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fter more than a century of accelerated advances in 
telecommunication technologies, people are no 

longer satisfied with talking to someone over a 
long distance and in real time. They want to col-
laborate through communication in a more 

productive way with the feeling of being together and sharing 
the same environment, which we refer to as an immersive expe-
rience. This need offers great opportunities for multichannel 
acoustic and speech signal processing, and for new ideas of 
voice communication services infrastructure. In this article, we 
present a survey of the development of various immersive audio 
schemes in concert with this movement according to our 
involvement and insights.

INTRODUCTION
Human communication has a long and rich history. But the 
primary goal is fairly constant: to wit, cut across spatial, tempo-
ral, and physical boundaries, and help people share information 
with the sense of experiential outreach. Modern communica-
tion technologies so far have made great strides in transcending 
the boundaries of space and time. But the issue of physical 
boundaries is relatively less addressed, let alone the sensory 
experience of “being there” when communicating. In fact, few 
users of today’s communication systems would say that the 
interaction is satisfactorily natural and that they have the feel-
ing of being in the same room and the feeling of sharing a com-
mon environment. It is this lack of immersive experience that 
makes people feel unfulfilled in remote information sharing 
and collaboration. Such an immersive experience is yet to 
become a reality supported by modern communication technol-
ogies and may be considered as the “last-mile” problem of tele-
communications. 
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A person’s sense of immersion is formed by his or her sen-
sory response to the auditory and visual stimuli that exist in 
the ambiance of their environment. In immersive communica-
tion, thus, both audio and visual exchanges are indispensable, 
and probably other sensory modalities as well. The first demon-
stration of the so-called videoconferencing was a close-circuit 
test conducted by Bell Laboratories in 1927 [1]. It allowed 
Herbert Hoover (then the United States Commerce Secretary 
and later the United States President) to address an audience in 
New York City from Washington, D.C. The audio portion was 
two-way, but the video portion was one-way with only those in 
New York being able to see Hoover. Public interest in 
 videoconferencing began with the display of AT&T’s trade-
marked “Picturephone” product and service at the New York 
World’s Fair in 1964 [2]. But Picturephone did not achieve the 
expected commercial success. The failure of the service is com-
monly attributed to its cost. It was too expensive due to the 
high cost of bandwidth and cameras then. Today the cost of 
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videoconferencing has dropped 
to a commercially viable level, 
and videoconferencing has 
become a daily activity in busi-
nesses as well as in individual 
residences. Furthermore, be -
cause of increasing concerns 
with public safety (e.g., fear of terrorist attacks), growing travel 
expenses, and unanticipated delays (e.g., those caused by the 
volcanic ash shutdown of European air space in April 2010), 
there is a clear trend to reduce business travel and increase 
work from home. All these commercial changes and social 
trends add new impetus to the development of more advanced 
videoconferencing systems. This is evidenced by recent efforts 
on telepresence, which can be a high-definition videoconfer-
ence and arguably facilitates eye contact, gaze awareness, and 
gesture recognition. 

Adding video to teleconferencing gives three advantages: 
1) fast interaction response and smooth conversational 
shifts from one talker to another can be elicited, 2) subtle 
emotion and opinion that we convey through body language 
can be faithfully shared with other participants, and 3) we 
can easily monitor the involvement of the others. They all 
help convey subconscious information in a teleconference. 
Subconscious cues were found more effective than con-
scious cues in communications of feelings and attitudes [3]. 
However, voice is by far the dominant media in the 
exchange of conference content. In fact, a teleconferencing 
session can still go on when the video link is broken, but it 
has to stop if the audio link is disrupted. So in addition to 
the pursuit of multimodal capabilities, we should never for-
get the importance of speech quality (including intelligibility 
and naturalness) and intermodal synergy. Moreover, there 
are great potentials to improve these two factors in an 
immersive teleconference with multiple parties being 
involved since binaural hearing is now allowed and can be 
fully exploited. This is an imperative step towards immer-
sive communication. With both ears being kept busy, our 
auditory system can more easily extract a single talker’s 
speech among multiple conversations and background 
noise, and can more seamlessly work together with the 
visual system in an adverse acoustic environment for speech 
perception (e.g., lip-reading). 

Therefore, this article aims at audio processing and inter-
face techniques that are necessary to support the goal of 
immersive communication. An immersive audio interface that 
facilitates binaural hearing needs to replicate four attributes of 
face-to-face communication [4]: 1) full-duplex exchange; 2) 
freedom of movement without body-worn or tethered micro-
phones (i.e., hands free in the broad sense); 3) high-quality 
speech signals captured from a distance; and 4) spatial realism 
of sound rendering. These requirements imply that multiple 
microphones and loudspeakers would be used and the entire 
voice communication infrastructure might need to be reno-
vated. This move incurs great challenges on multichannel 

acoustic and speech signal 
processing. While efforts from 
both the academic and indus-
trial communities have been 
devoted to solving most of 
these problems and significant 
progress has been made over 

the last two decades, many fundamental challenges are still 
waiting for breakthroughs. 

This article presents a systematic overview of the major 
challenges that have to be dealt with in immersive audio 
processing and interface. These include sound acquisition 
and processing, multiparty immersive audio mixing and 
management, and sound rendering for untethered immer-
sive perception. The state-of-the-art technologies to solve 
these problems are briefly reviewed and several successful 
real-time systems are discussed to illustrate the advances 
and progress that have been made in immersive audio pro-
cessing and interface. 

