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Abstract—Binaural noise reduction with a stereophonic (or
simply stereo) setup has become a very important problem as
stereo sound systems and devices are being more and more de-
ployed in modern voice communications. This problem is very
challenging since it requires not only the reduction of the noise at
the stereo inputs, but also the preservation of the spatial informa-
tion embodied in the two channels so that after noise reduction
the listener can still localize the sound source from the binaural
outputs. As a result, simply applying a traditional single-channel
noise reduction technique to each channel individually may not
work as the spatial effects may be destroyed. In this paper, we
present a new formulation of the binaural noise reduction problem
in stereo systems. We first form a complex signal from the stereo
inputs with one channel being its real part and the other being
its imaginary part. By doing so, the binaural noise reduction
problem can be processed by a single-channel widely linear filter.
The widely linear estimation theory is then used to derive optimal
noise reduction filters that can fully take advantage of the noncir-
cularity of the complex speech signal to achieve noise reduction
while preserving the desired signal (speech) and spatial informa-
tion. With this new formulation, the Wiener, minimum variance
distortionless response (MVDR), maximum signal-to-noise ratio
(SNR), and tradeoff filters are derived. Experiments are provided
to justify the effectiveness of these filters.

Index Terms—Binaural noise reduction, maximum signal-to-
noise ratio (SNR) filter, minimum variance distortionless response
(MVDR) filter, noncircularity, speech enhancement, stereo sound
system, time domain, tradeoff filter, widely linear estimation,
Wiener filter.

I. INTRODUCTION

T ELECONFERENCING capability is an integral part of
modern communication networks. It facilitates group

collaborations (i.e., business, military, government, and educa-
tional institutions) efficiently and at low costs. A key technical
challenge for a teleconferencing (or more generally a telecol-
laboration) system is the ability to acquire high-fidelity speech
while keeping speakers’ spatial information intact so that it is
possible for the remote listener to follow a panel of speakers
and distinguish them by listening to the reproduction of the
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signals. To preserve the sound realism, it is necessary to use
multiple loudspeakers and multiple microphones in both the
transmission and receiving ends. The system in each end then
becomes a multiple-input multiple-output (MIMO) one that
is more complicated than a single-channel system in terms of
signal acquisition, processing, and reproduction. A particular
case of such a MIMO system is the stereophonic (or simply
stereo) one, which uses two microphones and two loudspeakers.
A stereo system has many unique advantages. It can record and
reproduce a speech sound with spatial information and offer
much more flexibility in processing the sound as compared to
a single-channel system; yet it is cheaper and less complicated
to design and easier to be integrated into portable devices in
comparison with a general MIMO system with a large number
of sensors. As a result, stereo systems are being more and more
deployed in communication terminals such as smart phones,
desktop phones, PCs, etc.

With a stereo setup, many signal processing problems such
as echo cancellation and noise reduction are fundamentally dif-
ferent from those in the single-channel case. As a result, simply
applying a single-channel processing technique to each of the
stereo channels does not, in general, result in satisfactory per-
formance. Therefore, these problems need to be re-addressed.
In this paper, we focus on the issue of noise reduction in stereo
systems. The basic problem is to process the stereo input signals
such as to mitigate the noise effect, thereby producing two (bin-
aural) outputs with less amount of noise and a higher signal-to-
noise ratio (SNR), but the mitigation process is required not to
add audible distortion to the desired speech signal at the two
channels (this is the same as in the singe-channel case) and
meanwhile the spatial information of the desired sound source
should be preserved so that, after noise reduction, the remote
listener will still be able to localize the sound source thanks to
his/her binaural hearing mechanism. This problem is generally
referred to as binaural noise reduction.

