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Time Difference of Arrival Estimation Exploiting
Multichannel Spatio-Temporal Prediction
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Abstract—To localize sound sources in room acoustic environ-
ments, time differences of arrival (TDOA) between two or more
microphone signals must be determined. This problem is often
referred to as time delay estimation (TDE). The multichannel
cross-correlation-coefficient (MCCC) algorithm, which is an
extension of the traditional cross-correlation method from two-
to multiple-channel cases, exploits spatial information among
multiple microphones to improve the robustness of TDE. In this
paper, we propose a multichannel spatio-temporal prediction
(MCSTP) algorithm, which can be viewed as a generalization of
the MCCC principle from using only spatial information to using
both spatial and temporal information. A recursive version of
this new algorithm is then developed, which can achieve similar
performance as MCSTP, but is computationally more efficient.
Experimental results in reverberant and noisy environments
demonstrate the advantages of this new method for TDE.

Index Terms—Microphone arrays, multichannel recursive
prediction, multichannel spatio-temporal prediction (MCSTP),
pre-whitening, spatial prediction, spatio-temporal prediction, time
delay estimation (TDE).

I. INTRODUCTION

T IME delay estimation (TDE), which aims at estimating
the relative time difference of arrival (TDOA) using the

signals received at an array of sensors, plays an important role in
radar, sonar, seismology, and voice communications for local-
izing and tracking radiating sources. This paper focuses on the
problem of TDE in room acoustic environments using micro-
phone arrays, which is a critical problem for teleconferencing
applications. Commonly used approaches to this problem in-
clude the generalized cross-correlation (GCC) method [1], [2],
the blind channel identification based techniques [3]–[6], the
information theory based algorithms [7], and the methods ex-
ploiting some unique characteristics of speech signals [8]. Due
to its simplicity and ease of implementation, GCC [1], [2] is
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popularly used in the existing systems. However, the GCC al-
gorithm is sensitive to reverberation and tends to deteriorate or
even break down when reverberation is strong.
In order to improve the robustness of TDE with respect to

noise and reverberation, the so-called multichannel cross-cor-
relation-coefficient (MCCC) method was developed [9], [10].
Such algorithm exploits the redundancy among multiple mi-
crophones to deal with background noise and reverberation,
thereby enhancing TDE between two sensors (typically the
reference sensor and the sensor next to the reference). The
robustness of MCCC with respect to noise is greatly improved
as compared to the traditional cross-correlation method that
uses only two sensors as demonstrated in [9]. However, the
MCCC algorithm is still sensitive to reverberation. One way to
make MCCC more immune to reverberation is to pre-whiten
the microphone signals [11] before computing MCCC. This
improved version of MCCC, now using both spatial and tem-
poral information, can be viewed as a generalization of the
phase transform (PHAT) method from two- to multiple-channel
cases. But, this way of using spatial and temporal information
may not be optimal as will become clear later on.
In this paper, we propose a new multichannel spatio-tem-

poral prediction (MCSTP) algorithm for TDE, which naturally
exploits spatio-temporal information in an optimal way in the
minimum-mean-square-error (MMSE) sense.We also develop a
recursive version of MCSTP, which can achieve similar perfor-
mance as MCSTP, but is computationally more efficient. Exper-
iments demonstrate the advantages of the proposed algorithm
for TDE in reverberant and noisy environments.

II. TIME DELAY ESTIMATION BY EXPLOITING MCSTP

A. Signal Model

Assume that there is a broadband sound source in the far field
which radiates a plane wave, and we use an array of micro-
phones to collect the signals as shown in Fig. 1. If we choose
the first microphone as the reference point, the signal captured
by the th microphone at time is then written as

(1)
where , , are the attenuation factors due to
propagation effects, is the unknown zero-mean and reason-
ably broadband source signal, is the propagation time from the
source to microphone 1, , is the additive noise at the th
microphone, which is assumed to be uncorrelated with both the
source signal and the noise observed at other microphones,
is the TDOA (i.e., relative delay) between the first and second
microphones due to the source, and is the relative delay
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Fig. 1. An equispaced linear array of microphones.

between microphones 1 and . The function depends not
only on but also on the microphone array geometry. In this
paper, we use an equispaced linear array. Therefore, we have

under the far-field assumption. With the
above signal model, the objective of TDE is to estimate the time
delay given the signals received at microphones.
For a hypothesized time delay , we use the time shifted

signal (when , it can be checked that the
desired signal components received at differentmicrophones are
aligned). To simplify the notation, let us write
as and define

(2)

where denotes the transpose of a vector or matrix.

