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Abstract

Noise reduction is often formulated as a linear filtering problem in the frequency domain. With this formulation, the core issue of
noise reduction becomes how to design an optimal frequency-domain filter that can significantly suppress noise without introducing per-
ceptually noticeable speech distortion. While higher-order information can be used, most existing approaches use only second-order sta-
tistics to design the noise-reduction filter because they are relatively easier to estimate and are more reliable. When we transform non-
stationary speech signals into the frequency domain and work with the short-time discrete Fourier transform coefficients, there are two
types of second-order statistics, i.e., the variance and the so-called pseudo-variance due to the noncircularity of the signal. So far, only the
variance information has been exploited in designing different noise-reduction filters while the pseudo-variance has been neglected. In this
paper, we attempt to shed some light on how to use noncircularity in the context of noise reduction. We will discuss the design of optimal
and suboptimal noise reduction filters using both the variance and pseudo-variance and answer the basic question whether noncircularity
can be used to improve the noise-reduction performance.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Noise reduction, which aims at estimating the desired
clean speech signal from noisy observations, is a very
important problem and has attracted a significant amount
of research and engineering attention over the past few dec-
ades (Benesty et al., 2005, 2009; Loizou, 2007; Vary and
Martin, 2006; Huang et al., 2006). Typically, the noise-
reduction process is formulated as a filtering problem
where the clean speech estimate is obtained by passing
the noisy speech through a noise-reduction filter. With such
a formulation, the core issue of noise reduction becomes
how to design an optimal filter that can fully exploit the
speech and noise statistics to achieve maximum noise sup-
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pression without introducing perceptually noticeable
speech distortion. While good filters can be designed in
the time domain, most widely used approaches so far work
in the frequency domain. The reason for working in the fre-
quency domain are multiple, including (but not limited to):
(1) the filtering process can be implemented very efficiently
thanks to the fast Fourier transform; (2) the filters at differ-
ent frequencies (or frequency bands) can be designed and
handled independently of each other, which offers tremen-
dous flexibility in dealing with colored noise; and (3) most
of our knowledge and understanding of speech production
and perception is related to frequencies, so in the frequency
domain, our knowledge can be easily used to help optimize
noise-reduction performance.

When we work in the frequency domain, we generally
deal with complex random variables even though the origi-
nal time-domain signals are real in the context of speech
applications. The main concern, then, is how to design
the optimal noise-reduction filters that can fully exploit
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Fig. 1. Illustration of the noncircularity of the STFT coefficients of a
speech signal: (a) a speech signal; (b) the EðjAj2Þ estimate; (c) the real part
of the EðA2Þ estimate; and (d) the imaginary part of the EðA2Þ estimate.
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the different statistics of the complex components obtained
via the short-time Fourier transform (STFT). Theoreti-
cally, all the different orders of statistics should be consid-
ered during the design of the optimal noise-reduction filter.
In practice, however, higher-order (higher than 2) statistics
are in general difficult to estimate, and as a result, most of
today’s noise-reduction algorithms consider only second-
order statistics. For a zero-mean complex random variable,
there are two basic types of second-order statistics depend-
ing on whether the random variable is circular or
noncircular.

A complex random variable A is said to be circular if its
probability density function (PDF) is the same as the PDF
of Aejr (Amblard et al., 1996a, Amblard et al., 1996b),
where j and r are the imaginary unit ðj2 ¼ �1Þ and any real
number, respectively. This is equivalent to saying that the
PDF of a circular complex random variable (CCRV) is a
function of the product AA� only (Amblard et al., 1996a),
where � denotes complex conjugation. An important con-
sequence of this is that the only nonnull moments and
cumulants of a CCRV are the moments and cumulants
constructed with the same power in A and A� (Amblard
et al., 1996a). Now let us confine our discussion and study
to the second-order issues. With the general definition of
circularity, we can readily define the second-order circular-
ity: a zero-mean complex random variable A is said to be
second-order circular if its pseudo-variance is equal to zero,
i.e., EðA2Þ ¼ 0, where Eð�Þ denotes mathematical expecta-
tion and EðAA�Þ ¼ EðjAj2Þ – 0. This indicates that the sec-
ond-order behavior of a CCRV is well described by its
variance. Note that the Fourier components of stationary
signals are CCRVs (Picinbono et al., 1994). Another pow-
erful aspect of the second-order CCRV is that the classical
linear estimation theory for real random variables can eas-
ily be applied to CCRVs. As a matter of fact, most of the
existing frequency-domain noise-reduction filters are
derived based on the classical mean-squared estimation
approach and use only the variance information while
assuming that EðA2Þ ¼ 0.

However, the STFT coefficients of a nonstationary sig-
nal like speech are not circular variables. To illustrate this,
we take a speech signal that is recorded from a female
speaker with an 8-kHz sampling rate and a 16-bit quantiza-
tion and partition it into overlapping frames. The overlap-
ping factor is 75% and the frame length is 8 ms. Each frame
is then transformed into the frequency domain using a 64-
point FFT. For each frequency band (except the 1st and
33rd bands where the coefficients are real), we treat the
coefficients as a complex random variable (for ease of expo-
sition, let us use A to denote this random variable) and esti-
mate its variance and pseudo-variance. Because speech is
nonstationary, we cannot simply replace the mathematical
expectation with a sample average. Instead, we use the
recursive estimator given in Eq. (88) of (Chen et al.,
2006) to estimate both the variance and pseudo-variance
(more discussion on how to estimate the variance and
pseudo-variance parameters will be given in Section 7).
Fig. 1 plots the estimation results for the 2nd frequency
band. It is clearly seen that the pseudo-variance EðA2Þ of
the STFT coefficients of the speech signal are not zero, so
STFT coefficients of speech signals are noncircular random
variables. Many natural questions then arise: is the noncir-
cularity useful for noise reduction? If so, how do we use the
noncircularity? How much it can improve noise-reduction
performance? This paper attempts to answer these ques-
tions. We will study and show how to fully exploit the sec-
ond-order statistics of a noncircular complex random
variable (see Neeser and Massey, 1993; Schreier and
Scharf, 2003 for a complete description of the second-order
behavior of a complex noncircular random variable) for
noise reduction. We will investigate the use of the so-called
widely linear (WL) mean-squared estimation theory
(Picinbono et al., 1995; Eriksson et al., 2009; Mandic and
Goh, 2009; Ollila, 2008) to formulate noise-reduction algo-
rithms in the frequency domain and explain the benefits
that can be achieved with this new formulation.

The rest of this paper is organized as follows. In Section
2, we formulate the single-channel noise reduction problem
in the STFT domain and give some useful definitions and
explanations that will be of great help for the rest of the
paper. Section 3 explains the different performance mea-
sures for noise reduction with WL estimation. In Section
4, we write the WL mean-squared error (MSE), which is
a simple and powerful tool for deriving the different opti-
mal WL filters. In Section 5, we derive the WL Wiener filter
and explains its differences from the classical Wiener filter.
Section 6 deals with the WL and classical tradeoff filters.
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Section 7 presents some experiments confirming the theo-
retical derivations. Finally, we give our conclusions in Sec-
tion 8.