Since a stereo system with two microphones can be viewed
as a particular case of the general problem of microphone ar-
rays [1], [2], one straightforward approach to binaural noise
reduction is through the adoption of beamforming techniques.
Notice, however, that a beamformer only gives one monaural
output. In order to have binaural outputs, we would need to use
two beamformers at the same time with one beamformer gener-
ating an output for the left channel while the other producing an
output for the right channel [3]–[9]. Different constraints can
be applied to preserve the spatial effect. One simple way, for
example, is to force the time difference of arrival (TDOA) be-
tween the two beamformers’ outputs to be the same as that of
the desired signals at the two stereo input channels. We should
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note that beamforming generally aims at recovering the source
signal. Although it is feasible to use such technique for bin-
aural noise reduction, the amount of noise attenuation or SNR
improvement of beamforming with the use of only two micro-
phones is generally limited, particularly in teleconferencing ap-
plications where background noise can be strong, environments
are reverberant, and the source can be far away from the micro-
phones. To gain more noise reduction, a viable approach is to
extend the ideas developed for the single-channel noise reduc-
tion to the binaural case. An early attempt on this was made in
the hearing-aids area [10]. The basic idea in [10] is similar to the
widely known spectral subtraction [11] or parametric Wiener
filter [12]–[14]; but it poses a constraint on the suppression of
each frequency band to preserve the spatial information of the
desired sound source. If the band has the interaural time and
level differences characteristic of the desired source, this band
is kept unchanged (passed through without attenuation). Other-
wise, the band is suppressed. This method was refined in [15]
and then extended to a Wiener filter framework with the use
of head-related transfer functions (HRTFs) for noise estimation
[16]. While it can possibly obtain more noise reduction than
beamforming, this second approach generally adds distortion to
the desired speech. Furthermore, it requires the a priori knowl-
edge about the interaural time and level differences of the source
signal, which is not easy to acquire in conferencing applications.
A more practical approach to preserving sound realism while
performing noise reduction is, perhaps, through generalizing the
principles of multichannel noise reduction such as the transfer
function based generalized sidelobe canceller (TF-GSC) [17],
the multichannel Wiener filter [18], and the spatial prediction
method [19] to the binaural case. Since the multichannel noise
reduction techniques are formulated to estimate the desired sig-
nals observed at the microphones, the spatial information should
be naturally preserved. Indeed, it has been shown in [20] and
[21] that a binaural multichannel Wiener filter is able to protect
the interaural time difference (ITD) cues while achieving noise
reduction [20], [21] though a tradeoff between noise reduction
and preservation of the binaural cues seems inevitable.

In this paper, we take a different approach to binaural noise re-
duction in stereo systems. We first combine the stereo inputs to-
gether to form a complex signal: its real part corresponds to the
stereo’s left-channel signal and its imaginary part corresponds
to the stereo’s right-channel signal. By doing so, the binaural
noise reduction problem is converted to one of complex linear
filtering. We then apply the so-called widely linear estimation
theory to derive optimal binaural noise reduction filters. These
filters have the potential to fully take advantage of the noncir-
cularity of the complex speech signal in order to achieve noise
reduction while controlling the speech distortion and preserving
the spatial information. With this new formulation, various noise
reduction filters can be derived. We will show how to derive the
Wiener, minimum variance distortionless response (MVDR),
maximum SNR, and tradeoff filters. Experimental results will
be provided to illustrate the effectiveness of these filters. Note
that the optimal noise reduction filters derived in this paper may
also be obtained through the use of a multichannel noise re-
duction framework with a proper formulation, but the approach
taken here provides a more convenient way to define the objec-

tive functions and performance measures. Furthermore, it makes
the derivation of the different filters and their evaluation much
easier.

The rest of this paper is organized as follows. In Section II,
we formulate the binaural noise reduction problem in stereo
systems. We then briefly review the widely linear estimation
theory and show how this theory can be applied to the bin-
aural noise reduction problem in Section III. Section IV presents
some performance measures that can be used to evaluate bin-
aural noise reduction. In Section V, we discuss different noise
reduction filters. Section VI presents some experiments to vali-
date the theoretical derivations. Finally, we give our conclusions
in Section VII.

II. SIGNAL MODEL

In this paper, we consider the signal model in which two mi-
crophones (that we refer to as right and left) capture a source
signal convolved with acoustic impulse responses in some noise
field. The signals received at the right and left microphones, at
the discrete time-index , are then expressed as

(1a)

(1b)

where [resp. ] is the impulse response from the un-
known speech source to the microphone on the right (resp.
left), stands for linear convolution, and [resp. ] is
the additive noise at the microphone on the right (resp. left). We
assume that all the signals , , , and are
zero mean and and are uncorrelated with
and . The two noise signals and can be ei-
ther uncorrelated or correlated (e.g., from a same point source),
but they are assumed to be nonspeech and more stationary than
speech so that their statistics can be estimated with the help of a
voice activity detector (VAD). This model can be seen as a par-
ticular case of the general problem of microphone arrays [1],
[2], [22].

In this paper, we consider the problem of recovering the sig-
nals and given the observations and .
This means that the desired signals in our problem are the speech
signals received at the right and left microphones. It is clear
then that we have two objectives. The first one is to attenuate
the contribution of the noise terms and as much as
possible. The second objective is to preserve and
with their spatial information, so that with the enhanced signals,
along with our binaural hearing process, we will still be able to
localize the source .