B. Time Delay Estimation by Exploiting Spatial and Temporal
Forward Prediction

First, let us consider to predict using the most recent
vectors , i.e.,

(3)

where , , are the coefficient matrices
of the multichannel forward predictor, and is the prediction
order. The prediction error vector can then be written as

...

(4)

where

(5)

(6)

is the coefficient matrix [of size ] of the mul-
tichannel forward prediction-error filter, denotes the identity
matrix of size , and

(7)
is the time-shifted signal vector received at microphones. It
is easy to see that the coefficient matrix should satisfy the
following constraint:

(8)

where

(9)

and is a null matrix of size .
Now we can define the mean-square error (MSE) of the mul-

tichannel forward prediction as

(10)

where denotes the mathematical expectation, stands
for the trace of a matrix,

...
...

. . .
...

(11)

is the spatio-temporal correlation matrix of size
, and

(12)

In order to estimate , let us rewrite the constraint given
in (8) into the following form:

(13)

where

(14)

is a unit vector. Using a set of Lagrange multipliers to adjoin the
constraints (13) to the cost function (10), we get

L

(15)
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where vectors , , are the Lagrange mul-
tipliers. Taking the gradient of L with respect to and
equating the result to zero, we obtain the optimal coefficient
matrix for the multichannel forward prediction:

(16)

where we have assumed that thematrix is of full rank1.
Substituting the optimal prediction matrix into (4), we

obtain the optimal prediction error signal vector .
The cross-correlation matrix of the prediction error signals is
then

(17)
This matrix can be factorized as [9], [10]:

(18)

where

...
...

. . .
...

(19)

is a diagonalmatrix, , , is the th
diagonal element of the matrix , which corresponds to
the variance of the prediction error signal for the th channel,

...
...

. . .
...

(20)

is a symmetric and generally positive semi-definite matrix ,

(21)
is the correlation coefficient between the aligned prediction
error signals at the th and th microphones, ,

, is the th element of the matrix
.

Since the matrix is symmetric and positive semi-
definite, and its diagonal elements are all equal to one, it can be

1In practical applications, there are always noise and reverberation. So, the
signals from different microphones are not fully correlated and the matrix

is generally of full rank. However, in the ideal case where there is no
noise and reverberation, one microphone signal can be completely predicted by
the signal from another microphone. In this situation, the matrix may
be rank deficient if more than two microphones are used. If this unrealistic situa-
tion is a concern, one can circumvent the issue by finding the optimal prediction
matrix through minimizing ,
where is a weighting factor.

shown that [9], [10]

(22)

where stands for the determinant of a square matrix.
A natural way of using the multichannel cross-correlation

matrix in TDOA estimation is through the so-called MCCC [9],
[10], which measures the correlation among the prediction error
signals. Given the normalized MCSTP error correlation matrix

, we can now define the squared MCCC among the
aligned prediction error signals , ,
following the MCCC definition given in [9], i.e.,

(23)
Basically, the coefficient measures the amount

of correlation among the MCSTP error signals of all the
channels. This coefficient has the following properties: 1)

; 2) if two or more prediction error signals
are perfectly correlated, ; 3) if all the predic-
tion error signals are completely uncorrelated with each other,

; 4) if one of the prediction error signals is com-
pletely uncorrelated with all the other prediction error signals,
the will measure the correlation among those
remaining prediction error signals.
Given , the TDOA estimate can be obtained as

(24)

where is an estimate of , , and
is the maximum possible delay. Note that this method can be
extended to TDE of multiple sources by searching for multiple
peaks. In this paper, however, we focus only on TDE of a single
source.
We should point out that the estimator given in (24) is fun-

damentally different from that given in [9] though both use
the concept of MCCC. Specifically, the estimator in (24) uses
the MCSTP error signals to construct MCCC, while the esti-
mator in [9] forms MCCC directly using the microphone sig-
nals. Since there may exist self correlation among microphone
signals while there is no self correlation in theMCSTP error sig-
nals, the estimator in (24) is expected to have better performance
than that in [9], which will be demonstrated in the following
sections. Note that the variance of the prediction error signal
for each channel is a function of the parameter , and therefore
the denominator of the second term in (23) is very important;
however, it is negligible for the MCCC algorithm in [9] since
the variances of the microphone signals do not change with .