2. Problem formulation

The noise reduction problem considered in this paper is
one of recovering the nonstationary desired signal (clean
speech) xðkÞ, k being the discrete-time index, of zero mean
from the noisy observation (microphone signal) (Benesty
et al., 2009; Chen et al., 2006)

yðkÞ ¼ xðkÞ þ vðkÞ; ð1Þ

where vðkÞ is the unwanted additive noise, which is as-
sumed to be a zero-mean random process (white or col-
ored, stationary or not) and uncorrelated with xðkÞ. In
the STFT domain, (1) can be rewritten as

Y ðn;mÞ ¼ X ðn;mÞ þ V ðn;mÞ; ð2Þ

where Y ðn;mÞ;X ðn;mÞ, and V ðn;mÞ are, respectively, the
STFTs of yðkÞ; xðkÞ, and vðkÞ, at time-frame n and fre-
quency-bin m (with m ¼ 0; 1; . . . ;M � 1).

Using the fact that xðkÞ and vðkÞ are assumed to be
uncorrelated, we can write the variance of the noisy spec-
tral coefficients as

/yðn;mÞ ¼ /xðn;mÞ þ /vðn;mÞ; ð3Þ

where

/aðn;mÞ , E Aðn;mÞj j2
h i

ð4Þ

is the variance of Aðn;mÞ; Aðn;mÞ is the STFT coefficients of
the signal aðkÞ at time-frame n and frequency-bin m, and
a 2 fx; v; yg.

If Y ðn;mÞ is real, the estimation of X ðn;mÞ can be
achieved using the classical techniques, which has already
been covered in the rich literature (Benesty et al., 2005,
2009; Loizou, 2007; Vary and Martin, 2006; Huang et al.,
2006). Here, we consider the case where Y ðn;mÞ is complex.
In this situation, an estimate of X ðn;mÞ can be obtained
using the widely linear (WL) estimation technique as
(Picinbono et al., 1995)

Zðn;mÞ ¼ Hðn;mÞY ðn;mÞ þ H 0ðn;mÞY �ðn;mÞ
¼ hHðn;mÞyðn;mÞ; ð5Þ

where Zðn;mÞ is the STFT of the signal zðkÞ [which is an
estimate of xðkÞ], Hðn;mÞ and H 0ðn;mÞ are two complex
gains, superscript H denotes transpose conjugate, � denotes
complex conjugation as already defined in Section 1, and

hðn;mÞ ,
H �ðn;mÞ
H 0�ðn;mÞ

� �
;

yðn;mÞ ,
Y ðn;mÞ
Y �ðn;mÞ

� �
:

If H 0ðn;mÞ ¼ 0 for any n and m, (5) degenerates to the clas-
sical linear estimation theory (Benesty et al., 2009). This,
however, will not happen in general for noncircular com-
plex random variables. With the signal model given in
(2), we can rewrite (5) as

Zðn;mÞ ¼ X fðn;mÞ þ V rnðn;mÞ; ð6Þ

where

X fðn;mÞ , hH ðn;mÞxðn;mÞ;
V rnðn;mÞ , hH ðn;mÞvðn;mÞ;

are, respectively, the filtered version of the desired signal
and its complex conjugate, and the residual noise. Vectors
xðn;mÞ and vðn;mÞ are defined in a similar way to yðn;mÞ.
Since X ðn;mÞ and V ðn;mÞ are uncorrelated by assumption,
so are X fðn;mÞ and V rnðn;mÞ. From (6), we deduce the var-
iance of the spectral coefficients of the signal zðkÞ at time-
frame n and frequency-bin m:

/zðn;mÞ ¼ /xf
ðn;mÞ þ /vrn

ðn;mÞ; ð7Þ

where

/xf
ðn;mÞ , E X fðn;mÞj j2

h i
¼ hH ðn;mÞUxðn;mÞhðn;mÞ; ð8Þ

/vrn
ðn;mÞ , E V rnðn;mÞj j2

h i
¼ hH ðn;mÞUvðn;mÞhðn;mÞ;

ð9Þ

and

Uaðn;mÞ , E aðn;mÞaH ðn;mÞ
� �

¼ /aðn;mÞ
1 caðn;mÞ

c�aðn;mÞ 1

� �
¼ /aðn;mÞCaðn;mÞ

ð10Þ

is the covariance matrix of aðn;mÞ ¼ Aðn;mÞ A�ðn;mÞ½ �T
with

caðn;mÞ ,
E A2ðn;mÞ
� �

E Aðn;mÞj j2
h i ð11Þ

being the (second-order) circularity quotient (Ollila, 2008)
and Caðn;mÞ being the circularity matrix. It can easily be
shown that (Ollila, 2008)

0 6 caðn;mÞj j 6 1: ð12Þ

The circularity coefficient jcaðn;mÞj conveys information
about the degree of circularity of the signal Aðn;mÞ. In par-
ticular, if Aðn;mÞ is a (second-order) CCRV then caðn;mÞ ¼
0 and Caðn;mÞ ¼ I, where

I ¼
1 0

0 1

� �
¼ i1 i2½ � ð13Þ

is the 2� 2 identity matrix.
The signal X fðn;mÞ consists of components from both the

desired signal X ðn;mÞ and its conjugate. But not all these
components are what we want. It is, therefore, necessary
and important to distinguish between the filtered desired
signal and the residual interference that both may exist in
X fðn;mÞ at the same time. Specifically, Hðn;mÞX ðn;mÞ is



1 In these definitions, the interference is considered as part of the noise at
the output of the filter. The same applies to the noise-reduction factors.
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part of the overall filtered desired signal, but
H 0ðn;mÞX �ðn;mÞ is not. If cxðn;mÞ ¼ 0 for any n and
m;X ðn;mÞ and X �ðn;mÞ are uncorrelated and the overall fil-
tered desired signal is indeed Hðn;mÞX ðn;mÞ. But for
cxðn;mÞ – 0;X �ðn;mÞ is correlated with X ðn;mÞ and con-
tains both the desired signal and an interference component.
Following the idea proposed in (Chevalier et al., 2009), we
can decompose X �ðn;mÞ into two orthogonal components:

X �ðn;mÞ ¼ c�xðn;mÞX ðn;mÞ þ X 0ðn;mÞ; ð14Þ
where

X 0ðn;mÞ ¼ X �ðn;mÞ � c�xðn;mÞX ðn;mÞ; ð15Þ
E X ðn;mÞX 0� ðn;mÞ
� �

¼ 0; ð16Þ

and

E X 0ðn;mÞj j2
h i

¼ /xðn;mÞ 1� cxðn;mÞj j2
h i

: ð17Þ

We can then rewrite (6) as

Zðn;mÞ ¼ X fdðn;mÞ þ X 0riðn;mÞ þ V rnðn;mÞ; ð18Þ
where

X fdðn;mÞ , hHðn;mÞCxðn;mÞi1X ðn;mÞ
¼ Hðn;mÞX ðn;mÞ þ c�xðn;mÞH 0ðn;mÞX ðn;mÞ;

ð19aÞ

X 0riðn;mÞ , hH ðn;mÞi2X 0ðn;mÞ; ð19bÞ
V rnðn;mÞ , hH ðn;mÞvðn;mÞ; ð19cÞ
are, respectively, the overall filtered desired signal, the
residual interference, and the residual additive noise. Note
that the above decomposition of the signal X �ðn;mÞ is a key
part of this paper in order to be able to properly define the
different performance measures and design different noise-
reduction filters.

