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Abstract—The knowledge of the target speech presence probability in
a mixture of signals captured by a speech communication system is of
paramount importance in several applications including reliable noise re-
duction algorithms. In this correspondence, we establish a new expression
for speech presence probability when an array of microphones with an
arbitrary geometry is used. Our study is based on the assumption of the
Gaussian statistical model for all signals and involves the noise and noisy
data statistics only. In comparison with the single-channel case, the new
proposed multichannel approach can significantly increase the detection
accuracy. In particular, when the additive noise is spatially coherent,
perfect speech presence detection is theoretically possible, while when the
noise is spatially white, a coherent summation of speech components is
performed to allow for enhanced speech presence probability estimation.

Index Terms—Microphone array, noise reduction, speech detection,
speech presence probability.

I. INTRODUCTION

Microphone array signal processing has attracted a significant
amount of research attention over the last few decades. Indeed, the
extra spatial dimension inherent to the array spatial aperture results in
more degrees of freedom and additional key functions can be ensured
as contrasted to the classical single-channel processing. Well known
functions include source localization [1], [2], noise reduction with low
or even no speech distortion [1], [3], [4], multichannel inverse filtering,
and dereverberation [5]. This paper is concerned with the utilization of
microphone arrays for accurate speech presence probability estimation
in adverse conditions.

The estimation of the speech presence probability is one of the key
components in noise reduction algorithms [6]. For example, with the
exact knowledge of whether the speech is present or not in a certain
frame, accurate updates of the noise power spectrum density (PSD)
matrix can be properly performed, thereby mitigating uncontrolled ar-
tificial distortions of the speech signal due to its leakage into noise sta-
tistics estimates. A common trend in the literature has been to use a
single channel to estimate the speech presence probability. In [7] and
[8], the speech presence uncertainty in the noisy observation was taken
into account while deriving the minimum mean-squared error (MMSE)
estimator. This uncertainty is found by using a Gaussian statistical
model. In [9], Cohen proposed a robust single-channel noise tracking
method that relies on the signal presence probability. In [4], Gannot and
Cohen proposed a log-spectral amplitude post-filtering for the multi-
channel generalized-sidelobe canceller that involves a single-channel-
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based speech presence probability. Another notable contribution was
proposed in [10] where Potamitis developed a multichannel speech
presence probability for a uniform linear array with the assumptions
of far-field, known source location, and spatially white noise. How-
ever, these assumptions are very restrictive. In addition, reverberation
and other types of noise (such as point source interference which is
spatially coherent) are ubiquitous in realistic environments.

In this correspondence, we investigate the speech presence proba-
bility when an array with arbitrary geometry and arbitrary number of
microphones is used. We propose a simplified treatment that jointly
considers the overall microphone outputs in order to decide whether the
speech is present in a mixture of observed signals or not. Our approach
is based on the Gaussian statistical model and applies for a general
noise type and array geometry. We show the advantage of using mul-
tiple microphones to increase the accuracy of speech detection. Partic-
ularly, we prove that a perfect speech detection is theoretically possible
when the noise is fully coherent. In the case of non-coherent noise, a
constructive summation of all speech components is performed to en-
hance the speech detectability.

The rest of this paper is organized as follows. Section II describes
the investigated problem with an emphasis on the importance of ac-
curate speech presence probability estimation. Section III provides all
the steps leading to the new proposed expression of the multichannel
speech presence probability. Section IV illustrates the effectiveness
of the proposed multichannel speech presence probability expression
through numerical examples. Finally, Section V contains some con-
cluding remarks.