SOUND ACQUISITION AND PROCESSING 
FOR IMMERSIVE ACOUSTIC RECONSTRUCTION

SIGNAL CHARACTERISTICS AND NOISE CLASSIFICATION 
IN IMMERSIVE VOICE COMMUNICATION
Acoustic waves are simply pressure disturbances propagating in 
the air. They carry information of the sound source and their 
energy is radiated spherically from the origin, i.e., the location 
of the sound source. The governing law of physics in this radia-
tion process is the natural fall-off of the signal level inversely 
proportional to the distance from the origin, which is known as 
the inverse distance law. As a rule of thumb, the sound level 
decreases by 6 dB for each doubling of the distance from the 
source. This phenomenon makes distant acquisition of a speech 
signal vulnerable to interference from other concurrent sound 
sources and ambient noise. Moreover, in an enclosure, acoustic 
waves are often reflected many times by the boundaries before 
they reach a microphone, leading to distortion observed in the 
microphone signal. Therefore, acquisition of desired signals 
with high quality is far more difficult and challenging for 
immersive communications than in the classical telephony 
environment where the microphone is close to the user. 

In immersive communications, it is more likely that multi-
ple parties will be involved and conferencing is a more common 
mode of operation than point-to-point calling. In conferencing, 
one may hear the noise from every other participant and there-
fore the level of the perceived noise can grow with the number 
of participants. When the number is large and if noise is not 
well controlled, the perceived noise can reach a level such that 
speech is overwhelmed. So noise becomes a more quality-
threatening problem for immersive voice communication. 

Noise is a general term used to signify any unwanted sig-
nal that interferes with measurement, processing, and com-
munication of the desired speech signal. This definition is, 
however, too broad, as it masks many important technical 
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aspects of the real problem. In 
immersive communication, it 
is advantageous to break the 
general definition of noise 
into  the  fo l lowing  four 
 categories [5]: additive noise, 
echo, reverberation, and com-
peting speech. Due to different 
characteristics and (more importantly) the availability of a 
reference signal, the four types of noise need to be differently 
processed. In echo cancellation, the source (loudspeaker) sig-
nals are known. So echo control is theoretically a well-posed 
problem, and its practical applications have been relatively 
more successful than the control of the other three types of 
noise, in which blind or semiblind methods have to be incor-
porated. Therefore, in the following, the technologies for 
echo control are first discussed. 

ACOUSTIC ECHO CONTROL
Acoustic echo in a hands-free voice communication system 
is produced by the acoustic coupling between the 
loudspeaker(s) and the microphone(s). The perception of an 
echo depends on not only its level but also its delay. 
Through long-distance transmission, the echo features a 
long delay time and would significantly reduce the quality of 

voice communication. When 
the delay approaches a quar-
ter of a second, most people 
find it difficult to carry on a 
normal conversation. Full-
duplex voice telecommunica-
tion was implausible, if not 
impossible, before the echo 

cancellation theory was developed by Bell Labs researchers 
in the 1960s [6]. 

For an immersive audio system with several microphones 
and loudspeakers, multiple echo paths need to be identified. 
Regardless of how many microphones there are, acoustic 
echo cancellation is always carried out individually with 
respect to each of them. But the number of loudspeakers 
present in the system draws a theoretical difference between 
monophonic (one loudspeaker) and multichannel (multiple 
loudspeakers) echo cancellations in the difficulty of tracking 
the echo paths. 

MONOPHONIC ECHO 
CANCELLATION
As illustrated by Figure 1(a), an adaptive filter plays a central 
role in a monophonic echo cancellation system. It attempts to 
dynamically identify the acoustic echo path. As long as the 

channel impulse response of the echo 
path can be quickly and accurately deter-
mined, it is then straightforward to gen-
erate a good estimate of the echo and 
subtract it from the microphone signal. 
Since the loudspeaker signal as the refer-
ence is available, numerous nonblind 
adaptive filtering methods for system 
identification are applicable for solving 
this problem. The most widely known 
algorithms include the least mean square 
(LMS), normalized LMS (NLMS), affine 
projection (AP), recursive least square 
(RLS), proportionate NLMS (PNLMS), 
and frequency-domain and subband adap-
tive filters [7], [8]. Historically, the study 
of acoustic echo cancellation substantial-
ly enriched the adaptive filtering and sys-
tem identification literature. 

In the presence of doubletalk, i.e., 
when the far-end and near-end talkers 
are active at the same time, the near-end 
signal acts as a strong noise signal. This 
is likely to cause the adaptive filter to 
diverge, resulting in insufficient echo 
cancellation. To prevent this from hap-
pening, a doubletalk detector (DTD) is 
typically used and whenever doubletalk 
is detected, the adaptation is frozen until 
the end of the doubletalk [8]. 
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[FIG1] Illustration of (a) single-channel and (b) multichannel acoustic echo 
cancellation systems that reduce echoes arising from coupling between loudspeakers 
and microphones where DTD stands for doubletalk detector and RES for residual 
echo suppression.
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Acoustic impulse responses are usually long, and filter 
lengths of  thousands of taps are not uncommon. Human 
ears have an extremely wide dynamic range and are very 
sensitive to weak tails of the channel impulse responses. But 
a practical real-time echo cancellation system cannot afford 
an equally long adaptive filter under complexity constraints. 
As a result, residual echoes usually still is audible. In addi-
tion, residual echoes can be produced by the nonlinear part 
of an echo path, which is unable to be characterized by an 
impulse response. Therefore an echo suppressor is usually 
applied to the residual echo after acoustic echo cancellation. 
The idea of echo suppression is similar to that of single-
channel noise reduction, which will be explored in greater 
detail in a section below. 