The three terms of the right-hand side of (18) are mutu-
ally uncorrelated. Therefore, we have

/zðn;mÞ ¼ /xfd
ðn;mÞ þ /x0

ri
ðn;mÞ þ /vrn

ðn;mÞ; ð20Þ
where

/xfd
ðn;mÞ , E X fdðn;mÞj j2

h i
¼ /xðn;mÞhH ðn;mÞCxðn;mÞi1iH

1 Cxðn;mÞhðn;mÞ; ð21Þ

/x0
ri
ðn;mÞ , E X 0riðn;mÞ

�� ��2h i
¼ /xðn;mÞ 1� cxðn;mÞj j2

h i
hHðn;mÞi2iH

2 hðn;mÞ; ð22Þ

and /vrn
ðn;mÞ is defined in (9).

The objective of noise reduction in the frequency
domain is then to find optimal gains Hðn;mÞ and
H 0ðn;mÞ at each time-frame n and frequency-bin m that
would attenuate the noise as much as possible with as little
distortion as possible to the desired signal (speech).

3. Performance measures

In this section, we present some useful measures that are
necessary to properly design optimal gains for noise reduc-
tion and help us better understand their behaviors. Most of
these measures are directly deduced from (20).

The (fullband) input signal-to-noise ratio (SNR) is
defined as the ratio of the intensity of the signal of interest
(speech) over the intensity of the background noise. With
the signal model given in (2), the input SNR can be written
as

iSNR ,

P
n

PM�1
m¼0 /xðn;mÞP

n

PM�1
m¼0 /vðn;mÞ

: ð23Þ

We also define the segmental and subband input SNRs,
respectively, as (Benesty et al., 2009)

iSNRðnÞ ,
PM�1

m¼0 /xðn;mÞPM�1
m¼0 /vðn;mÞ

; ð24Þ

iSNRðn;mÞ , /xðn;mÞ
/vðn;mÞ

; m ¼ 0; 1; . . . ;M � 1: ð25Þ

After noise reduction with the model given in (18), the full-
band, segmental, and subband output SNRs1 are

oSNRðhÞ ,
P

n

PM�1
m¼0 /xfd

ðn;mÞP
n

PM�1
m¼0 /x0

ri
ðn;mÞ þ /vrn

ðn;mÞ
h i ; ð26Þ

oSNR hðnÞ½ � ,
PM�1

m¼0 /xfd
ðn;mÞPM�1

m¼0 /x0
ri
ðn;mÞ þ /vrn

ðn;mÞ
h i ; ð27Þ

oSNR hðn;mÞ½ � ,
/xfd
ðn;mÞ

/x0
ri
ðn;mÞ þ /vrn

ðn;mÞ ;

m ¼ 0; 1; . . . ;M � 1: ð28Þ

In the particular case where H 0ðn;mÞ ¼ 0 (which is true for
the classical linear estimation), we have

iSNRðn;mÞ ¼ oSNR hðn;mÞ½ �; m ¼ 0; 1; . . . ;M � 1; ð29Þ

so, the subband SNR cannot be improved.
Another important measure in noise reduction is the

noise-reduction factor (Benesty et al., 2005, 2009; Chen
et al., 2006), which quantifies the amount of noise being
attenuated by the complex filter. With the STFT formula-
tion, the fullband noise-reduction factor is defined as

nnrðhÞ ,
P

n

PM�1
m¼0 /vðn;mÞP

n

PM�1
m¼0 /x0

ri
ðn;mÞ þ /vrn

ðn;mÞ
h i : ð30Þ

Similarly, we can define the segmental and subband noise-
reduction factors nnr½hðnÞ� and nnr½hðn;mÞ�. With optimal
gains, these noise-reduction factors are expected to be
greater than 1.

The complex gains add distortion to the desired signal.
In order to evaluate this distortion, we define the subband
speech-distortion index (Benesty et al., 2009) as
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tsd hðn;mÞ½ � ,
E X fdðn;mÞ � X ðn;mÞj j2
h i

/xðn;mÞ
;

m ¼ 0; 1; . . . ;M � 1: ð31Þ

This index is lower bounded by 0 and is expected to be
smaller than 1 for optimal filters. The higher the value of
tsd½hðn;mÞ�, the more the speech is distorted at time-frame
n and frequency-bin m. In a similar way, we can derive
the segmental speech-distortion index tsd½hðnÞ� and full-
band speech-distortion index tsdðhÞ (Benesty et al., 2009).

Another interesting measure, which is somewhat similar
to the noise-reduction factor, is the speech-reduction factor
(Benesty et al., 2009). It measures the amount of the
desired signal reduced by the complex gains. The subband
speech-reduction factor is

nsr hðn;mÞ½ � , /xðn;mÞ
/xfd
ðn;mÞ ; m ¼ 0; 1; . . . ;M � 1: ð32Þ

Similarly, one can define the segmental and fullband
speech-reduction factors nsr½hðnÞ� and nsrðhÞ. The larger
the value of the speech-reduction factor, the more the de-
sired signal is reduced (or distorted). This factor should
be lower bounded by 1.

It is easy to verify that

oSNR hðn;mÞ½ �
iSNRðn;mÞ ¼

nnr hðn;mÞ½ �
nsr hðn;mÞ½ � ; ð33Þ

oSNR hðnÞ½ �
iSNRðnÞ ¼

nnr hðnÞ½ �
nsr hðnÞ½ � ; ð34Þ

oSNRðhÞ
iSNR

¼ nnrðhÞ
nsrðhÞ

: ð35Þ

Hence, a subband, segmental, or fullband increase in the
SNR, i.e., oSNR½hðn;mÞ� > iSNRðn;mÞ; oSNR½hðnÞ� >
iSNRðnÞ, or oSNRðhÞ > iSNR, can be obtained only when
the subband, segmental, or fullband noise-reduction factor
is larger than the corresponding speech-reduction factor,
i.e., nnr½hðn;mÞ� > nsr½hðn;mÞ�; nnr½hðnÞ� > nsr½hðnÞ�, or
nnrðhÞ > nsrðhÞ.
4. Widely linear mean-squared error

We define the subband error signal between the esti-
mated and desired signals as

Eðn;mÞ , Zðn;mÞ � X ðn;mÞ
¼ hH ðn;mÞyðn;mÞ � X ðn;mÞ; ð36Þ

which can be written as the sum of two error signals:

Eðn;mÞ ¼ Edðn;mÞ þ Erðn;mÞ; ð37Þ

where

Edðn;mÞ , X fdðn;mÞ � X ðn;mÞ
¼ hH ðn;mÞCxðn;mÞi1 � 1
� �

X ðn;mÞ ð38Þ
is the signal distortion due to the complex filter and

Erðn;mÞ , X 0riðn;mÞ þ V rnðn;mÞ
¼ hH ðn;mÞi2X 0ðn;mÞ þ hH ðn;mÞvðn;mÞ ð39Þ

represents the interference and noise residuals.
The subband mean-squared error (MSE) is then

J hðn;mÞ½ � , E Eðn;mÞj j2
h i

¼ J d hðn;mÞ½ � þ J r hðn;mÞ½ �;