II. PROBLEM STATEMENT

Let ���� denote a speech signal impinging on an array of � mi-
crophones with an arbitrary geometry. The resulting observations are
given by

����� � �� � ���� � �����

� ����� � ������ 	 � �� �� � � � � � (1)

where � is the convolution operator, �� is the channel impulse response
encountered by the source before impinging on the 	th microphone,
����� �� ����� is the noise-free speech component, and ����� is the
noise at microphone 	 [the noise can be either white or colored, but is
uncorrelated with ����]. We assume that all the noise components and
���� are zero-mean random processes. The short-time Fourier trans-
form (STFT) is commonly utilized instead of the discrete-time Fourier
transform (DTFT) in several processing schemes, including the imple-
mentation of noise reduction filters [4], [11]. Specifically, all the micro-
phone outputs are chopped into small frames, sufficiently zero-padded,
and transformed to the frequency domain via a 
-length STFT

����� 
� � ����� 
� � ����� 
�� 	 � �� �� � � � � � (2)

where � � ��� � � � � 
 � �� is the frequency index and 
 is the
time-frame index. We also have ����� 
� � ����� 
����� 
�
and ���� 	����� � � � �� ���
� is the STFT of the transfer
functions of the propagation channels between the source and all
microphone locations, where � denotes the transpose operator.
In addition, we use the following vector notations: ���� 
�
	����� 
� � � � ����� 
�
� ����� 
� 	����� 
� � � � ����� 
�
� ,
and ���� 
� 	����� 
� � � � �� ��� 
�
� . We also define the noise
and noisy data PSD matrices as ������ 
� ������ 
������ 
��
and ������ 
� ������ 
������ 
��, where � is the trans-
pose-conjugate of a matrix. For a given random process ����,
we denote its PSD at frequency � and instant 
 as ������ 
�.
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Since noise and speech components are assumed to be un-
correlated, we can calculate the noise-free signals statistics as
������ �� ������ ������� ��� � ������ �� � ������ ��. In
practice, recursive smoothing is used to approximate the mathematical
expectation involved in the previous PSD matrices. In other words, at
time frame �, the noisy and noise data statistics are updated recursively
as1

������ �� � ��� ����� ��������� �� ��

� ����� ������ ���
���� �� (3)

and

������ �� � ��� ����� ��������� �� ��

� ����� ������ ���
���� �� (4)

where � � ����� �� � � and � � ����� �� � � are two forgetting
factors. The proper choice of these two parameters is very important
in order to correctly update the noisy and noise PSD matrices. For in-
stance, ����� �� should be large enough when the speech is absent so
that the estimate of the noise PSD matrix can follow the noise statistics,
but when the speech is present, this parameter should be sufficiently
small to avoid noise PSD matrix overestimation. Clearly, the param-
eter ����� �� is closely related to the speech presence probability that
has to be properly computed. This is the purpose of this work.2

III. SPEECH PRESENCE PROBABILITY

The speech presence probability in the single-channel case has been
exhaustively studied [7]–[9]. Here, we generalize the study to the mul-
tichannel scenario. Following the standard procedure, we distinguish
between two hypotheses.

1) ����� ��: in which case the speech is present, i.e.,

���� �� � ���� �� � ���� ��� (5)

2) ����� ��: in which case the speech is absent, i.e.,

���� �� � ���� ��� (6)

Using the Bayes rule [7]–[9], we can show that the speech presence
probability is given by

���� �� 	 ������ ������� ��� �
	��� ��

� � 	��� ��
(7)

where

	��� �� �
�� 
��� ��


��� ��
�
������ �������� ���

������ �������� ���

is the generalized likelihood ratio (GLR) [7], [8] and


��� �� 	 ������ ���

is the a priori probability of speech absence. In practice, 
��� �� has to
be chosen such that it reflects our prior knowledge of whether speech
sections are more probable than silence ones or not. In other words,
we favor speech presence or absence by choosing 
��� �� � ��
 or

��� �� � ��
, respectively. In the current work, we suppose that this
probability is fixed a priori (see [8], for instance), even though it can
be estimated online following the algorithm described in [9] for the

1We do not distinguish between the estimate and the exact expression of the
PSD matrices for notational convenience.