MULTICHANNEL ECHO CANCELLATION
When there are multiple loudspeakers, the echo problem 
becomes quite distinct from the monophonic case. As shown in 
Figure 1(b), the echo picked up by the nth (n5 1, 2, c, N) 
microphone is due to M  loudspeaker signals xm 1k 21m5 1, 2, . . . , M 2 , where k is the discrete time index. 
Consequently, M channel impulse responses hnm need to be 
jointly estimated for each microphone. While the M loudspeak-
er signals are different, they are obtained presumably from 
common sound sources and contain linearly related compo-
nents. This leads to a singular signal covariance matrix in the 
normal equations, causing a nonuniqueness problem [9] that 
does not exist in the monophonic echo cancellation. So the 
loudspeaker signals have to be decorrelated first. Early straight-
forward ideas included signal dithering (i.e., adding Schroeder 
noise) and time-varying all-pass filtering, but were found 
unsatisfactory. An effective approach is to pass the loudspeaker 
signals through a memoryless nonlinearity [10]. The beauty of 
this is that the nonlinearity allows the adaptive channel identi-
fication algorithm to converge to a unique, true solution, but it 
is hardly perceptible for speech and complex musical signals. 
Furthermore, for a reasonable amount of nonlinearity, it does 
not distort the spatial information embedded in the multichan-
nel signals. For a more detailed discussion of these techniques, 
please refer to [8] and the references therein. 

MICROPHONE ARRAYS
To control noise, reverberation, and competing speech, multi-
ple-microphone systems are generally more powerful than a 
single microphone [11]. Based on how the microphones are 
arranged, these systems have two basic forms: organized and 
distributed arrays. In an organized array, the sensors are 
arranged to form a particular geometry (such as a line, a circle, 
or a sphere) in which each sensor’s position with reference to a 
common point is known. These sensors spatially sample the 
sound field and are required to have the same sensitivity. By 
applying filters to the outputs of the sensors and combining the 
results together, the desired source signals and their locations 
can be estimated, while the noise and interference can be 
reduced or even eliminated. This filtering process is called 

beamforming, which comprises a wide variety of array process-
ing algorithms. A beamformer forms a response with different 
sensitivities to sounds arriving from different directions [12]. 

In comparison, a distributed array consists of randomly 
placed microphones. It offers the advantage of logistic conve-
nience during installation and later operations. Typically, dis-
tributed arrays have a large number of elements forming a 
large sensor network. The microphone positions and the pat-
tern of the array are usually not known, and a uniform 
response among the microphones cannot be presumed before-
hand. So new ideas other than beamforming are needed to 
tackle the problem of speech acquisition with such a distributed 
microphone system. 

BEAMFORMING FOR ORGANIZED ARRAYS
To show how an array can effectively be used in immersive 
communications, we first discuss beamforming for orga-
nized arrays and then address noise reduction, dereverbera-
tion, and source separation techniques that can be used for 
both organized and distributed arrays. Broadly, beamforming 
has three basic forms depending on the array geometry and 
how the algorithm is designed: additive, differential, and 
eigenbeamforming. 

ADDITIVE BEAMFORMING
Additive beamforming, the oldest form of array signal process-
ing, remains a powerful approach today. To illustrate the basic 
idea, we use a simple example with a uniformly spaced linear 
microphone array as shown in Figure 2. Assume that there is a 
single source in the far field such that its spherical wavefront 
appears planar at the array. Then the signal recorded by each 
microphone is simply a phase-shifted replica of the signal at the 
reference sensor, i.e., xn 1k 2 5 x1 1k2tn 2 ,  n5 2, 3, c, N, 
where the time delay tn can be written as 

d
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[FIG2] Illustration of using an equispaced linear microphone 
array to capture a sound in the far field.
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 tn5 1n2 1 2d cos u/c,  (1)

d is the spacing between two neighboring microphones, c is the 
speed of sound in air, and u is the signal incident angle. Suppose 
that the array “looks” at the direction f. Then we need to com-
pensate each xn 1k 2  by a delay equal to t02 1n21 2d cos f/c, 
where t0 is a constant processing delay. The time-shifted signals 
are averaged to produce the classical delay-and-sum (DS) out-
put. The transfer function between the output and the signal 
can then be computed as 

 SDS 1u; f, f 2 5 e2jt0

N a
N

n51
e2j 2p 1n212  fd  1cosu2cosf2 / c, (2)

where j5 !2 1. The array 
gain pattern, which is often 
called the beampattern or 
directivity pattern, is defined as 
the magnitude of the transfer 
function and has the following 
form: 

 BDS 1u; f, f 2 5 ` sin 3N p fd 1cos u 2 cos f2 /c 4
N sin 3p fd 1cos u 2 cos f2 /c 4 ` . (3)