ð40Þ
where

J d hðn;mÞ½ � , E Edðn;mÞj j2
h i

¼ E X fdðn;mÞ � X ðn;mÞj j2
h i

¼ /xðn;mÞ hH ðn;mÞCxðn;mÞi1 � 1
�� ��2 ð41Þ

and

J r hðn;mÞ½ � , E Erðn;mÞj j2
h i

¼ E X 0riðn;mÞ
�� ��2h i

þ E V rnðn;mÞj j2
h i

¼ /x0
ri
ðn;mÞ þ /vrn

ðn;mÞ: ð42Þ

Let us take the particular filter hðn;mÞ ¼ i1; 8n;m. In
this case, the subband MSE is

Jði1Þ ¼ /vðn;mÞ; ð43Þ
so there will be neither noise reduction nor speech distor-
tion. We now define the subband normalized MSE
(NMSE) as

eJ hðn;mÞ½ � , J hðn;mÞ½ �
Jði1Þ

¼ iSNRðn;mÞ � tsd hðn;mÞ½ �

þ 1

nnr hðn;mÞ½ � ; ð44Þ

where

tsd hðn;mÞ½ � , J d hðn;mÞ½ �
/xðn;mÞ

; ð45Þ

nnr hðn;mÞ½ � , /vðn;mÞ
J r hðn;mÞ½ � : ð46Þ

This shows clearly how the two WL subband MSEs [Eqs.
(41) and (42)] are related to some of the performance mea-
sures. Similar relations also hold for the fullband and seg-
mental measures.
5. Widely linear Wiener filter

Taking the gradient of the subband MSE, J ½hðn;mÞ�,
with respect to hH ðn;mÞ and equating the result to zero give
us the WL Wiener filter:



(a)

(b)

(dB)

Fig. 2. (a) Relationship between gWLWðn;mÞ; iSNRðn;mÞ, and cxðn;mÞ. (b)
Relationship between jg0WLWðn;mÞj; iSNRðn;mÞ, and cxðn;mÞ.
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hWLWðn;mÞ ¼ U�1
y ðn;mÞUxðn;mÞi1

¼ /xðn;mÞ
/yðn;mÞ

� C�1
y ðn;mÞCxðn;mÞi1

¼ I� /vðn;mÞ
/yðn;mÞ

� C�1
y ðn;mÞCvðn;mÞ

" #
i1: ð47Þ

It follows immediately that

HWLWðn;mÞ ¼
1� cxðn;mÞc�yðn;mÞ

1� cyðn;mÞ
�� ��2 � /xðn;mÞ

/yðn;mÞ
; ð48aÞ

H 0WLWðn;mÞ ¼
cxðn;mÞ � cyðn;mÞ

1� cyðn;mÞ
�� ��2 � /xðn;mÞ

/yðn;mÞ
: ð48bÞ

Using (4) and (11), one can deduce the following relation:

cyðn;mÞ/yðn;mÞ ¼ cxðn;mÞ/xðn;mÞ
þ cvðn;mÞ/vðn;mÞ: ð49Þ

By using (49), the WL Wiener complex gains in (48), can be
rearranged as

HWLWðn;mÞ ¼ 1�
1� cvðn;mÞc�yðn;mÞ

1� cyðn;mÞ
�� ��2 � /vðn;mÞ

/yðn;mÞ
; ð50aÞ

H 0WLWðn;mÞ ¼
cyðn;mÞ � cvðn;mÞ

1� cyðn;mÞ
�� ��2 � /vðn;mÞ

/yðn;mÞ
: ð50bÞ

We recall that the classical Wiener gain (Benesty et al.,
2009) is

HWðn;mÞ ¼
/xðn;mÞ
/yðn;mÞ

¼ 1� /vðn;mÞ
/yðn;mÞ

: ð51Þ

Of course, taking cxðn;mÞ ¼ cvðn;mÞ ¼ 0 in the WL Wiener
filter, we obtain the classical Wiener filter. While the Wie-
ner filter is always real, the WL Wiener filter is, in general,
complex.

In practical situations, cxðn;mÞ is in general not zero
because speech is nonstationary. But noise is relatively sta-
tionary as compared to the speech signal and cvðn;mÞ may
be close to 0. Now let us assume that cvðn;mÞ ¼ 0. With this
assumption and using the subband SNR definition given in
(25), we can write the WL Wiener complex gains in (48) [or
(50)] as

HWLWðn;mÞ ¼ gWLWðn;mÞHWðn;mÞ; ð52aÞ
H 0WLWðn;mÞ ¼ g0WLWðn;mÞHWðn;mÞ; ð52bÞ

where

gWLWðn;mÞ ¼
1� iSNRðn;mÞ

1þiSNRðn;mÞ � cxðn;mÞj j2

1� iSNRðn;mÞ
1þiSNRðn;mÞ

h i2

� cxðn;mÞj j2
; ð53aÞ

g0WLWðn;mÞ ¼
1

1þiSNRðn;mÞ � cxðn;mÞ

1� iSNRðn;mÞ
1þiSNRðn;mÞ

h i2

� cxðn;mÞj j2
: ð53bÞ
It is easy to check that gWLWðn;mÞ is always real and it
satisfies 0 6 gWLWðn;mÞ 6 1. But g0WLWðn;mÞ is in general
complex, with its magnitude being in the range between 0
and 1, i.e., 0 6 jgWLWðn;mÞj 6 1. The difference between
the WL Wiener and classical Wiener filters depends on
the two weighting functions gWLWðn;mÞ and g0WLWðn;mÞ.
Fig. 2 plots both gWLWðn;mÞ and jg0WLWðn;mÞj as a function
of the subband input SNR, iSNRðn;mÞ, and the speech
noncircularity cxðn;mÞ. There are three circumstances:

1. Large values of iSNRðn;mÞ (e.g., P 15 dB). In this
case, gWLWðn;mÞ approaches 1 while g0WLWðn;mÞ is
close to 0. This indicates that the WL Wiener filter
converges to the classical Wiener filter in high SNR
conditions regardless of the degree of speech
noncircularity.

2. Small values of iSNRðn;mÞ (e.g., 6 �15 dB). In this
situation, gWLWðn;mÞ also approaches 1 regardless of
the value of cxðn;mÞ. This shows that H WLWðn;mÞ con-
verges to the classical Wiener gain. But the value of
cxðn;mÞ plays an important role in gWLWðn;mÞ. So, in
this circumstance, the WL Wiener is different from
the classical Wiener filter, but the difference mainly
comes from filtering the signal conjugate.

3. Moderate values of iSNRðn;mÞ (e.g., in the range
between �15 dB and 15 dB). Both the subband input
SNR and noncircularity play an important role in
the WL Wiener filter.

From a practical viewpoint, the third case is the most
interesting one since if the subband input SNR is very
large, the WL Wiener filter will be similar to the classical
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Wiener filter; but if the input SNR is very small, then it
would be very difficult to estimate the speech noncircularity
even though the WL Wiener filter is superior to the classi-
cal Wiener filter.