We have stereo signals in model (1); but we believe that it is
more convenient to work in the complex domain in order that
the original (stereo) problem is transformed to a single-channel
noise reduction processing. Indeed, from the two real micro-
phone signals given in (1a) and (1b), we can form the complex
microphone signal as

(2)

where , is the complex de-
sired signal, and is the complex ad-
ditive noise. Now, our problem may be stated as follows: given
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the complex microphone signal, , which is a mixture of two
uncorrelated complex signals and , our goal is to pre-
serve (i.e., our desired signal) while minimizing .

The signal model given in (2) can be put into a vector form if
we accumulate successive samples

(3)

where

(4)

is a vector of length , superscript denotes transpose of a
vector or a matrix, and , and are defined in a similar
way to . Since and are uncorrelated by assump-
tion, the correlation matrix (of size ) of the noisy signal is

(5)

where denotes mathematical expectation, the super-
script denotes the conjugate-transpose operator, and

and are
the correlation matrices of and , respectively.

III. WIDELY LINEAR MODEL

As can be noticed from the model given in (2), we deal with
complex random variables. A very important statistical charac-
teristic of a complex random variable (CRV) is the so-called
circularity property or lack of it (noncircularity) [23], [24]. A
zero-mean CRV, , is circular if and only if the only nonnull
moments and cumulants are the moments and cumulants con-
structed with the same power in and [25], [26], where the
superscript denotes complex conjugation. In particular, is
said to be a second-order circular CRV (CCRV) if its so-called
pseudo-variance [23] is equal to zero, i.e., , while
its variance is nonnull, i.e., . This means that the
second-order behavior of a CCRV is well described by its vari-
ance. If the pseudo-variance is not equal to 0, the CRV
is then noncircular. A good measure of the second-order circu-
larity is the circularity quotient [23] defined as the ratio between
the pseudo-variance and the variance, i.e.,

(6)

It is easy to show that . If , is a second-
order CCRV; otherwise, is noncircular, and a larger value of

indicates that the CRV is more noncircular.
Now, let us examine whether the complex desired signal,

, is second-order circular or not. We have

(7)
where is the variance of . One can check

from (7) that the CRV is second-order circular (i.e.,
) if and only if

and (8)

Since the signals and come from the same source,
they are in general correlated. As a result, the second condition
in (8) should not be true. Therefore, we can safely state that
the complex desired signal, , is noncircular, and so is the
complex microphone signal, . If we assume that the noise
terms at the two microphones are uncorrelated and have the
same power then [i.e., is a second-order CCRV].

Since we deal with noncircular CRVs as demonstrated above,
the classical linear estimation technique [27], [28], which is de-
veloped for processing real signals or CCRVs, cannot be ap-
plied. Instead, an estimate of should be obtained using the
widely linear (WL) estimation theory as [24], [29]

(9)

where and are two complex finite-impulse-response (FIR)
filters of length and

(10)

(11)

are the augmented WL filter and observation vector, respec-
tively, both of length . We can rewrite (9) as

(12)

where and are defined in a similar way to ,
is a filtered version of the desired signal and its

conjugate of successive time samples, and
is the residual noise. From (12), we see that depends on the
vector . However, our desired signal at time is only
[and not the whole vector ]; so we should decompose the
vector into two orthogonal vectors: one corresponding to
the desired signal at time and the other corresponding to the
interference. Let us first decompose and separately.

The vector can be written as

(13)

where

(14)

is the (normalized) correlation vector (of length ) between
and ,

(15)

is the correlation coefficient between and with
, and

(16)
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is the interference signal vector. Obviously, is correlated
with and

(17)

so is uncorrelated with .
Similarly, we have

(18)

where

(19)

is the (normalized) correlation vector (of length ) between
and

(20)

is the correlation coefficient1 between and with
, and

(21)

is the interference signal vector. Clearly, is correlated
with , while and are uncorrelated since

(22)

Combining (13) and (18), we get

(23)

where

(24)

(25)

is correlated with the desired signal, , and
will contribute to its estimation, so we call it the desired signal
vector. In comparison, is uncorrelated with , and will
interfere with the estimation, so we call it the interference signal
vector.

Substituting (23) into (12), we obtain

(26)

where is the filtered desired signal and
is the residual interference. We observe that

the estimate of the desired signal at time is the sum of three

1Note that � � � , which is the circularity quotient for the complex signal
����.

terms that are mutually uncorrelated. Therefore, the variance of
is

(27)

where

(28)

(29)

(30)

is the correlation matrix (whose rank
is equal to 1) of , and ,

, are the correla-
tion matrices of , , and , respectively.

It is clear from (26) that the objective of our noise reduction
problem is to find optimal filters that can minimize the effect of

while preserving the desired signal , but be-
fore deriving such filters, we first give some very useful perfor-
mance measures for the evaluation of the time-domain binaural
noise reduction problem with the WL model.

