbacks:

• Using a short-term average, a larger error can be expected
in the estimate . However, with a long-term av-
erage, the variation of speech statistics cannot be well fol-
lowed. Both cause performance degradation. The larger

, the more prominent is the dilemma.

Fig. 6. Performance of the subspace algorithm for noise reduction using dif-
ferent values for � in two different acoustic environments with T = 240 ms
and 580 ms, respectively. (a) Output SNR. (b) Speech-distortion index. Input
SNR = 10 dB, N = 2, and � = � = 0:9975.

• The estimate of the covariance matrix becomes
more ill-conditioned (with a larger condition number)
when gets larger. As a result, it is more problematic
to find its inverse.

Therefore, as revealed by the results in the previous experi-
ments, we do not gain what we expect from the Wiener filter
and subspace algorithms by increasing and .

Alternatively, the STP approach utilizes the spatial correla-
tion among the outputs of a microphone array with respect to a
speech source separately only in the first step of determining an
STP matrix. If we look closer at (60), we can recognize that the
STP is proceeded on a pair-by-pair basis. In this procedure, only

or equivalently needs to be inverted.
This matrix is and does not grow in size with the number
of microphones that we use. In addition, from (53), we know
that rather than needs to be inverted in computing .
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Fig. 7. Performance comparison between the STP and the Wiener filter algo-
rithms for noise reduction in two different acoustic environments with T =
240 ms and 580 ms, respectively. (a) Output SNR. (b) Speech-distortion index.
(c) Average Itakura-Saito distance. Input SNR = 10 dB and N = 4. For the
Wiener filter � = � = 0:9975 and for the STP � = � = 0:98.

In most applications, the noise signals have flatter spectra and
are relatively more stationary. Consequently, usually has a
low condition number and can be accurately estimated with a
long-term average. Therefore, with the STP algorithm, we can
use a larger system with more microphones and longer filters
for better performance.

Fig. 7 shows the results of the performance comparison be-
tween the STP and Wiener filter algorithms. We specified

, for the Wiener filter, and
for the STP. The results for ms and 580 ms are pre-
sented. In addition to the output SNR and the speech-distortion
index, the average Itakura–Saito (IS) distance between
and is also plotted. The IS distance [39] exhibits a high
correlation (0.59) with subjective judgments [40]. Many exper-
iments in speech recognition show that if the IS measure is less
than about 0.1, the two examined spectra are perceptually nearly

Fig. 8. Effect of the forgetting factors (� = � ) on the performance of the
STP algorithm for multichannel noise reduction. (a) Output SNR. (b) Speech-
distortion index. Input SNR = 10 dB and room reverberation time T =
580 ms.

identical. We see that in this experiment, when is lower
than dB, the IS distance is approximately less than 0.1 for
both the Wiener filter and the STP algorithms. Given the con-
straint that the IS distance is less than 0.1, the STP apparently
can yield a much higher output SNR than the Wiener filter. For
the STP algorithm, if is too small, the prediction given by
(50) cannot be accurate, and therefore the speech distortion as
expressed by (51) would be significantly strong. We see that in
this simulation, only when is greater than 48, the speech dis-
tortion reaches an acceptable level.

In Fig. 8, we visualize the performance sensitivity of the STP
algorithm to the change of the forgetting factors. We see that
the performance of the STP algorithm is not sensitive to the
forgetting factors. This implies that the STP algorithm is very
easy to tune and is very robust to different acoustic conditions,
which are very appealing features in practice.
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VIII. CONCLUSION

Noise reduction is a very difficult problem and still remains
a challenge today even after 40 years of tremendous progress.
While some useful and interesting solutions exist in the single-
microphone case at the price of distorting the desired speech
signal, we will not draw the same conclusion with multiple mi-
crophones. From a theoretical point of view, though, it is pos-
sible to reduce noise with no speech distortion with a micro-
phone array. However, the derivation of a practical solution is
still an open area of research. In this paper, we studied three
important multichannel noise reduction algorithms, namely, the
classical Wiener filter, subspace, and the novel spatial–temporal
prediction approaches. We showed their potentials and limita-
tions via theoretical analysis and numerical simulations. The
simulation results indicate that the spatial–temporal prediction
approach is a very promising technique. It can achieve a much
higher gain in the output SNR while keeping the speech distor-
tion at a reasonable low level. In addition, it is easy to tune and
is very robust to various acoustic conditions in practice.
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