Now let us take a slightly different angle by looking at
the filtered desired signal and residual noise and interfer-
ence. Substituting (52) into (19a), we can deduce the filtered
desired signal due to the WL Wiener filter [assuming that
cvðn;mÞ ¼ 0] as

X fd; WLWðn;mÞ ¼ Gfd; WLWðn;mÞX ðn;mÞ; ð54Þ

where

Gfd; WLWðn;mÞ ¼ H WLWðn;mÞ þ c�xðn;mÞH 0WLWðn;mÞ

¼
1þ 1�iSNRðn;mÞ

1þiSNRðn;mÞ � cxðn;mÞj j2

1� iSNRðn;mÞ
1þiSNRðn;mÞ

h i2

� cxðn;mÞj j2

� iSNRðn;mÞ
1þ iSNRðn;mÞ : ð55Þ

Recall that for the classical Wiener filter, the gain filter ap-
plied to the desired speech is

Gfd; Wðn;mÞ ¼ HWðn;mÞ ¼
iSNRðn;mÞ

1þ iSNRðn;mÞ : ð56Þ

It can be checked that Gfd; WLWðn;mÞP Gfd; Wðn;mÞ, mean-
ing that the WL Wiener filter will introduce less speech dis-
tortion. Fig. 3 plots both Gfd; WLWðn;mÞ and Gfd; Wðn;mÞ as
a function of iSNRðn;mÞ. It is seen that both Gfd; WLWðn;mÞ
and Gfd; Wðn;mÞ increase with the subband input SNR. So,
less speech distortion is added to the enhanced signal by the
WL and classical Wiener filters as the subband input SNR
increases. It is also seen that Gfd;WLWðn;mÞ increases as
jcxðn;mÞj increases, which can be easily checked from
(55). Therefore, the more the desired signal is noncircular,
the less is the signal distortion caused by the WL Wiener
filter. However, when SNR is either very large (e.g.,
> 15 dB) or very small (e.g., < �15 dB), Gfd; WLWðn;mÞ
converges to Gfd; Wðn;mÞ regardless of the degree of speech
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Fig. 3. Comparison between the WL and classical Wiener filters for their
gain applied to filter the desired speech signal.
noncircularity. In this case, both the WL Wiener and clas-
sical Wiener have a similar amount of speech distortion.
We also notice from Fig. 3 that a significant degree of non-
circularity is needed in order for the WL Wiener filter to
have noticeable less speech distortion than the classical
Wiener filter. For instance, when iSNRðn;mÞ ¼ 5 dB, if
we want the WL Wiener filter to have 5% less speech distor-
tion than the classical Wiener filter, we would need
jcxðn;mÞjP 0:76.

Now let us examine the MSE due to the WL Wiener fil-
ter. The subband minimum NMSE is found by replacing
the WL Wiener filter in (44):eJ hWLWðn;mÞ½ � ¼ iSNRðn;mÞ

� 1� /xðn;mÞ
/yðn;mÞ

� iH
1 Cxðn;mÞC�1

y ðn;mÞCxðn;mÞi1

" #
: ð57Þ

The subband NMSE for the classical Wiener filter is

eJ hWðn;mÞ½ � ¼ iSNRðn;mÞ 1� /xðn;mÞ
/yðn;mÞ

" #
: ð58Þ

Obviously,

eJ hWLWðn;mÞ½ � 6 eJ hWðn;mÞ½ � 6 1; 8n;m: ð59Þ
We have shown previously that the WL Wiener filter adds
less distortion to the desired speech signal. The fact that the
subband NMSE of the WL Wiener filter is smaller than
that of the Wiener filter shows the advantage of the WL
Wiener filter from another viewpoint. From (57) and
(58), we also deduce that

1 6 iH
1 Cxðn;mÞC�1

y ðn;mÞCxðn;mÞi1 6 1þ 1

iSNRðn;mÞ ; 8n;m:

ð60Þ
The quantity iH

1 Cxðn;mÞC�1
y ðn;mÞCxðn;mÞi1 determines the

amount of noncircularity in the signals. In particular, for
noncircular signals and when subband input SNRs are
low, this quantity can be large and, as a result, the subband
NMSE of the WL Wiener filter can be much smaller than
the subband NMSE of the classical Wiener filter. For high
subband input SNRs, we should not expect, obviously,
much difference between the two filters.

Having shown that the WL Wiener filter introduces less
speech distortion and has smaller NMSE than the classical
Wiener filter, we now analyze the subband output SNR of
the WL Wiener filter. We have the following theorem.
Theorem. With the WL Wiener filter given in (47), the

subband output SNR is always greater than or equal to the

subband input SNR, i.e., oSNR½hWLWðn;mÞ�P iSNRðn;mÞ;
8n;m.
Proof. From the definition of the subband output SNR
given in (28) and according to (9), (21), (22), we can readily
obtain:



oSNR hWLWðn;mÞ½ � ¼
/x jHWLWj2 þ cxHWLWH 0�WLW þ c�xH �WLWH 0WLW þ jcxj

2jH 0WLWj
2

� �
/v jH WLWj2 þ cvHWLWH 0�WLW þ c�vH �WLWH 0WLW þ jH 0WLWj

2
� �

þ /xjH 0WLWj
2 1� jcxj

2
� � : ð61Þ
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Note that in (61) we have dropped the ðn;mÞ from
/xðn; mÞ; /vðn; mÞ; cxðn; mÞ; cvðn; mÞ; H WLWðn; mÞ, and
H 0WLWðn;mÞ to make the equation more compact. Substi-
tuting (48) into (61) and with some mathematical manipu-
lation (see Appendix), we can show that

oSNR hWLWðn;mÞ½ �P /xðn;mÞ
/vðn;mÞ

¼ iSNRðn;mÞ; ð62Þ

where the equality holds when cvðn;mÞ ¼ cxðn;mÞ ¼ 0. This
completes the proof. h

Recall that for the classical Wiener filter, the input and
output subband SNRs are equal, i.e.,

oSNR hWðn;mÞ½ � ¼ oSNR hWðn;mÞ½ � ¼ /xðn;mÞ
/vðn;mÞ

: ð63Þ

So, the classical Wiener filter cannot improve the subband
SNR. But the WL Wiener filter improves the subband
SNR, which, again, shows the advantage of the WL Wiener
filter over the classical Wiener filter.

6. Widely linear tradeoff filter

As can be seen from (47), not much flexibility is associ-
ated with the WL Wiener filter in the sense that we do not
know in advance neither by how much the output SNR will
be improved nor by how much the desired signal will be
affected. This optimal filter tries to find, on its own, a com-
promise between noise reduction and speech distortion.
However, in many practical situations, we wish to have
some flexibility to control the compromise between noise
reduction and speech distortion and the best way to do this
is via the so-called tradeoff filter.