C. Analysis of the MCSTP Algorithm

In order to analyze the performance of MCSTP, we consider
to use a noise-free, reverberation signal model in this subsec-
tion. The signal received at the th microphone at time is
modeled as

(25)
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where is the impulse response from the unknown source
to the th microphone. The signals given in (25) can be

written into the following vector/matrix form (considering the
most recent signal samples)2

(27)

where

(28)

(29)

(30)

(31)

(32)

(33)

...
...

...
...

...

...
...

...
...

(34)

is a Sylvester matrix of size , , and
is the length of the longest acoustic impulse responses among
the channels , . Note that in
general, and the matrix shows how the microphone signals
are generated with the multichannel reverberation model [12].
If we use the most recent samples captured by each mi-

crophone to predict in a forward manner, the prediction
error is

(35)

where

(36)

The prediction errors of channels can be combined into a
vector, i.e.,

...

(37)

2Note that the zeros shared by all the impulse responses at the beginning are
removed. In order to better understand the MCCC based on the MCSTP, we
consider the case that corresponds to the direct path component of
according to Fig. 1, and

(26)

where is a very small positive number.

where

(38)

and

(39)

Then, the MSE of the multichannel forward prediction is
given by

(40)

Taking the gradient of with respect to the coefficient ma-
trix and equating the result to zero, we obtain the optimal
coefficient matrix

(41)
where denotes the Moore-Penrose pseudo inverse. Let us
introduce a newmatrix , which is basically the right-hand side
of (41), but replacing with , i.e.,

(42)
Notice that the th ( ) column of the matrix
corresponds to column of the matrix , and there-
fore the th column of the matrix corresponds to column

of the matrix .
We assume that a speech signal can be modeled as an auto-

regressive (AR) process excitated by white noise [13], and the
-transform of the AR process is , where (assuming that
the order of the AR process is for simplicity)

(43)

Then, the source signal vector can be expressed as

(44)

where

... (45)

is a companion matrix of size , and

(46)

Since the source signal and noise are assumed uncorrelated, we
can deduce from (44) that:

(47)

Let us further assume that: 1) thematrix
is positive definite, and denote ,
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where is an invertible matrix; 2) room transfer functions from
the source to multiple microphones do not share common zeros,
which makes the matrix be full row rank. Then, the matrix
in (42) can be simplified as

(48)
Given , we can now get the th column of the optimal coef-
ficient matrix (which is the th column of the
matrix ),

(49)

Finally, the prediction error of the th channel is obtained as

(50)

It can be seen from (50) that the prediction error is a whitened
version of the reverberant signal captured by a microphone; so
the condition number of the correlation matrix in (17)
is much smaller than that of the spatial correlation matrix corre-
sponding to theMCCC algorithm. It can also be found from (50)
that the reverberant components of the microphone signal are
eliminated, which indicates that this pre-whitening is optimal
in terms of robustness to reverberation. Therefore, the robust-
ness of the proposed MCSTP algorithm to reverberation can be
improved as compared to the MCCC algorithm with or without
pre-whitening. Notice that for the MCSTP-based TDOA esti-
mator in Section II-B, when , the signals of all the chan-
nels are aligned, indicating that all the , ,
are now direct path components for the corresponding channels.

D. Time Delay Estimation by Exploiting Spatial and Temporal
Backward Prediction

In backward prediction, the vector is predicted
using , i.e.,

(51)

where , , are the coefficient matrices of
the multichannel backward predictor. The error signal vector of
the multichannel backward prediction is written as:

...