Figure 3 plots the beampattern for the case with ten sensors, 
d5 8 cm, u 5 90°, and f5 2 kHz. It consists of a total of 
nine beams (in general, the number of beams in the range 
between 0°  and 180° is equal to N21). The one with the 
highest amplitude is called the mainlobe and all the others 
are called sidelobes. One important parameter regarding the 
mainlobe is the beamwidth (or mainlobe width), which is 
defined as the region between the first zero-crossings on 
either side of the mainlobe. For a DS beamformer using a 
linear array, the beamwidth is 2 cos21 3c/ 1N # f # d 2 4. This 
beampattern indicates that the DS beamformer allows the 
desired signal from the look direction (i.e., f5 u) pass 
through without attenuation, while suppressing noise and 
other interfering signals coming from directions other than 
the look direction. The degree of suppression depends on the 
number of sensors, the microphone spacing, the angular 
separation between the desired signal and the signals to be 

suppressed, and the signal frequency. Though powerful, this 
simple beamformer suffers from a prominent drawback: it is 
a narrowband technique and would not yield the same 
beampattern at different frequencies for broadband signals 
like speech. If the speech source moves away from the look 
direction, it will be low-pass filtered. In addition, noise is 
not uniformly attenuated over its entire spectrum, resulting 
in some disturbing artifacts in the array output. This is why 
broadband beam forming techniques have been developed 
for voice communication. A common way to design a broad-
band beamformer is to perform subband decomposition and 
then design narrowband beamformers independently for 
each subband. This is equivalent to applying a spatiotempo-

ral filter to the array outputs, 
which is widely known as the 
filter-and-sum (FS) structure 
[13]. The core problem of 
broadband beamforming then 
becomes one of determining 
the coefficients of the spatio-
temporal filter. These coeffi-

cients can be determined using many different criteria. 
So-called fixed beamformers are designed independently of 
the acoustic environment and array data. Alternatively, 
adaptive beamformers are estimated according to the 
received data. Examples include the minimum variance dis-
tortionless filter (MVDR) and linearly constrained minimum 
variance (LCMV) algorithms. These can be more efficient 
than fixed beamformers in suppressing reverberation and 
competing sources. However, adaptive algorithms may suffer 
from the signal cancellation problem, which deserves careful 
attention [12]. 

DIFFERENTIAL BEAMFORMING 
(DIFFERENTIAL ARRAYS)
Differential beamforming is an inherent part of a differential 
microphone array, in which the microphones are placed much 
closer than in an additive array so the array is responsive to 
the spatial derivatives of the acoustic pressure field. An under-
lying assumption in the construction of differential arrays is 
that the true sound pressure differentials can be approximated 
by finite differences. Figure 4 illustrates how first-order and 
second-order differential microphone arrays are constructed. A 
general nth-order array has a response proportional to a linear 
combination of signals derived from spatial derivatives up to, 
and including order n. In a scalar pressure field, the (zero-
order) responses of the three omnidirectional microphones in 
Figure 4 due to a sound source at a distance of r as a function 
of frequency f  are 

 H0 1ri; f 2 5 e2j 2p fri /c

ri
,  i5 1, 2, 3. (4)

Then the response of the second-order differential microphone 
array (SODMA) can be written as 

−30 −20 −10 0
0°

30°

60°
90°

120°

150°

180°
−40dB−30−20−100 −40

[FIG3] Beampattern of the traditional delay-and-sum 
beamformer with respect to far-field sound sources for a 
ten-element equispaced linear microphone array with 
f5 90°, d5 8 cm, and f5 2 kHz.
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HSODMA 1r,u; f 2 5 3H0 1r1 
; f 22H0 1r2 

; f 24
 2 3H0 1r2; f 22H0 1r3; f 2 4, (5)

where u  is the incident angle of the 
sound source with respect to the sensor 
axis. Figure 5 plots the SODMA beam-
pattern to an on-axis sound source 
1u 5 0°2  e v a l u a t e d  a t  r5 15 mm, 
30 mm, and 60 mm for d5 10 mm. 
Similar to additive beamforming, the 
differential array forms a response with 
different sensitivities at different direc-
tions (the shape of the directivity pat-
tern depends on the delays ti and the 
order of array). As a matter of fact, it has 
been shown that for a given number of 
microphone sensors in an array, differ-
ential arrays have the potential to attain 
maximum directional gain [15]. It is also seen from Figure 5 
that the array gain decreases with the distance r. When the 
sound source moves from 15 mm to 60 mm away from the 
array, the array gain decrease more than 30 dB. This indicates 
that a differential array inherently suppresses far-field noise 
and interference. 

Differential microphones are very compact in size and 
are found very useful in situations where the background 
noise level is very high. However, they also have many 
prominent drawbacks. First, the response of an nth order 
array has a high-pass filter nature with a slope of 6n dB/
octave, so its frequency response has to be compensated to 
process wideband signals like speech. Second, the fre -
quency response and level of differential arrays are 
extremely sensitive to the position and orientation of the 
arrays relative to the sound source, which makes it neces-
sary to perform frequency and level equalization to its 
response according to the range and incident angle of the 
sound source [16]. Though feasible, this equalization pro-
cess is in general very difficult for arrays with order higher 
than two. Finally, the mainlobe cannot be electrically 
steered to the desired source. 