The subband NMSE as shown is (44) is the sum of two
terms. One depends on the speech distortion while the
other depends on the noise reduction. Instead of minimiz-
ing the subband NMSE as we already did in finding the
WL Wiener filter, we can minimize the speech-distortion
index with the constraint that the noise-reduction factor
is equal to a positive value that is greater than one. Math-
ematically, this is equivalent to

min
hðn;mÞ

J d hðn;mÞ½ � subject to J r hðn;mÞ½ � ¼ b/vðn;mÞ;

ð64Þ
where 0 < b < 1 in order to have some noise reduction. If we
use a Lagrange multiplier, l P 0, to adjoin the constraint to
the cost function, we easily derive the WL tradeoff filter:

hWLTðn;mÞ ¼ Cxðn;mÞi1iH
1 Cxðn;mÞ þ l

Uinðn;mÞ
/xðn;mÞ

� ��1

� Cxðn;mÞi1; ð65Þ
where

Uinðn;mÞ ¼ /xðn;mÞ 1� cxðn;mÞj j2
h i

i2iH
2 þUvðn;mÞ ð66Þ

is the covariance matrix of the interference plus noise, and
the Lagrange multiplier, l, satisfies J r½hWLTðn;mÞ� ¼
b/vðn;mÞ. However, in practice it is not easy to determine
the optimal l. Therefore, when this parameter is chosen in
an ad-hoc way, we can see that for

� l ¼ 1, hWLTðn;mÞ ¼ hWLWðn;mÞ, which is the WL Wie-
ner filter;

� l ¼ 0; hWLTðn;mÞ ¼ i1. This filter does not add any dis-
tortion to the desired speech signal, but does not
reduce any noise either;

� l > 1, results in an aggressive filter (compared to the
WL Wiener case), which leads to a low level of resid-
ual noise, but at the expense of a high level of speech
distortion;

� l < 1, results in a conservative filter (compared to the
WL Wiener case) with low speech distortion but high
residual noise.

We recall that the classical tradeoff filter (Benesty et al.,
2009) is

hTðn;mÞ ¼
/xðn;mÞ

/xðn;mÞ þ l/vðn;mÞ
� i1

¼
/yðn;mÞ � /vðn;mÞ

/yðn;mÞ � ðl� 1Þ/vðn;mÞ

" #
i1: ð67Þ

If cxðn;mÞ ¼ cvðn;mÞ ¼ 0, the WL tradeoff filter will degen-
erate to the classical tradeoff filter. While the tradeoff filter
is always real, the WL tradeoff filter is, in general, complex.

Finding the two filters hWLTðn;mÞ and hTðn;mÞ in such a
way that

J r hWLTðn;mÞ½ � ¼ J r hTðn;mÞ½ � ¼ b/vðn;mÞ; ð68Þ

implies that

J d hWLTðn;mÞ½ � 6 J d hTðn;mÞ½ �: ð69Þ

Therefore, with the same level of noise reduction, the WL
tradeoff filter will cause less distortion to the speech signal
than the classical tradeoff filter. Moreover, following the
proof given in the Appendix, we can prove that with the
WL tradeoff filter given in (65), the subband output SNR
is always greater than or equal to the subband input
SNR, i.e.,

oSNR hWLTðn;mÞ½ �P iSNRðn;mÞ
¼ oSNR hTðn;mÞ½ �; 8n;m: ð70Þ
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Fig. 4. A speech signal selected from the TIMIT database and the
corresponding cxðn;mÞ estimated with a short-time sample average. The
upper trace: waveform with phoneme labeling and phoneme boundaries.
The middle trace: the real ( ), imaginary ( ), and magnitude (�) parts of
cxðn; 3Þ estimated with a short-time sample average. The lower trace: the
real ( ), imaginary ( ), and magnitude (�) of cxðn; 6Þ estimated with a
short-time sample average.
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This shows that the WL tradeoff filter may improve the
subband SNR, while the classical tradeoff filter has no ef-
fect on the subband SNR for any given frame n and sub-
band m.

7. Experimental results

We have developed a WL noise-reduction Wiener filter
in Section 5 and a WL tradeoff filter in Section 6. Through
the theoretical analysis, we have shown that the WL Wie-
ner filter introduces less speech distortion and has a smaller
minimum MSE than the classical Wiener filter. Further-
more, The WL Wiener filter can improve the subband
SNR, while the classical Wiener filter has no effect on the
subband SNR for any given frame and subband. Similarly,
the WL tradeoff filter has many advantages over the classi-
cal tradeoff filter. We have carried out a number of exper-
iments to study the performance of the developed WL
noise-reduction filters. In this section, we present some
results, which justify what we learned through the theoret-
ical analysis in the previous sections and highlight the mer-
its and limitations of the WL Wiener filter.

The critical issue in implementing the WL Wiener filter
given in (47) or (48) lies in the estimation of the variance
parameters (or power spectra) /yðn;mÞ;/xðn;mÞ, and
/vðn;mÞ and the noncircularity parameters cyðn;mÞ; cxðn;
mÞ, and cvðn;mÞ. The estimation of the variance parameters
has been well addressed in the literature (Benesty et al.,
2009, Chen et al., 2006, Martin, 2001; Hirsch and Ehrli-
cher, 1995; Stahl et al., 2000; Diethorn, 2004). In this sec-
tion, we will put our emphasis on the estimation of the
noncircularity parameters. We consider two approaches:
short-time average and recursive estimation. The former
basically approximates the mathematical expectation in
(11) with a short-time sample average, while the latter uses
a recursive method.

7.1. Estimation of the noncircularity quotient using a short-

time average method

The clean speech used in this experiment is from the
TIMIT database (DARPA TIMIT, 1990; Lee and Hon,
1989), which was designed to provide speech data for
acoustic-phonetic studies and for the development and
evaluation of automatic speech recognition (ASR) systems.
This database consists of a total of 6300 sentences spoken
by 630 speakers (10 sentences by each). Each speech signal
in the database is recorded using a 16-kHz sampling rate
(with a 16-bit quantization) and is accompanied by manu-
ally segmented phonetic (based on 61 phonemes) tran-
scripts. Fig. 4 (the upper trace) plots one speech signal
from the speaker FAKS0 and both the phonetic transcrip-
tion and phoneme boundaries are also visualized.

In this experiment, we take the ten sentences from the
speaker FAKS0 and use them as the clean speech signals,
and the corresponding noisy signals are generated by adding
a white Gaussian noise into the clean speech with different
SNRs. To perform noise reduction in the frequency domain,
each speech signal is partitioned into overlapping frames
with a frame width of 4 ms and an overlapping factor of
75%. A Kaiser window is then applied to each frame and
the windowed frame signal is subsequently transformed into
the frequency domain using a 64-point FFT. At each sub-
band and for each phoneme, a short-time average is used
to replace the mathematical expectation in (4) and (11) to
compute the variance parameters and circularity quotients.
Note that the parameters /xðn;mÞ and cxðn;mÞ, and
/yðn;mÞ and cyðn;mÞ are directly computed from the clean
and noisy signals respectively. Fig. 4 (the lower two traces)
shows the estimated cx at the third and sixth subbands. Sim-
ilar to the case in Fig. 1, it is clearly seen that cxðn;mÞ is not
equal to zero, which again shows that the complex STFT
coefficients of speech are not circular variables.

With the computed variance and noncircularity parame-
ters, we construct a WL Wiener filter for each phoneme at
each subband. For the purpose of comparison, a classical
Wiener gain is also constructed according to (51). After
passing the noisy speech spectrum through the constructed
Wiener filters, the inverse STFT (with overlap add) is used
to obtain the time-domain speech estimate. Fig. 5 shows one
clean speech signal, its noise corrupted counterpart (with
iSNR = 10 dB), and the clean speech estimates using both
the WL and classical Wiener filters. The spectrograms of
the four signals in Fig. 5 are visualized in Fig. 6. It is clearly
seen that a significant amount of noise reduction has been
achieved with the use of the Wiener filters. Comparing
Fig. 6c with Fig. 6d, one may notice that the WL Wiener fil-
ter achieves more noise reduction in some frequency bands.