IV. PERFORMANCE MEASURES

How to assess noise reduction filters is a very important issue.
In this section, we give some measures that will be used in this
paper to evaluate the noise reduction performance. The first and
most fundamental one is the signal-to-noise ratio (SNR). The
input SNR is defined as

(31)

where is the variance of the complex additive
noise.

To quantify the level of noise remaining at the output of the
complex WL filter, we define the output SNR as the ratio of the
variance of the filtered desired signal over the variance of the
residual interference-plus-noise,2 i.e.,

(32)
where

(33)

is the interference-plus-noise covariance matrix. The objective
of the noise reduction filter is to make the output SNR greater
than the input SNR so that the quality of the noisy signal will be
enhanced. For the particular filter , where is the first
column of the identity matrix of size , we have

(34)

2In this paper, we consider the interference as part of the noise in the defini-
tions of the performance measures.
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With the filter , the SNR cannot be improved.
Now, let us introduce the quantity , which is de-

fined as the maximum output SNR that can be achieved through
filtering so that

(35)

It can be checked from (32) that this quantity is equal to the
maximum eigenvalue of the matrix , i.e.,

(36)

The filter that can achieve is called the maximum
SNR filter and is denoted by . It is easy to see from (36) that

is the eigenvector corresponding to the maximum eigen-
value of . Clearly, we have

(37)

Since the rank of the matrix is equal to 1, we also have

(38)

where denotes the trace of a square matrix.
The noise reduction factor [30], [31] quantifies the amount

of noise that is rejected by the filter. This quantity is defined as
the ratio of the variance of the noise over the variance of the
interference-plus-noise remaining after the filtering operation,
i.e.,

(39)

The higher is the value of , the more the noise is reduced.
This factor is expected to be lower bounded by 1 for optimal
filters.

In practice, the WL filter may distort the desired signal. In
order to evaluate the level of this distortion, we define the speech
reduction factor [27] as the variance of the desired signal over
the variance of the filtered desired signal, i.e.,

(40)

An important observation is that the design of a filter that does
not distort the complex desired signal requires the constraint

(41)

Thus, the speech reduction factor is equal to 1 if there is no dis-
tortion and expected to be greater than 1 when distortion occurs.

By making the appropriate substitutions, one can derive the
relationship among the four previous measures:

(42)

When no distortion occurs in the desired signal, the gain in SNR
coincides with the noise reduction factor. Expression (42) indi-
cates the equivalence between gain/loss in SNR and distortion.
In other words, a gain in SNR can be achieved only if the de-
sired signal and/or noise are/is distorted.

Another useful performance measure is the speech distortion
index [30], [31] defined as

(43)

The speech distortion index is always greater than or equal to 0
and should be upper bounded by 1 for optimal noise reduction
filters. The higher is the value of , the more the desired
signal is distorted.

V. OPTIMAL FILTERS

In this part, we derive the optimal filters for binaural noise
reduction in stereo systems. For that, we need to derive first
the mean-square error (MSE) criterion and its relation with the
MSEs of speech distortion and residual interference-plus-noise.

We define the error signal between the estimated and desired
signals as

(44)

which can be written as the sum of two uncorrelated error sig-
nals

(45)

where

(46)

is the signal distortion due to the WL filter and

(47)

represents the residual interference-plus-noise.
The MSE is then

(48)

where

(49)

and

(50)

For the particular filter , the MSE is

(51)
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so there is neither noise reduction nor speech distortion. We can
now define the normalized MSE (NMSE) as

(52)

where

(53)

(54)

This shows the relationship between the MSEs and the perfor-
mance measures defined in the previous section.

It is clear that the objective of noise reduction with the WL
model is to find optimal WL filters that would either mini-
mize or minimize or subject to some
constraint.

A. Wiener

The Wiener filter is easily derived by taking the gradient of
the MSE, , with respect to and equating the result to
zero

(55)

Using the fact that , we can rewrite (55) as

(56)

Since

(57)

we also have

(58)

It can be verified from Section III that

(59)

Determining the inverse of from (59) with the Woodbury’s
identity

(60)

and substituting the result into (58) leads to another interesting
form of the Wiener filter

(61)

that we can rewrite as

(62)

Using (61), we deduce that the output SNR of the Wiener
filter is

(63)

and the corresponding speech distortion index is a clear function
of the maximum output SNR

(64)

So, the higher is the value of , the less the desired
signal is distorted.