EIGENBEAMFORMING
Eigenbeamforming consists of two steps: decomposition and 
synthesis [14]. The decomposition step transforms the multi-
channel sensor signals into an orthonormal space. Each base 
vector is called an eigenbeam. It is so named based on the 
analogy of an eigenvector to a matrix. The synthesis step 
forms the desired array response by weighting the eigen-
beams and summing the results together. Theoretically, any 
directivity pattern that an eigenbeamformer can attain can 
also be realized using the additive beamforming method; but 
eigenbeamforming offers some unique advantages from an 
engineering viewpoint [15]: 1) it requires fewer signals to be 
stored since the number of eigenbeams can be much less 
than the number of sensors; and 2) it can form a desired 

response in a computationally very efficient way. However, to 
use eigenbeamforming, the array has to be carefully designed 
so that the sensor positions can meet the orthonomality con-
dition. This is a nontrivial job. Moreover, the number of sen-
sors with this beamformer is usually large to guarantee the 
required spatial resolution. That is why this technique is cur-
rently used mainly for spherical arrays even though theoreti-
cally plausible also for other shapes such as cylindrical, 
oblate, and prolate. The magnitude response of the eigen-
beams is dependent on the eigenbeam order and has a high-
pass filtering nature. So frequency equalization is required, 
as in differential beamforming. 

NOISE REDUCTION
Noise reduction techniques intend to mitigate the effect of addi-
tive noise. This noise can come from various sources and can 
profoundly affect the processing and perception of speech sig-
nals in voice communication. Noise reduction is typically for-
mulated as an estimation problem where the optimal estimate 
of the clean speech is achieved by optimizing some criteria, 
such as the mean-squared error (MSE) between the clean 
speech and its estimate, the signal-to-noise ratio (SNR), the a 
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[FIG5] Illustration of the second-order differential microphone 
array’s sensitivity to the incident angle of the near-field sound 
source of interest with d 5 1 cm and f 5 2 kHz.
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posteriori probability of the 
clean speech given its noisy 
observations, etc. 

The complexity of this prob-
lem depends on the number of 
accessible microphones. Most 
of today’s communication ter-
minals are equipped with only 
one microphone. Existing single-channel noise reduction 
 techniques fall into one of the following three classes [17]: fil-
tering, spectral restoration, and model-based methods. The 
basic principle underlying the filtering technique is to pass the 
noisy speech through a filter/transformation. Since speech and 
noise normally have very different characteristics, the filter/
transformation can be designed to significantly attenuate the 
noise level while leaving the clean speech relatively unchanged. 
The Wiener filter [18] and subspace method [19] are the two 
most representative algorithms in this category. Comparatively, 
the spectral restoration  technique treats the problem as one of 
spectral estimation, i.e., estimating the spectrum of the clean 
speech from that of the noise-corrupted speech. Many algo-
rithms have been developed for this purpose, such as spectral 
subtraction [20], the  minimum-MSE (MMSE) estimator [21], 
the maximum likelihood (ML) estimator, and the maximum a 

posteriori (MAP) estimator, to 
name a few. Similar to the 
spectral restoration technique, 
the model-based approaches 
also  formulate noise reduction 
as a parameter estimation 
problem.  The di f ference 
between the two is that, in the 

model-based methods, a mathematical model is used to repre-
sent human speech production and parameter estimation is 
carried out in the model space. The model space normally has a 
much lower dimensionality than the original signal space. 
Typical algorithms in this class are the linear-prediction-model-
based Kalman filtering approaches [22] and hidden Markov 
model-based statistical methods [23]. 

One common problem with the single-channel techniques is 
that speech distortion is inevitable and generally the more the 
noise reduction achieved, the more the speech is distorted [18]. 
One way to circumvent this dilemma is to use multiple micro-
phones. For instance, if two microphones are allowed and it is 
possible to use one microphone to pick up the noisy signal and 
the other to measure the noise field, the second microphone 
signal can be used as a noise reference to reduce the noise in 
the first microphone by means of adaptive cancellation [24]. In 
this way, the desired speech is not modified since no filter is 
applied to the primary signal. More generally, microphone 
arrays with beamforming techniques described previously can 
be used to reduce noise. However, beamforming is formulated 
to estimate the source signal, which attempts to perform both 
noise reduction and speech dereverberation at the same time. It 
is therefore not optimal from the noise reduction perspective. 
To more efficiently use the array for reducing noise, multichan-
nel noise reduction techniques were developed. They attempt to 
estimate the speech signal observed at the reference micro-
phone (instead of the source signal) exploiting the redundancy 
among different microphones [5]. The great advantage of using 
multiple microphones over a single microphone is that noise 
reduction can be achieved without adding speech distortion. 

There is an extremely rich literature on the subject of noise 
reduction. But due to space limitation, only a small number of ref-
erences are cited here. For more comprehensive coverage of the 
related references, the interested reader can refer to [5] and [17]. 

SOURCE SEPARATION
Sound source separation was motivated by observing the 
remarkable human ability of focusing on one particular voice or 
sound amid a cacophony of distracting conversations and back-
ground noise, an interesting psychoacoustic phenomenon 
referred to as the cocktail party effect [25]. This is a common 
experience that our hearing system and brain can handle well. 
However, it is a very difficult problem for speech processing. 
Beamforming has long been studied for this problem, but over 
the last two decades more effort has been devoted to blind 
source separation (BSS) after the tool of independent compo-
nent analysis (ICA) was introduced. As illustrated by Figure 6, 
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[FIG6] An acoustic source separation system assumes 
independence among multiple sound sources and attempts to 
maximize the independence measure of the output signals by 
adjusting the demixing filters. The procedure can be either blind 
or semiblind depending on whether a priori knowledge about 
the sound sources are used. Examples of a priori knowledge 
include the source positions, speech models, and sparseness of 
speech in the time-frequency domain.