To objectively assess the noise-reduction performance of
the WL and Wiener filters, we evaluate three measures: the
speech-distortion index, the noise-reduction factor, and
the output SNR. These three performance measures can be
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Fig. 5. Noise reduction using the WL and classical Wiener filters: (a) the
clean speech, (b) the noisy speech with iSNR = 10 dB, (c) the output of the
WL Wiener filter, and (d) the output of the classical Wiener filter.

Fig. 6. Spectrograms of (a) the clean speech signal, (b) the noisy speech
with iSNR = 10 dB, (c) the clean speech estimate obtained using the WL
Wiener filter, and (d) the clean speech estimate obtained using the classical
Wiener filter.
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Fig. 7. The noncircularity quotient cyðn;mÞ ( : real part, : imaginary
part, �: magnitude) estimated with a short-time average method in white
Gaussian noise with iSNR = 10 dB: (a) m ¼ 4, (b) m ¼ 5, and (c) m ¼ 6.
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evaluated either in the fullband, or in the subband or segmen-
tal levels. But here we only compute the fullband measures.

Table 1 presents the average results computed over the
ten speech signals. Note that the performance measures
were computed for each individual signal first and the
Table 1
Performance of the classical and WL Wiener filters in white Gaussian noise.

Performance measure Noise reduction filter iSNR (Input

�10

Speech distortion tsd WF 0.213
WL 0.211

Noise reduction nnr WF 89.65
WL 90.38

Output SNR WF 6.33 dB
WL 6.43 dB
results were averaged out then. The results for the
speech-distortion index and the noise-reduction factor were
averaged in the linear scale while the output SNRs were
averaged in the dB scale.

It is seen from Table 1 that the measured speech-distor-
tion index for the WL Wiener filter is smaller than that of
the classical Wiener filter. At the same time, the WL Wiener
filter has achieved more noise reduction. However, as the
input SNR increases, the WL Wiener filter tends to have a
similar performance to the classical Wiener filter. This coin-
cides with the theoretical analysis that the WL Wiener filter
converges to the classical Wiener filter in high SNR condi-
tions. We also see that, in general, the WL Wiener filter
yields a higher output SNR as compared to the classical
Wiener filter. However, the difference is somehow marginal.
The underlying reasons are multiple. First, we only compute
one noncircularity quotient for each phoneme at each sub-
band. Since speech is nonstationary and time varying, its
statistics may change significantly even within one pho-
neme. So, the short-time average method may not necessar-
ily be a good or reliable approach to estimating the
noncircularity. Second, as we have shown previously that
a significant amount of noncircularity (with jcxðn;mÞjP
0:7) is needed in order for the WL Wiener filter to achieve
noticeable better performance than the classical Wiener fil-
ter. Through experiments, we find that while the noncircu-
larity for some subbands are strong, there are also many
SNR) (dB)

�5 0 5 10

0.113 0.051 0.020 0.007
0.111 0.050 0.020 0.007

39.29 19.05 9.94 6.25
39.71 19.11 10.01 6.29

9.18 dB 11.85 dB 14.50 dB 17.74 dB
9.23 dB 11.88 dB 14.53 dB 17.77 dB
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Fig. 8. Spectrograms of (a) the enhanced signal by the WL Wiener filter
and (b) the enhanced signal by the classical Wiener filter. The clean and
noisy speech signals are the same as shown in Fig. 6 with iSNR = 10 dB.
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subbands where the noncircularity quotients can be small.
Fig. 7 plots the cyðn;mÞ at the 4th, 5th, and 6th subbands
for the signal shown in Fig. 5. It is seen that the noncircular-
ity quotient in the 5th subband is large, but the quotients for
the 4th and 6th subbands are small. So, for the 4th and 6th
subbands, the WL Wiener filter would have a similar perfor-
mance to the classical Wiener filter. In practice, we should
check the cyðn;mÞ or cxðn;mÞ estimates. If their magnitude
is small, we can simply replace the WL Wiener filter with
the classical Wiener filter at that subband without dramati-
cally affecting the noise-reduction performance.

We also studied the WL and classical Wiener filters for
their performance in different noise conditions. Table 2
shows the results in a car-noise condition where the noise
was recorded in a car running at 50 miles/h on a high way.
Similar to the previous experiment, we see that the WL Wie-
ner filter consistently outperforms the classical Wiener filter.
7.2. Estimation of the noncircularity quotient using a
recursive method

In the previous experiment, the variance and noncircu-
larity parameters /xðn;mÞ and cxðn;mÞ are directly com-
puted from the clean speech signal. In practice, however,
the clean speech signal is not accessible. As a result,
/xðn;mÞ and cxðn;mÞ have to be estimated from the noisy
observation. A normal practice is to estimate the variance
and noncircularity parameters of the noisy and noise sig-
nals first, and the parameters of the clean speech can then
be derived using the relations given in (3) and (49). In this
section, we consider a recursive algorithm (which was orig-
inally developed to estimate the spectra of the noisy and
noise signals (Diethorn, 2004; Chen et al., 2003) to estimate
both the variance and pseudo-variance parameters. Specif-
ically, the variance and noncircularity quotient of the noise
signal at the mth subband is estimated as

/̂vðn;mÞ ¼

av;a/̂vðn� 1;mÞ þ ð1� av;aÞjY ðn;mÞj2;
if jY ðn;mÞj2 P /̂vðn� 1;mÞ

av;d/̂vðn� 1;mÞ þ ð1� av;dÞjY ðn;mÞj2;
if jY ðn;mÞj2 < /̂vðn� 1;mÞ

8>>><>>>: ;

ð71Þ

where av;a and av;d are, respectively, the “attack” and the
“decay” coefficients, and
Table 2
Performance of the classical and WL Wiener filters in car noise.

Performance measure Noise reduction filter iSNR (Input

�10

Speech distortion tsd WF 0.089
WL 0.086

Noise reduction nnr WF 214.66
WL 225.80

Output SNR oSNR WF 12.07 dB
WL 12.37 dB
ĉvðn;mÞ ¼
V 2ðn;mÞ
/̂vðn;mÞ

; ð72Þ

with

V 2ðn;mÞ ¼

bv;aV 2ðn� 1;mÞ þ ð1� bv;aÞY 2ðn;mÞ;
if jY ðn;mÞj2 P /̂vðn� 1;mÞ

bv;dV 2ðn� 1;mÞ þ ð1� bv;dÞY 2ðn;mÞ;
if jY ðn;mÞj2 < /̂vðn� 1;mÞ

8>>>>><>>>>>:
; ð73Þ

where again bv;a is an “attack” coefficient and bv;d a
“decay” coefficient. Similarly, the noisy variance /yðn;mÞ
is computed from the noisy spectrum Y ðn;mÞ using the fol-
lowing recursion:

/̂yðn;mÞ ¼

ay;a/̂yðn� 1;mÞ þ ð1� ay;aÞjY ðn;mÞj2;
if jY ðn;mÞj2 P /̂yðn� 1;mÞ

ay;d/̂yðn� 1;mÞ þ ð1� ay;dÞjY ðn;mÞj2;
if jY ðn;mÞj2 < /̂yðn� 1;mÞ

8>>>><>>>>: :

ð74Þ

Note that typically the values of ay;a and ay;d should be
smaller than those of av;a and av;d because the noise is as-
sumed to be more stationary than the desired speech signal.
With the /̂yðn;mÞ estimated using (74), we can then com-
pute the noncircularity quotient ĉyðn;mÞ using a recursion
SNR) (dB)

�5 0 5 10

0.052 0.029 0.014 0.006
0.049 0.027 0.013 0.005

111.77 54.41 23.94 10.60
118.63 57.66 24.83 10.80

14.73 dB 16.88 dB 18.49 dB 20.08 dB
15.03 dB 17.17 dB 18.68 dB 20.18 dB



Table 3
Performance of the classical and WL Wiener filters in white Gaussian noise.