(52)

where

(53)

is the coefficient matrix [of size ] of the mul-
tichannel backward prediction-error filter. It is obvious that the

matrix should satisfy

(54)

where

(55)

Following the same line of principles in Section II-B, we can
deduce the optimal coefficient matrix of the multichannel back-
ward prediction as

(56)

Substituting the optimal prediction matrix into (52), we
obtain the optimal prediction error signal vector .
The cross-correlation matrix of the corresponding prediction
error signals is then

(57)
Similar to the forward prediction case, we can define the

squared MCCC of the MCSTP error signals based on the
cross-correlation matrix and then estimate TDOA by
searching the lag time corresponding to the maximum of the
MCCC.

E. Time Delay Estimation Based on Recursive Spatio-Temporal
Prediction

It is observed from (11) that the spatio-temporal correlation
matrix has a high dimension; thus, finding its inverse
is computationally very expensive. In order to reduce the com-
putational complexity, we develop a recursive version of the
previous MCSTP algorithm by borrowing the basic idea in [14].
The algorithm is summarized in Table I. The detailed deriva-
tions are shown in the Appendix.
Besides the complexity advantage of the recursive version,

another benefit of using the recursive method is that it provides
the predictor of all different orders. This can provide a way to
determine the optimal order for the prediction, i.e., the optimal
value is reached if the prediction error is under a threshold. This
can be very useful in practice when the choice of the prediction
order is not easy to determine in advance.

F. Comparison of Computational Complexity

This subsection briefly compares the computational com-
plexity of the MCCC, MCCC with pre-whitening, MCSTP, and
recursive MCSTP algorithms. The computational complexity
is evaluated in terms of the number of real-valued multiplica-
tions/divisions required for implementation of each algorithm.
The number of additions/subtractions is neglected because
they are much quicker to compute in most generic hardware
platforms. Assume that the frame length is , the number
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TABLE I
TDE ALGORITHM BASED ON THE RECURSIVE MCSTP.

of multiplications for computing the inverse of a matrix of
size (using the LU decomposition) is assumed to
be [15], and the determinant of a matrix of size

is computed through LU decomposition, which re-
quires multiplications [15]. Then, the number
of multiplications required by the MCCC algorithm for each
frame is , and
that required by the MCCC algorithm with pre-whitening for
each frame is

One can check that the number of multiplications needed by
MCSTP with direct inverse is

while that required by the recursive MCSTP algorithm for each
frame, as shown in Table I, is

Fig. 2 plots the computational complexity of the four algorithms
as a function of the prediction order when a frame is processed,
where four microphones are considered (the frame length and

are shown in Section III). Clearly, the computational com-
plexity of the recursive algorithm is significantly lower than that
of MCSTP with direct inverse. It is seen that both the MCSTP
and recursiveMCSTP algorithms have a higher complexity than
the MCCC-type methods, but their performance is much better
as will be seen in Section III.

III. SIMULATION EXPERIMENTS

A. Experimental Environment

Experiments are carried out in a simulated room of size
7 m 6 m 3 m. An equispaced linear array consisting of six
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Fig. 2. Computational complexity of the MCCC, MCCC with pre-whitening,
proposed MCSTP, and recursive MCSTP algorithms when a frame is processed
where the frame length is 2048 samples and four microphones are considered.

omnidirectional microphones is used with the inter-element
spacing being 0.1 m. For ease of exposition, positions in the
room are designated by coordinates with reference
to the southwest corner of the room floor. The first and sixth
microphones of the array are at (3.25, 3.00, 1.40) and (3.75,
3.00, 1.40), respectively. The sound source is located at (2.49,
1.27, 1.40).
The impulse responses from the source to the six mi-

crophones are generated using the image model [16]. The
microphones’ outputs are obtained by convolving the source
signal with the corresponding generated impulse responses and
then adding zero-mean white Gaussian noise to the results to
control the signal-to-noise ratio (SNR).