ONE COMMON PROBLEM WITH THE 
SINGLE-CHANNEL TECHNIQUES IS THAT 

SPEECH DISTORTION IS INEVITABLE 
AND GENERALLY THE MORE THE NOISE 
REDUCTION ACHIEVED, THE MORE THE 

SPEECH IS DISTORTED.
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the multiple sound sources are presumably independent and 
BSS by ICA processes multiple microphone observations (linear 
mixtures of the sound sources) with a de-mixing system. The 
demixing system is determined in a learning procedure after 
which the outputs become as independent as possible with 
respect to each other. Existing BSS methods differ in the way 
the dependence of the separated signals is defined. These 
include second order statistics (SOSs), higher (than second)-
order cumulant-based statistics, and information-theory-based 
measures [4]. 

In voice communications, acoustic channels are not 
instantaneous but convolutive due to room reverberation, 
which makes the problem much more complicated to solve. A 
common way is to transform the time-domain convolutive 
mixtures into the frequency domain via the fast Fourier 
transform (FFT) such that the mixtures in each frequency 
band are instantaneous. ICA is then preformed with respect 
to instantaneous mixtures independently in each frequency 
bin. With ICA, independent source signals in instantaneous 
mixtures can at best be blindly separated up to a scale and a 
permutation. This limitation leads to the possibility that the 
recovered signal is not a consistent estimate of one of the 
source signals over all frequencies. This is known as the per-
mutation inconsistency problem. In addition, ICA algorithms 
require that the number of sources is less than or equal to 
the number of microphones, which is not always guaranteed. 
Therefore, the incorporation of a priori knowledge about 
speech sources has been proposed, making them only semib-
lind solutions. Examples of the a  priori knowledge include 
the speech articulation model and the sparseness of speech in 
the time-frequency domain [26]. 

SPEECH DEREVERBERATION
Reverberation adds warmth to sound, which is essential for 
music, and helps people better orient themselves in the listen-
ing environment. However, it leads to temporal and spectral 
smearing, which would distort both the envelope and fine 
structure of a speech signal. As a result, speech becomes diffi-
cult to understand in the presence of room reverberation, espe-
cially for hearing-impaired and elderly people, and for 
automatic speech recognition systems. This gives rise to a 
strong need for effective speech dereverberation algorithms. 
Since neither the source speech signal nor the acoustic channel 
impulse responses are known a priori, the procedure of speech 
dereverberation is blind and is hence very challenging. A great 
amount of research on this topic has been carried out in the 
last four decades. Existing algorithms fall roughly into three 
classes [27]: 1) speech model-based dereverberation, 2) separa-
tion of speech and reverberation via homomorphic transforma-
tion, and 3) speech dereverberation by channel inversion and 
equalization [28]. While significant progress has been made, the 
problem is far from solved. It is worth mentioning that a spec-
tral subtraction-based approach may be able to remove some 
reverberation [29]. But currently, the most effective techniques 
of reverberation control for teleconferencing are arguably still 

those that use acoustic wave absorption materials to cover 
room surfaces. 

SPEECH SOURCE LOCALIZATION 
AND SPATIAL SOUND REPRODUCTION
Creating a spatially rich acoustic environment is essential for 
immersive experiences. So while the capability of instanta-
neously localizing and continuously tracking speech sources is 
also a fundamental requirement of a number of distant speech 
acquisition techniques (e.g., beamforming) as discussed in the 
previous section, we devote a separate section here on speech 
source localization and spatial sound reproduction. 

SPEECH SOURCE LOCALIZATION
Locating a radiative point source using sensor arrays is more 
commonly referred to as direction of arrival (DOA) estimation 
in radar, underwater sonar, and seismology. Electrical beam 
scanning and high-resolution spatial-spectral analysis are two 
classes of the most celebrated approaches. The following four 
assumptions are reasonably realistic in these applications: 

1) The source signal is narrowband. 
2) It is stationary. 
3) The source is in the far field. 
4) The multipath effect (i.e., reverberation) is weak. 

Unfortunately these assumptions do not hold generally for 
speech in common room acoustical environments. It was 
recently found [30] that time delay estimation (TDE)-based 
methods work better than the aforementioned two classes of 
DOA approaches with microphone arrays for speech sources as 
illustrated by Figure 7. 
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[FIG7] An acoustic sound source localization and tracking 
system is used to determine the position of active talkers in a 
teleconference.
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The generalized cross-correlation (GCC) algorithm [31] is 
the most widely known and used method for TDE. It is simple 
and can be extended to the case of multiple (say M . 1) 
sound sources by searching for the M largest peaks of the 
cross correlation function. But it does not cope well with 
room reverberation since an open-space signal model is used 
in its problem formulation. A more recent approach is based 
on the blind single-input multiple-output (SIMO) system 
identification techniques. The channel impulse responses 
from the single sound source to the multiple microphones 
are first estimated (which implies that a more realistic rever-
berant model is used) and then the relative time delays of 
arrival (TDOAs) are determined [32], [33]. This approach 
works better in conferencing environments where reverbera-
tions are not always well controlled. But it has some difficul-
ties dealing with multiple simultaneous sound sources since 
blind identification of a multiple-input multiple-output 
(MIMO) system is a much more challenging and complicated 
problem. Alternatively TDE can only be carried out intermit-
tently by taking advantage of the periods when only one 
speech source is active. 