Performance measure Noise reduction filter iSNR (Input SNR) (dB)

�10 �5 0 5 10

Speech distortion tsd WF 0.502 0.352 0.198 0.122 0.066
WL 0.491 0.340 0.194 0.121 0.066

Output SNR oSNR WF �8.81 dB �0.313 dB 8.06 dB 13.80 dB 18.41 dB
WL �8.63 dB 0.326 dB 8.74 dB 14.42 dB 19.00 dB
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similar to (72), but with a different set of attack and decay
coefficients, i.e., by;a, and by;d.

The proper values of all the attack and decay coefficients
will no doubt play a critical role in affecting the noise-
reduction performance. Unfortunately, it is very difficult
to determine the optimal values of these coefficients using
analytical methods. So, we carried out a series of noise-
reduction experiments based on a 30-second long clean
speech signal and several different types of noise. By vary-
ing each attack or decay coefficient from 0 and 1, good per-
formance has been achieved with av;a ¼ bv;a ¼ 0:999; av;d ¼
bv;d ¼ 0:98; ay;a ¼ by;a ¼ 0:67; ay;d ¼ by;d ¼ 0:92 for both
the WL and classical Wiener filters. These values are then
used in this experiment for performance evaluation.

Fig. 8 presents an example of the outputs of the WL
and classical Wiener filters where the original clean and
noisy speech signals are the same as in Fig. 5. Compar-
ing Fig. 8 with the noisy speech spectrogram shown in
Fig. 6, one can see that a significant amount of noise
has been reduced with the estimated classical and WL
Wiener filters.

Same as in the previous experiment, we computed the
average speech distortion index and output SNR over
the 10 TIMIT speech signals. The results are shown in
Table 3. More than 8-dB SNR improvement has been
achieved with both the classical and WL Wiener filters.
Comparatively, the WL Wiener filter has a smaller
speech-distortion index and higher SNR improvement,
which again coincides with what was observed from the
theoretical analysis.

Notice that the difference in output SNR between the
WL and classical Wiener filters is less than 1 dB. This indi-
cates that, even though the noncircularity information can
be used to improve noise reduction performance in terms
of speech distortion and SNR improvement, the additional
performance improvement due to the use of noncircularity
may not be so significant. The major underlying reason,
from our observation, is that the noncircularity quotients
in many subbands are not very large to furnish dramatic
performance improvement.
/x jH WLWj2 þ cxH WLWH 0�WLW þ c�xH �WLWH 0WLW þ jcxj
2

�
/v jH WLWj2 þ cvHWLWH 0�WLW þ c�vH �WLWH 0WLW þ jH 0WLWj

2
� �

þ /x
8. Conclusions

Noise reduction is often formulated as a filtering prob-
lem in the frequency domain. When we work with the
STFT coefficients in the frequency domain, we generally
deal with complex random variables even though the origi-
nal time-domain signals are real in the context of speech
applications. A complex random variable can be either
(second-order) circular or noncircular depending on
whether its pseudo-variance is zero or not. Traditionally,
the STFT coefficients of speech are assumed to be circular
and most noise-reduction approaches design the noise-
reduction filter based only on the variance of the STFT
coefficients (or power spectra) of the noise and noisy sig-
nals. In this paper, we have illustrated that the STFT coef-
ficients of speech are in general noncircular variables
because speech signals are highly nonstationary. Based
on the noncircularity, we have deduced a WL noise-reduc-
tion Wiener filter. We have shown through theoretical
analysis that the WL Wiener filter will introduce less distor-
tion to the desired speech signal and has a smaller NMSE
as compared to the classical Wiener filter. Most impor-
tantly, we have proved that the WL Wiener filter can
improve the subband SNR, which is different from the clas-
sical Wiener filter that does not change the subband SNR
for any given frame and subband. We also compared the
WL and classical Wiener filters using experiments and the
results corroborate the theoretical analysis. We have also
deduced a WL tradeoff filter, which can be used to adjust
the compromise between the amount of noise reduction
and the degree of speech distortion when it is needed. This
new tradeoff filter has many advantages over the classical
tradeoff filters in terms of speech distortion, noise reduc-
tion, and subband SNR improvement.

Appendix.
Lemma. With the WL Wiener filter, we have the following

inequality:
jH 0WLWj
2
�

jH 0WLWj
2 1� jcxj

2
� �P

/x

/v
: ð75Þ



J. Benesty et al. / Speech Communication 52 (2010) 427–439 439
Note that, again, for the purpose of compactness, we have

dropped the ðn;mÞ from /xðn;mÞ;/vðn;mÞ; cxðn;mÞ;
cvðn;mÞ;H WLWðn;mÞ, and H 0WLWðn;mÞ, which should not

cause any confusion.

Proof. Using the fact that jcy j
2
6 1, we can easily check

that

0 6 jcy � cxj
2
6 1� cxc

�
y � c�xcy þ jcxj

2
: ð76Þ

Slightly rearranging (76) gives

2� cxc
�
y � c�xcy P 1� jcxj

2
: ð77Þ

It follows immediately that (assuming that /v – 0)

/y

/v
jcx � cy j

2 1� cxc
�
y

� �
þ

/y

/v
jcx � cy j

2 1� c�xcy

	 

P

/y

/v
jcx � cy j

2 1� jcxj
2

� �
: ð78Þ

From (49), we easily obtain the following relation:

cx � cv ¼
/y

/v
ðcx � cyÞ: ð79Þ

Using (79) and the fact that /y ¼ /x þ /v, we can rewrite
(78) as

ðcx � cvÞ c�x � c�y

� �
1� cxc

�
y

� �
þ c�x � c�v
	 


ðcx

� cyÞ 1� c�xcy

	 

þ jcx � cy j

2 jcxj
2 � 1

� �
P

/x

/v
jcx � cy j

2 1� jcxj
2

� �
: ð80Þ

From the above inequality and using the WL Wiener filter
given in (48b), we get

ðcx � cvÞH WLWH 0�WLW þ c�x � c�v
	 


H �WLWH 0WLW

þ jH 0WLWj
2 jcxj

2 � 1
� �

P
/x

/v
jH 0WLWj

2 1� jcxj
2

� �
: ð81Þ

With some simple mathematical manipulation, (81)
becomes

jHWLWj2 þ cxH WLWH 0�WLW þ c�xH �WLWH 0WLW

þ jH 0WLWj
2 � jHWLWj2 þ cvH WLWH 0�WLW

þ c�vH �WLWH 0WLW þ jH 0WLWj
2

P
/x

/v
jH 0WLWj

2 1� jcxj
2

� �
: ð82Þ

It is then straightforward to verify the inequality in (75).
Therefore, the WL Wiener filter can improve the subband
SNR. In comparison, the classical Wiener filter has no ef-
fect on the subband SNR for any given frame n and sub-
band m. h
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