Clearly,

(65)

since the Wiener filter maximizes the output SNR. It is of great
interest to observe that the two filters and both max-
imize the output SNR and they are equivalent up to a scaling
factor.

With the Wiener filter, the noise reduction factor is

(66)

Substituting (64) and (66) into (52), we find the minimum
NMSE (MNMSE):

(67)

B. Minimum Variance Distortionless Response

The celebrated minimum variance distortionless response
(MVDR) filter proposed by Capon [32], [33] can be derived in
this context by minimizing the MSE of the residual interfer-
ence-plus-noise, , with the constraint that the desired
signal is not distorted. Mathematically, this is equivalent to

subject to (68)

for which the solution is

(69)
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that we can rewrite as

(70)

Obviously, we can rewrite the MVDR as

(71)

The Wiener and MVDR filters are related as follows:

(72)

where

(73)

Here again the two filters and are equivalent up to
a scaling factor. From a theoretical point of view, this scaling
is not significant as it does not affect the output SNR, but from
a practical point of view it can be important since it is time-
varying and can cause discontinuity in the residual noise level.
Therefore, it is essential to have this scaling factor right from
one frame to another in order to avoid large distortions. There-
fore, it is recommended to use the MVDR filter rather than the
Wiener filter in speech enhancement applications.

It is clear that we always have

(74)

(75)

(76)

(77)

and

(78)

C. Tradeoff

In the tradeoff approach, we try to maintain a compromise be-
tween noise reduction and speech distortion. Here we minimize
the speech distortion index with the constraint that the noise re-
duction factor is equal to a positive value that is greater than 1.
Mathematically, this is equivalent to

subject to (79)

where to ensure that we get some noise reduction.
By using a Lagrange multiplier, , to adjoin the constraint
to the cost function, we easily deduce the tradeoff filter

(80)

where the Lagrange multiplier satisfies .
Setting leads to the Wiener filter while taking ,
gives the MVDR. By playing on the value of , we can make a
tradeoff between the amount of noise reduction and the amount
of speech distortion. However, the output SNR of the tradeoff
filter is independent of and is identical to the output SNR of
the Wiener filter, i.e.,

(81)

Again, we observe here as well that the tradeoff and Wiener
filters are equivalent up to a scaling factor.

VI. EXPERIMENTAL RESULTS

We have carried out a number of experiments to study the
previously developed noise reduction filters in practical acoustic
environments under different operation conditions. In this sec-
tion, we will present some of the results, which highlight the
merits and limitations inherent in each noise reduction filter, and
justify what we learned through theoretical analysis in the pre-
vious sections.

A. Experimental Setup

The experiments were conducted with the impulse responses
measured in the varechoic chamber at Bell Labs [34], [35]. The
chamber is a rectangular room, which measures 6700 mm long
by 6100 mm wide by 2900 mm high and is equipped with 368
electronically controlled panels. Each panel consists of two per-
forated sheets whose holes, if aligned, expose sound absorbing
material (fiberglass) behind, but if shifted to misalign, form a
highly reflective surface. Each panel can be individually con-
trolled so that the holes on a particular panel are either fully open
(absorbing) or fully closed (reflective). As a result, a total of
different room characteristics can be generated by varying the
binary states of the 368 panels in different combinations.

A diagram of the floor layout of the experimental setup is il-
lustrated in Fig. 1. For convenience, positions in the floor plan
are designated by ( , ) coordinates with reference to the north-
west corner and corresponding to millimeters along the (north,
west) walls. A stereo system with two microphones and two
loudspeakers is configured. The two microphones are located
respectively at (3437, 500) and (3537, 500) and their outputs are
processed and then sent to the two loudspeakers (which are not
shown in the figure) for listening. Another loudspeaker, which
plays back a speech signal prerecorded from a female talker, is
used to simulate a moving speech source and it moves back and
forth from positions P1 to P7 as shown in Fig. 1. The seven po-
sitions are uniformly spaced along the line with the
first position P1 at (337, 1938) and the last position P7 at (6337,
1938). Note that the elevation for microphones is 1400 while it
is 1600 for source positions.

To make the experiments repeatable, the acoustic channel im-
pulse responses were measured from the seven source positions
to the two microphones. The measurement was carried out with
a sampling rate of 8 kHz when 89% of the chamber panels were
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Fig. 1. Floor layout of the experimental setup in the varechoic chamber (co-
ordinate values measured in millimeters). The two microphones are located at
(3437, 500) and (3537, 500) respectively (with � � ����). A loudspeaker is
placed at one of the seven positions from P1 to P7 to simulate a moving speech
source. The seven positions are uniformly spaced along the line connecting P1
and P7 (with � � ����).