2The utilization of the speech presence probability for online estimation of
the noise PSD matrix is currently under investigation.

single-channel case. In what follows, our purpose is to find a simplified
expression of ���� ��.

First, we need to express ������ �������� ��� and ������ �������� ���
into analytical forms. To this end, we assume that the speech and noise
components are multivariate Gaussian and that the real and imaginary
parts of all signals are uncorrelated and identically distributed [12].
Consequently, we obtain

������ �������� ���

�
�

�� ��
������� �� ������� ���

� ���������� ��������� ��

������� ���
��
���� ��� (8)

and

������ �������� ���

�
�

�� ��
������� ���

� ��� ������ ������� ��� ������ �� � (9)

Therefore, the GLR is given by

	��� ��

�
�� 
��� ��


��� ��
�

��
 ������� ���

��
 ������� �� ������� ���

� ��� �
���� �� �

��

�� ��� ��

�������� �� ������� ���
��

���� �� � (10)

Using the matrix inversion lemma, we can show the following

�
��

�� ��� ��� ������� �� ������� ���
��

�
����� ��� �������� ���

��

�� ��� ��

� � 
� ����� ��� �������� ��
� (11)

where 
���� denotes the trace of a square matrix. In addition, we have

��
������� �� ������� ���

� ��
 ������ �� �
��

�� ��� �������� �� � �

� ��
������� ��� � � 
� �
��

�� ��� �������� �� � (12)

Hence, the expression of the GLR in (10) can be written as

	��� ��

�
�� 
��� ��


��� ��
�

�

� � 
� �
��

�� ��� �������� ��

� ���
����� ������� ��� �������� ���

��

�� ��� ������ ��

� � 
� ����� ��� �������� ��
�

(13)

In a similar fashion to the single-channel approach, let


��� �� 
� �
��

�� ��� �������� �� (14)

denote the multichannel a priori signal-to-noise ratio (SNR). Let us
also define

���� �� �
���� ������� ��� �������� ���

��

�� ��� ������ ���

(15)

Now, the speech presence probability is given by

���� �� � � �
�

	��� ��

��

(16)
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Fig. 1. Scheme of the reverberant enclosure and the locations of the source, the
interference, and the microphone array.

meaning that

���� �� � � �
���� ��

�� ���� ��
�� � ���� ��� �	
 �

���� ��

� � ���� ��

��

�

(17)

Equation (17) represents the new proposed expression for the speech
presence probability in the multichannel case. This expression is a gen-
eralization of the single-channel speech presence probability when the
Gaussian statistical model is used as it will be shown next. It describes
how the information contained in multiple observations has to be prop-
erly combined. Moreover, it only involves the estimates of the noise and
noisy data PSD matrices in addition to the current (at time instant �) data
samples vector. In contrast to [10], the proposed expression is valid for
a general type of noise (e.g., mixture of interferers and spatially white
noise) and does not depend on the array geometry. Below, we prove
that great accuracy of speech signal detection can be achieved using
multiple microphones, particularly when the additive noise is spatially
coherent (point source of interference) or white, which is the case in
several practical scenarios [1], [4], [11].

A. Single-Channel Case

If only one microphone is used (say microphone 1, for instance), (17)
can be written in a degenerated form as

����� �� 	 �
���� �������� ���

� � �
���� ��

�� ���� ��
�� � ����� ���

� �	
 �
����� ������� ��

� � ����� ��

��

(18)

where

����� ��
������ ���

�


� � ��� ��
(19)

Fig. 2. Distribution of the clean speech energy on the time-frequency plane.

and

����� ��

� � ��� ��


� � ��� ��
� (20)

The result in (18)–(20) is identical to the single-channel speech pres-
ence probability given in [7]–[9]. In other words, the single-channel
speech presence probability is a particular case of (17). Nevertheless,
the great advantage of (17) is that, when multiple microphones are used,
it can capture the mutual information among all the sensors in an op-
timal fashion.