There are two ways to draw the connections between the 
estimated TDOAs and the source positions in the three-
dimensional (3-D) space. The first is basically a search method 
where a grid is used to cover the space. For each grid point, its 
corresponding TDOAs are calculated, and they are compared 
to the estimated set of TDOAs. The computational complexity 
of this method grows with the density of the grid that is set by 
the required localization resolution. The methods of the sec-
ond class may differ remarkably in the level of involved math 
skills, but the main idea is similar to that of triangulation. The 
difficulty of the problem lies in its nonlinear nature since a 

TDOA defines a hyperboloid [or hyperbo-
la for two-dimensional (2-D)] instead of 
a flat plane (or a straight line for 2-D) 
between two microphones. For the 
methods of the first class, the two-step 
procedure can be simplified into one 
step by using a TDOA-based cost func-
tion rather than TDOAs explicitly. But 
their merits and limitations would not 
dramatically change. 

For a human auditory system, the 
process of learning a new acoustic envi-
ronment may be short thanks to its high 
efficiency, but it is nevertheless progres-
sive. So intuitively, tracking is equally 
important in speech source localization 
(particularly when there are multiple 
speech sources). Particle filtering is a 
useful tool that has recently attracted a 
lot of research interest and deserves fur-
ther exploration but is beyond the scope 
of this article. 

SPATIAL SOUND REPRODUCTION
Spatial sound can be reproduced and presented to a listener or 
listeners using headphones or multiple loudspeakers. 
Headphones are obtrusive and cause noticeable ear discomfort 
after long use. Therefore they are not what we expect to use in 
immersive communications. Alternatively multiple loudspeak-
ers ought to be employed; both stereophony [34] and wave field 
synthesis (WFS) [35] approaches may be considered. As shown 
in Figure 8, stereophony systems try to reproduce the pressure 
waves at the eardrums of the listener’s left and right ears only. 
The underlying belief is that what matter to the brain in the 
perception of the spatial characteristics of incoming sound are 
only these two pressure waves. If they are reproduced, the lis-
tener would hear the sound exactly as in the original sound 
field. For such an open acoustic system, cross talk between the 
two ears must be canceled [36]. Unfortunately the best results 
can only be obtained in a fairly small “sweet spot.” The size of 
the spot can be increased by using more loudspeakers. Two 
additional pitfalls should be noted: 1) typically head-related 
transfer functions (HRTFs) measured with a mannequin are 
used in determining the cross-talk cancellers, but there is 
always a mismatch in the size, shape, and acoustic properties 
between the mannequin and a particular listener, and 2) the 
dynamic cues that arise from the motion of the listener’s head 
are missing, this leads to a feeling of unrealness, similar to a 
headphone system for which the perceived sound field does not 
move as the listener’s head turns. 

WFS uses a large number of loudspeakers (tens to hun-
dreds) to reproduce a sound field not only at the two ears of 
a listener but in a larger space enclosing possibly multiple 
listeners [37], as illustrated by Figure 9. The principle relies 
on the so-called Kirchhoff-Helmholtz integral, which states 
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that the distribution of acoustic pressure and particle veloci-
ty on a surface uniquely defines the sound field within the 
surface if no sources or obstacles are enclosed within it. 
While the spatial effect produced by WFS is more realistic 
and is appealing for immersive communications, the system 
can be very costly. 

MULTIPARTY IMMERSIVE AUDIO 
MIXING AND MANAGEMENT

MIXING PREPROCESSING AND 
INTELLIGENT INPUT STREAM SELECTION CRITERIA
In immersive communication, the signals recorded in each 
conference site are sent to a mixer. The mixer processes all 
the inbound signals and presents a mixed signal to each con-
ference room so that all the participants, regardless of their 
physical locations, can hear and interact with each other as if 
they are in the same acoustic environment. The mixing algo-
rithms can vary greatly, depending on the sound system in 
each conference room. If an array of loudspeakers is used in 
each site, it is  possible to render the voice from a different site 
into a spatially different location. In this way, the human bin-
aural system can be fully exploited to discriminate concurrent 
speakers. But this would require transmission of multichan-
nel signals from the mixer to the conference room as well as 
efficient sound rendering and management techniques. In sit-
uations where each conference room has only one loudspeak-
er, all the inbound signals need to be mixed to form a single 
output stream for each conference site. The most straightfor-
ward approach to mixing the signals for a particular confer-
ence room is to sum the inbound voice streams from all the 
other conference sites together and then normalize the aggre-
gated signal to an appropriate range to prevent clipping. 
However, the voice quality of the mixed signal with such a 
simple method is often not guaranteed owing to many sophis-
ticated reasons such as uneven voice levels, unbalanced voice 
qualities, and unequal SNR among different channels. In 

addition, when too many channels are mixed together and too 
many users speak simultaneously, the listener can hardly dis-
tinguish one particular speaker among the others. To limit 
the number of channels in the mixed signal at a time, the 
functionality of loudest N selection is added to the straight-
forward mixing algorithm. In this modified approach, the 
voice level of each inbound channel is estimated and is used 
as a selection criterion. Those channels with energy above a 
certain threshold are selected for mixing and all the others 
are discarded. This improved method can improve the percep-
tual quality of the mixed speech signal by limiting the num-
ber of mixed channels and has been widely adopted in 
the currently available conferencing systems. However, using 
signals’ volume as the selection criterion may not be optimal 
since a higher volume does not necessarily mean that this 
channel is more important. Consequently, this method may 
block off some important speakers with low voice volume. In 
addition, due to the inherent fluctuation of the energy esti-
mation, the presence of a certain channel in the mixed signal 
may not be continuous and consistent. 