Fig. 2. The impulse responses (first 0.1 s) from the position P1 to the two mi-
crophones that are measured when 89% of the varechoic chamber panels are
open and the corresponding reverberation time � is approximately 0.24 s. The
sampling rate is 8 kHz.

open (corresponding to a reverberation time of approxi-
mately 0.24 s). As an example, Fig. 2 plots the two impulse re-
sponses measured from P1 to the two microphones. The differ-
ence between the two impulse responses determines the spatial
effect of the sound source at position P1.

The microphone outputs were generated by convolving
the source signal with the corresponding measured impulse
responses and noise was then added to the convolved results
to control the SNR level. The source signal used in our ex-
periments was recorded from a female talker in a quiet office
room. It was sampled at 8 kHz. The overall length of the signal
is approximately 4 minutes. To simulate a moving source, we
changed the source position (i.e., used a new set of impulse re-
sponses) every 4.3 s first from P1 to P7 and then back and forth.
Each time the movement was restricted to the position immedi-
ately next to the current one. Fig. 3 shows the waveforms of the
two microphones’ outputs (only the first 10 s) in the absence

Fig. 3. First 10-s signals of the stereo system and their spectrograms. (a) Left-
channel speech. (b) Spectrogram of the left-channel speech. (c) Right-channel
speech. (d) Spectrogram of the right-channel speech.

Fig. 4. Short-time cross-correlation function between the left- and
right-channel speech signals. It is computed using a short-time average
with a window length of 64 ms (no overlap).

of noise and the corresponding spectrograms. To visualize the
spatial sound effect, we computed the cross-correlation func-
tion between the two channels every 64 ms using a short-time
average with a frame size of 64 ms. The results are plotted in
Fig. 4, where the peak of the cross-correlation function at each
time corresponds to the current source position.

The noisy speech is obtained by adding noise to the speech
where the noise signal is properly scaled to control the input
SNR level. We consider two types of noise: a computer gener-
ated white Gaussian random process and a babble noise signal
recorded in a New York Stock Exchange (NYSE) room. The
NYSE noise was also digitized with a sampling rate of 8 kHz.
Compared to the Gaussian random noise which is stationary and



2268 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 8, NOVEMBER 2011

white, the NYSE noise is nonstationary and colored. It consists
of sounds from various sources such as electrical fans, telephone
rings, and even some background speech. Note that we do not
have actual stereo recordings of the NYSE noise that matches
our system configuration. Instead, we take two independent seg-
ments of this noise and add them to the two microphone signals.

B. Estimation of Correlation Matrices and Vectors

The implementation of the noise reduction filters derived in
Section V requires the estimation of the correlation matrices

, , and , the correlation vector , and the variance .
Computation of is relatively easy because the noisy signal
vector is accessible, but we need a noise estimator or a
VAD in practice to compute all the other parameters. While it is
a very important issue (see [36] and references therein), how to
effectively estimate the noise or its statistics in a stereo system
is not the main thrust of this paper. So, we will set aside this
issue and directly compute the noise statistics from the noise
signal in the following experiments. In this way, we can focus
on illustrating the basic ideas of how to achieve binaural noise
reduction. Specifically, at each time instant , an estimate of the
matrices and are computed using the most recent 640
samples (40-ms long) of the noisy and clean signals, respec-
tively, with a short-time average. The matrix is also com-
puted using a short-time average; but noise is more stationary
than speech, so the matrix is computed using 1280 samples
(80-ms long). Then all the other parameters are computed in the
following way: is taken as the first element of and is
equal to the first column of normalized by .

C. Computation of the Inverse Correlation Matrices

To implement the noise reduction filters given in Section V,
we need to compute the inverse of either or . The size
of both and is ; the complexity of finding
their inverse is, therefore, in the order of , which is very
high. A slightly more efficient way to invert these matrices can
be achieved through partitioning the correlation matrices into a
block form. Take, for example, , which can be written into
the following partitioned form:

(82)

where . Now
assuming that is nonsingular, which is true in practice, and
denoting the Schur complement of in as

(83)

we can write the inverse matrix of into the following form:

(84)

Using the right-hand side of (84) to compute , we need to
compute the inverse of and , both of size , which
can be implemented more efficiently than directly computing
the inverse of the matrix.

Fig. 5. Performance of the Wiener and MVDR filters as a function of the filter
length, �, in the white Gaussian noise case with ���� � �� dB.