B. Additive Coherent Plus Incoherent Noise Effects

When the noise is generated by a point source (interference), its PSD
matrix is given by ������ �� � 
����� �������

����, where 
����� ��
and ���� are the PSD and the propagation vector of the interference,
respectively. Note that in this case������ �� is not invertible. However,
in practice an additive non-coherent noise is generally present as well.
Thus, we have instead

������ �� � ����� � 
����� �������
���� (21)

where � is the power of a spatially white (incoherent) noise with in-
dependent and identically distributed (i.i.d.) components. By applying
the following matrix inversion

�
��
�� ��� �� �

�

�
���� �


����� �������
����

� � 
����� ���������
(22)

we show that the a priori SNR is given by

���� �� �

����� ��

�
������� �

������������

�

� �	
��
� �������

�

(23)

Also,

���� �� �

����� ��

��
�
���� �������

����� ���������������
�

� �	
��
� �������

�

�

(24)
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Fig. 3. Distribution of the speech presence probability on the time–frequency plane, SIR � � dB and SNR � �� dB: (a) single channel; (b) multichannel
�� � ��.

Therefore,

���� ��

� � ���� ��
�

�

�

�

������ �� �
���� ������� � ���������� �������

�������

�

� � ������ �� ������� � �� ��������

�������

� (25)

1) Effect of the Coherent Noise: When the speech signal is present,
i.e., ������ ��������� �� �, and the speech and interference originate
from different locations, i.e., ���� �� ����, we conclude from (23) and
(25) that when � � �, we have

���� ��
�

�
and

���� ��

� � ���� ��

�

�

meaning that

��	
���

	��� �� � � (26)

regardless of the level of interference. Hence, perfect speech detec-
tion is theoretically possible regardless of the level of the spatially co-
herent noise. This demonstrates the effectiveness of the multichannel
speech presence probability expression developed here in dealing with
a point interference source, which cannot be achieved using the tradi-
tional single-channel approach.

2) Effect of the Incoherent Noise: Here we assume that �
����� �
�. In this case

���� �� � 
� ����������� ��� (27)

���� �� � ����� ��
����������� ����

�
(28)

where ���� �

	�� ��
	����
���
�����

��� ����� � ������
�����,
and ����� �� is defined in (20). A sort of matched beamforming is per-
formed in both terms (27) and (28). The a priori SNR is increased by
the diversity factor ����, while in (28), ������������ ������� involves
a coherent summation of the desired signal part that necessarily leads
to the enhancement of the effect of the signal components and the in-
coherent summation of the noise terms. These two facts result in better
speech signal detection, especially its low energy components as com-
pared to the single-channel case.

IV. NUMERICAL EXAMPLES

We consider a simulation setup where a target speech signal taken
from the IEEE sentences [13] (as described in [6, Ch. 11]) and sam-
pled at 8-kHz rate is located in a reverberant enclosure (modeling a
vehicle interior, teleconferencing room, office, etc.) with dimensions
3.048 m� 4.572 m� 3.81 m. The image method [14], [15] was used
to generate the impulse responses. Without loss of generality, we con-
sider, for illustration purpose only, a planar configuration where the
target source, an interference (a tank noise taken from NOISEX-92
database [16]), and a set of microphones are located on a single plane
as depicted in Fig. 1. Several other combinations of interference sig-
nals from NOISEX-92 database [16] and speech signals from the IEEE
sentences [6], [13] were also tested and results similar to the ones
shown here were obtained. In our setup, we consider a uniform linear
array (ULA) of � � 
 microphones with � � ����� m being the
inter-microphone spacing. The target source and the interferer have
azimuthal angles of �� � ���� and �	 � ���, which are measured
counterclockwise from the array axis. The microphone array elements
are placed on the axis ��� � ����� m, �� � ����� m) with the center
of the microphone being at (�� � ����
 m, ��� ��) and the �th one
at ��� � ��� � ��� ������� ��� ��� with � � �� � � � � � . The inter-
ferer and the target source are located at a distance of 2.50 m away
from the center of the microphone array. It is important to note that the
provided details about the system configuration (array geometry and
locations of microphones, source, and interference) are not utilized as
prior information in our simulations since the proposed speech pres-
ence probability expression in (17) depends on the desired speech and
noise statistics only. The walls, ceiling, and floor reflection coefficients
are set to achieve a reverberation time3 �
� � ��� ms measured using
the backward integration method (see [17, Ch. 2] for more details).
The interfering source sound and computer generated, spatially uncor-
related Gaussian noise are added to the noise-free microphone signals
such that the signal-to-interference ratio is SIR � ��� and 0 dB, while
the signal-to-noise (white) ratio is SNR �10 dB and 0 dB in the sce-
narios investigated below.