To control voice quality, we can divide the mixing algo-
rithms into two steps: preprocessing, and mixing and man-
agement. In the first step, automatic gain control techniques 
can be applied to each channel so that all the channels can 
have similar volume and estimation techniques can also be 
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[FIG10] Two organizations of audio mixing network: (a) horizontal 
with one centralized mixing server and (b) hierarchical with 
cascaded mixing servers.

Centralized Audio 
Mixing Server

Cascaded Audio 
Mixing Servers

(a)

(b)



IEEE SIGNAL PROCESSING MAGAZINE   [30]   JANUARY 2011

used to estimate the SNR, voice activity, and the signal quali-
ty of each channel. If noise is an issue, noise reduction tech-
niques can be used to enhance the signal in each channel. 
Also, error concealment can be used if necessary to deal with 
the packet loss issue in voice over Internet Protocol (IP) 
channels. The mixing algorithm can then use the estimated 
parameters to determine which channels should be mixed. 
For example, if some channel have very low SNR, they 
should not be mixed. Driven by the estimated parameters 
and using the preprocessed signals, the mixer can perform 
an intelligent job so that the voice quality of the mixed signal 
can be optimized. 

It should be noted that it is also desirable that the mixer 
could provide feedback to the preprocessor. For instance, if the 
preprocessor knows that the channels are not going to be 
mixed, noise reduction, error concealment, and perhaps other 
techniques are not needed for these channels. This leads to a 
computationally more efficient preprocessor. 

NETWORK ARCHITECTURE
Similar to other network applications, voice communication 
networks fall within one of two network types: server based and 
peer-to-peer. Traditional and IP telephony services (e.g., Skype) 
usually adopt the peer-to-peer framework. For conferencing, 
only three-way calling is supported and audio mixing is carried 
out at one of the end points. As the number of conference par-
ticipants increases, the peer-to-peer configuration has difficulty 
achieving the following desirable features: 1) unified and coher-
ent auditory perception among all participants, 2) low band-
width and hence minimum delay, 3) high scalability, 4) strong 
security, and 5) easy administration. Therefore the server-based 
configuration appears to be a better choice for immersive tele-
conferences. There are two possible organizations for the server-
based framework: horizontal and hierarchical as illustrated by 
Figure 10. The former has a single centralized server while the 
latter encompasses a cascade of mixing servers. A hierarchical 
structure helps evenly distribute the intense processing loads 
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among the mixing servers. When more participants join, more 
mixing servers can be added seamlessly to sustain a consistent 
quality-of-service. All these topics are open for research. Efforts 
from audio engineers, computer scientists, and network proto-
col developers will be required. 

PRACTICAL STEPS TO FULLY 
IMMERSIVE COMMUNICATIONS
The nearly unprecedented success of the 3-D science fiction movie 
Avatar leads many to believe that immersive technologies will rev-
olutionize filmmaking and the way they experience the cinema. 
We believe that the effect will not stop at the box offices but will 
impact other areas where we interact with the world. Three-
dimensional TV and 3-D video games are possibly ready for prime 
time and what follows next could arguably be immersive commu-
nication. But before building fully immersive communication sys-
tems and services, we should take practical steps to develop and 
validate the core techniques. Presented in the following are two 
examples that effectively demonstrate the technologies of the syn-
thesized stereo audio bridge and stereophonic echo cancellation. 

SYNTHESIZED STEREO AUDIO BRIDGE 
FOR MULTIPARTY CONFERENCING
While an audio communication system that is equipped with 
multiple microphones and loudspeakers can certainly deliver 
good sound realism, it is prohibitively expensive. Today, all 
personal computers (desktops or laptops) have at least one 
microphone and a pair of loudspeakers. They can be readily 
employed for lifelike multiparty conferencing with the support 
of a synthesized stereo audio bridge [38], as visualized in 
Figure 11. This economical system has a common virtual 2-D 
space in which every conference participant takes a unique 
position. Accordingly, it presents speech signals from different 
sites to the listener with different spatial cues and impressions. 

STEREOPHONIC ECHO CANCELLATION
It has been well known that going from a single-channel to a 
two-channel hands-free audio communication system produces 
a basic change in the requirements of an acoustic echo canceler 
(due to the aforementioned nonuniqueness problem). But 
extension further to more than two channels does not introduce 
any new problems other than higher complexity. Therefore, a 
real-time stereophonic echo canceller is deemed as a good dem-
onstration system for multichannel acoustic echo cancellation. 
The world’s first such system was developed in the late 1990s by 
the authors and their colleagues at Bell Labs. A recently redevel-
oped similar system shows better performance. It runs on 
Windows XP and has a more friendly user interface. A screen 
copy of the system is shown in Figure 12. 

CONCLUSIONS
Today there stands before us a great opportunity to revolution-
ize  communications with immersive technologies. The 
advance is partially attributed to the progress in multichannel 
acoustic and speech signal processing. In this article, we 

 presented, according to our involvement and insights, the 
audio schemes that are behind this important evolution. The 
topics that have been explored include speech acquisition and 
processing, spatial information extraction and spatial sound 
reproduction, and mixing preprocessing and management. 
Practical steps towards fully immersive conferencing services 
were also discussed, and two real-time demonstration systems 
were introduced as  success stories to explain the technologies 
and key system  components. 
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