D. Comparison Between the Wiener and MVDR Filters

We derived both the Wiener and MVDR filters in Section V.
A legitimate question one would ask is: which filter would per-
form better and more consistently in practice? In this experi-
ment, we compare the two filters for binaural noise reduction in
the stereo case. With the different correlation components com-
puted using the method described in the previous subsection, we
implemented the Wiener filter using (58) and the MVDR filter
according to (71). We used the output SNR and speech distor-
tion index defined in Section IV as the performance measures
to evaluate the two filters. The two performance measures were
computed in a global manner, i.e., with the constructed noise re-
duction filter and the computed correlation vector at each time
instant, we first estimate the three signals , , and

. A long-time average was then used to replace the ex-
pectation operation in (32) and (43) to compute the output SNR
and speech distortion index. The results as a function of the filter
length for the white Gaussian noise case (with an input SNR
of 10 dB) are depicted in Fig. 5. It is seen that the output SNR
of both the Wiener and MVDR filters increases with the filter
length ; so the longer the filter, the more the noise reduction,
but once the value of is larger than 60, further increasing
does not lead to much SNR improvement. Therefore, 60 is a suf-
ficient value of the filter length for both the Wiener and MVDR
filters with a sampling rate of 8 kHz. A larger length will not
significantly improve the speech quality but would dramatically
increase the complexity of the algorithm. It is also seen that
the Wiener filter yields a higher output SNR than the MVDR
filter, but the latter does not introduce speech distortion; as seen
from Fig. 5(b), the speech distortion index for the MVDR is ap-
proximately 0. Comparatively, the value of the speech distortion
index for the Wiener filter is much larger even though its value
decreases as increases.
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Fig. 6. (a) The speech waveform and (b) the scaling factor � between the
Wiener and MVDR filters given in (73) with � � �� and ���� � �� dB.

In Section V, we showed that both the MVDR and Wiener
filters maximize the output SNR. The only difference between
these two filters is a scaling factor, given in (73), which depends
on the statistics of the noisy and desired speech signals. If this
scaling factor is time-invariant, the two filters should have the
same performance. However, speech signals are always nonsta-
tionary and the background noise can possibly be nonstationary
too. So, we need to estimate all the signal correlation matrices
and vectors on a short-time basis in practice. As a result, the cor-
relation matrices and vectors that are used to construct the noise
reduction filters are time-varying, which subsequently make the
scaling factor change over time, thereby causing performance
difference between the Wiener and MVDR filters. To study this
difference, we examine the scaling factor. We set the filter length

to 40 and the rest of the experimental conditions are the same
as in the previous experiment. The scaling factor is computed
according to (73) and the results are plotted in Fig. 6. It is seen
that the value of the scaling factor is large (close to 1) during the
presence of speech; but it is very small (close to 0) in silence pe-
riods. This illustrates that the Wiener and MVDR filters behave
almost the same during the presence of speech while the Wiener
filter is more aggressive in suppressing silence periods. As a re-
sult, the Wiener filter has more overall noise reduction, thereby
yielding a higher output SNR, if we evaluate the performance on
a global basis, but this comes with a cost: discontinuity of the
background noise level in the output signal, i.e., the noise level
is higher in the presence of speech than that in the absence of
speech. This discontinuity is manifested in the form of speech
distortion and that explains why the Wiener filter has a much
higher value of the speech distortion index.

We also compared the Wiener and MVDR filters in different
SNR conditions. The results for are depicted in Fig. 7.
It is seen that in the studied SNR range between 0 and 30 dB,
both filters can improve the SNR, but the SNR improvement
decreases as the input SNR increases. This, of course, makes
sense since as the input SNR increases, there is less noise to
be reduced. Comparatively, the Wiener filter yields a higher
output SNR, particularly in low input SNR conditions, which
is, again, due to the fact that the Wiener filter suppresses more

Fig. 7. Performance of the Wiener and MVDR filters as a function of the input
SNR in the white Gaussian noise case with � � ��.

noise than the MVDR filter during the absence of speech. The
MVDR filter does not introduce speech distortion, as can be seen
in Fig. 7(b) where the value of the speech distortion index for
the MVDR filter is approximately 0, regardless of the input SNR
level. In comparison, the Wiener filter introduces speech distor-
tion, which is inversely proportional to the input SNR. One can
notice from Fig. 7 that the performance difference between the
Wiener and MVDR filters is marginal when the input SNR is
high (e.g., dB). So, if the application environments are not
very noisy, we can choose to use either of the two filters.