In order to show the advantage of using the proposed multichannel
speech presence probability, we compare its performance to its single-
channel counterpart. The noisy data and noise PSD matrices are es-
timated recursively using (3) and (4) and we assumed the knowledge
of the noise samples. The update factors for both PSD matrices are
set to �
 � �� � ����. The a priori speech absence probability

3Other reverberation conditions were also tested and the results are similar to
the investigated setup.
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Fig. 4. Distribution of the speech presence probability on the time–frequency plane, SIR � ��� dB and SNR � �� dB: (a) single channel; (b) multichannel
�� � ��.

Fig. 5. Distribution of the speech presence probability on the time–frequency plane, SIR � � dB and SNR � � dB: (a) single channel; (b) multichannel �� � ��.

in (17) is empirically fixed as ���� �� � ��� (note that one can also
estimate it recursively as in [9]). The received signals are chopped
into frames of 32 ms with 50% overlapping, sufficiently zero-padded
and transformed to the frequency domain to calculate all the required
terms. Fig. 2 provides the average PSD of the noise-free signals, i.e.,
��������� ��	, in the time-frequency plane. Fig. 3 compares the per-
formance of the single- and multiple-channel speech presence proba-
bility in the time–frequency plane in the first simulation scenario where
SNR � 
� dB and SIR � � dB. It is clear from Fig. 3(b) that the
multichannel approach gives more accurate speech presence detection
(high probability values whenever some speech energy exists and low
probability values in the absence of speech energy). In contrast, the
single-channel case is sensitive to the decay of the speech energy and
fails to provide high speech presence probability especially for rela-
tively low speech-energy components. Precisely, we can notice from
Fig. 3(b) that the utilization of multiple microphones allows for better
detection of the most significant part of the speech components, even
the very weak ones having normalized energy of around �40 dB. The
single-channel approach fails to detect these low energy components
as can be seen in Fig. 3(a). Fig. 4 illustrates the performance of the two
speech presence probability expressions (single- and multi-channel)
when the SIR is chosen as �10 dB while the SNR is maintained at
the same level. A remarkable degradation of the single-channel based
processing is observed. Most of the time, speech is not detected even

though it is present (see energy components of less than �20 dB). In
practice, this would translate into total suppression of these compo-
nents when a filter is deployed since it is not possible to detect the
speech and distinguish it from the noise. The performance of the mul-
tichannel-based approach is also slightly deteriorated when we com-
pare Figs. 3(b) to 4(b). However, most of the speech components were
properly detected. In the last scenario, we set the SNR to 0 dB and the
SIR to 0 dB. The results are given in Fig. 5. Again, by comparing the
results achieved by the single and multichannel processing, we notice
the clear advantage of the latter. It is also remarkable in Fig. 5(b) that
the low-frequency components are better detected than the high-fre-
quency ones [compared to Figs. 3 and 4(b)] which is justified by the
speech energy distribution shown in Fig. 2. The overall results clearly
demonstrate the advantage of using the multichannel speech presence
probability developed in this paper.