E. Performance of the Tradeoff Filter

A tradeoff filter was developed in Section V, where a param-
eter was introduced to control the compromise between the
amount of noise reduction and the degree of speech distortion.
We have shown that the tradeoff filter turns to the MVDR and
Wiener for equal to 0 and 1, respectively. In this experiment,
we validate the tradeoff filter through experiments. Based on
the previous results, we set the filter length to 40. The perfor-
mance of the tradeoff filter as a function of in both the white
Gaussian and NYSE noise conditions (with an input SNR of
10 dB) is plotted in Fig. 8. As expected, the output SNR in-
creases as increases and so is the speech distortion index.
It is also noticed in Fig. 8 that the Wiener ( ), MVDR
( ), and tradeoff filters have achieved a better noise re-
duction performance (a higher output SNR and a lower speech
distortion index) in the NYSE noise than in the white Gaussian
noise. This result is somehow unexpected as we know from the
single-channel noise reduction that babble noise is in general
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Fig. 8. Performance of the tradeoff filter as a function of the parameter � in the
white Gaussian and NYSE noise cases with � � �� and ���� � �� dB.

Fig. 9. First 10-s noisy signals of the stereo system and their spectrograms
in the NYSE noise with ���� � 	 dB. (a) Left-channel noisy speech. (b)
Spectrogram of the left-channel noisy speech. (c) Right-channel noisy speech.
(d) Spectrogram of the right-channel noisy speech.

more difficult to deal with than the stationary white Gaussian
noise. The reason for this can likely be explained as follows.
1) In white Gaussian noise, the noise signals received at the
two microphones are completely uncorrelated while we noticed
some small correlation between the noise signals at the two

Fig. 10. Short-time cross-correlation function between the left- and
right-channel noisy signals. It is computed using a short-time average
with a window length of 64 ms (no overlap).

Fig. 11. First 10-s enhanced signals of the stereo system with the MVDR filter
and their spectrograms in the NYSE noise with ���� � 	 dB. (a) Left-channel
enhanced speech. (b) Spectrogram of the left-channel enhanced speech. (c)
Right-channel enhanced speech. (d) Spectrogram of the right-channel enhanced
speech.

microphones in the NYSE noise conditions. This correlation,
though very small, may help improve binaural noise reduction.
2) The most difficult problem in dealing with babble noise is
the estimation and tracking of the noise statistics. In our study,
we directly computed the noise statistics from the noise signal,
thereby avoiding the estimation issue. In reality, some error in
noise statistics estimation is unavoidable and the error would
grow as the noise becomes more nonstationary, which will sub-
sequently lead to degradation in noise reduction performance.
Once noise estimation error is taken into account, whether the
developed filters can still achieve better performance in NYSE
than in Gaussian noise needs further verification, but we will



BENESTY et al.: BINAURAL NOISE REDUCTION IN THE TIME DOMAIN WITH A STEREO SETUP 2271

Fig. 12. Short-time cross-correlation function between the left- and
right-channel enhanced signals with the MVDR filter. It is computed
using a short-time average with a window length of 64 ms (no overlap).

leave this problem for the future study as the noise estimation
problem is well beyond the scope of this paper.

F. Illustration of Noise Reduction Performance

We selected one set of experiments to illustrate the perfor-
mance of the MVDR filter derived in Section V. The conditions
for this set is , the input SNR is 5 dB, and the background
noise is the NYSE noise. The waveforms and spectrograms of
the noisy stereo signals are shown in Fig. 9 and a 3-D plot of
the cross-correlation function between the two noisy outputs is
shown in Fig. 10. Comparing Figs. 3 and 9, one can see that the
presence of noise has significantly changed the spectra of the
clean speech. Furthermore, we see that the noise has modified
the sound spatial effect by comparing Figs. 4 and 10.

The enhanced stereo signals by the MVDR filter is plotted
in Fig. 11 and the corresponding 3-D plot of the cross-corre-
lation function between the enhanced stereo signals is plotted
in Fig. 12. It is clearly seen that the MVDR filter has not only
enhanced the speech spectrogram but also recovered the spatial
effect.

VII. CONCLUSION

This paper focused on the binaural noise reduction problem
in stereo systems that have two inputs and two outputs. By
merging the two real input signals into one complex signal, we
formulated the problem into a WL filtering framework. Under
this new framework, we discussed some important performance
measures and then derived the maximum SNR, Wiener, MVDR,
and tradeoff filters. We discussed the relationship among these
filters. In particular, we showed that all filters are equivalent up
to a scaling factor. However, this scaling factor is in general
time-varying because of speech nonstatonarity and can cause
significant discontinuity in the residual noise level that is un-
pleasant to listen to. In order to avoid such discontinuity, it is
essential to have the scaling factor right from one frame to an-
other. For this purpose, it is recommended to use the MVDR
filter in practice. We also showed that the derived filters do not
only enhance the noisy speech, but also recover the spatial ef-
fects of the clean speech source.
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