V. CONCLUSION

In this paper, a multichannel speech presence probability was de-
veloped. We assumed a Gaussian statistical model for the signals and
elaborated a new simplified closed-form expression for this probability
when an array of an arbitrary number of microphones with arbitrary
placements and reverberation condition are considered. The utilization
of the multichannel speech presence probability is advantageous as
illustrated by theory and numerical evaluations. From the theoretical
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point of view, we showed that by using the new formulation, a perfect
detection of the speech components is possible if the noise originates
from a point interference source, which can never be achieved with the
single-channel case. In the case of incoherent noise, a coherent sum-
mation of the noise-free speech components is performed to allow for
better speech detection, especially of low speech energy components as
compared to the single-channel approaches. The proposed method ap-
plies for the general situation where the observed microphone signals
are mixtures of a desired speech plus noise signals. The latter can be
composed of interferences and other types of undesired signals (e.g.,
white noise).
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Statistical Text-to-Speech Synthesis Based on Segment-Wise
Representation With a Norm Constraint

Stas Tiomkin, David Malah, Life Fellow, IEEE, and Slava Shechtman

Abstract—In statistical HMM-based text-to-speech systems (STTS),
speech feature dynamics is modeled by first- and second-order feature
frame differences, which, typically, do not satisfactorily represent frame to
frame feature dynamics present in natural speech. The reduced dynamics
results in over-smoothing of speech features, often sounding as muffled
synthesized speech. In this correspondence, we propose a method to
enhance a baseline STTS system by introducing a segment-wise model
representation with a norm constraint. The segment-wise representation
provides additional degrees of freedom in speech feature determination.
We exploit these degrees of freedom for increasing the speech feature
vector norm to match a norm constraint. As a result, statistically generated
speech features are less over-smoothed, resulting in more natural sounding
speech, as judged by listening tests.

Index Terms—Segment-wise model representation, speech feature
dynamics, statistical TTS, text-to-speech (TTS) synthesis.

I. INTRODUCTION

Statistical TTS (STTS) systems employ statistical models for speech
production, and speech is generated from previously learned statis-
tical models. Contrary to concatenative TTS (CTTS), which may in-
clude discontinuities, particulary when small databases are used, STTS
smoothly connects adjacent phonetic units.

However, STTS-generated speech is often over-smoothed, resulting
in degraded speech quality in the form of muffled speech. A thorough
review of STTS systems is provided in [1].

In this correspondence, we improve a baseline HMM-based STTS
system by introducing 1) A robust model representation, based on a
segment-wise representation, instead of the conventional frame-wise
representation; and 2) A norm-regulated statistical speech feature
vector that meets a norm constraint. These concepts are utilized in an
iterative algorithm, proposed in this correspondence. This algorithm
generates speech features with enhanced dynamics, resulting in im-
proved generated speech naturalness, as compared to the conventional
generating scheme, and verified by listening tests.

This correspondence is organized as follows. In Section II, we pro-
vide the essentials of the baseline STTS methodology used in this re-
search. In Section III, we present the segment-wise model representa-
tion. In Section IV, we present the norm-regulated constraint, applied
to the synthesized speech feature vector, and an iterative algorithm that
generates speech features having enhanced dynamics. In Section V, we
examine the performance of the enhanced statistical TTS system, and
in Section VI we summarize this work.

Manuscript received August 25, 2009; revised December 14, 2009. First pub-
lished January 19, 2010; current version published June 16, 2010. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Gaël Richard.

S. Tiomkin and D. Malah are with the Department of Electrical Engineering,
Technion—Israel Institute of Technology, Haifa 32000, Israel (e-mail: stast@tx.
technion.ac.il; malah@ee.technion.ac.il).

S. Shechtman is with the Speech Technologies Group, IBM Haifa Research
Lab, Haifa University Campus, Mount Carmel, Haifa 31905, Israel (e-mail:
slava@il.ibm.com).

Digital Object Identifier 10.1109/TASL.2010.2040795

1558-7916/$26.00 © 2010 IEEE