B. Performance Criteria

In the simulations, the microphone signals are partitioned
into nonoverlapping frames with a frame length of 128 ms.
Each frame is windowed with a Hamming window, and a time
delay estimate is then obtained. Two performance metrics [17],
[18], namely the probability of anomalous estimates and the root
mean square error (RMSE) of nonanomalous estimates, are used
to evaluate the performance of the proposed algorithm. The fol-
lowing criterion is used to distinguish between an anomalous
and a nonanomalous estimates. For the th delay estimate , if
the absolute error , where is the true delay,
and is the signal self correlation time, the estimate is iden-
tified as an anomalous estimate. Otherwise, the estimate would
be deemed as a nonanomalous one [9], [10]. For the particular
source signals used in this study, such as speech and non-speech
signals, which is sampled at 16 kHz, is equal to 4.0 samples.
The RMSE of the nonanomalous estimates is defined as

(58)

where is the number of the nonanomalous estimates
for TDOA, and denotes the subset of the nonanomalous
estimates.

Fig. 3. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates versus the number ofmicrophones in amod-
erately reverberant environment ( ms). The prediction order is 80.

C. Results and Discussions

First of all, we assume that the source signal is a speech signal
from a female talker and the length of the signal is 2 minutes.
The total number of frames is 936 (the frame length is 2048
samples). The true time delay from the sound source to the first
two microphones is 2.0 samples.
The first set of experiments is to investigate the effectiveness

of the proposed MCSTP algorithm in reverberant but noise-free
environments. Fig. 3 shows the TDE results in a moderately
reverberant environment ( ms), where the prediction
order is set to 80. The probability of anomalous estimates and
the RMSE of nonanomalous estimates are plotted as a function
of the number of microphones, respectively. It is seen from
Fig. 3 that the performance of all the algorithms generally
increases with the number of microphones, which indicates
that more spatial redundancy can help improve the robustness
of TDE. The MCCC algorithm without pre-whitening is found
most sensitive to reverberation among the studied algorithms.
However, its performance is greatly improved when micro-
phone signals are pre-whitened (note that the MCCC algorithm
is basically a multichannel generalization of the PHAT algo-
rithm when a pre-whitening process is used). It is also observed
from Fig. 3 that the probability of anomalous estimates of the
MCSTP algorithm is less than one percent for all the different
conditions. For the case of two microphones, the MCSTP algo-
rithm has a smaller probability of anomalous estimates than the
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Fig. 4. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates versus . Four microphones are used,
and the prediction order is 80.

MCCC method with pre-whitening though both have a similar
value of RMSE of the nonanomalous estimates. When multiple
microphones are used, the probability of anomalous estimates
of MCSTP and MCCC with pre-whitening is similar. However,
the RMSE of nonanomalous estimates of the MCSTP algorithm
is smaller than that of the MCCC algorithm with pre-whitening.
This demonstrates the robustness of the proposed MCSTP
algorithm to reverberation. It is also seen from Fig. 3 that the
recursive MCSTP algorithm obtains similar performance as
MCSTP regardless of the number of microphones used.
Fig. 4 presents the TDE results as a function of the reverber-

ation time for the case where four microphones are used,
and the prediction order is again set to 80. It is seen from Fig. 4
that the MCCC algorithm with pre-whitening exhibits better ro-
bustness to reverberation as compared to its counterpart without
pre-whitening. It is also seen from Fig. 4 that the probability of
anomalous estimates of the MCSTP algorithm is comparable
to that of MCCC with pre-whitening; however, the RMSE of
nonanomalous estimates of the MCSTP algorithm is evidently
smaller than that of MCCC with pre-whitening. This further
demonstrates the robustness of the proposed MCSTP algorithm
to reverberation. It is also observed from Fig. 4 that the recur-
sive MCSTP algorithm obtains similar performance as MCSTP
regardless of the reverberation condition.
Fig. 5 depicts the TDE results versus the prediction order in

a moderately reverberant environment ( ms) where

Fig. 5. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates as a function of the prediction order in a
moderately reverberant environment ( ms). Four microphones are
used.

four microphones are used. It is seen from Fig. 5 that the prob-
ability of anomalous estimates of the MCSTP method and its
recursive version is small (less than one percent) and does not
change much, while the RMSE of nonanomalous estimates of
them decreases as the prediction order is increased, indicating
that properly increasing the prediction order can improve TDE
performance of the MCSTP method. It is also seen that the
MCSTP algorithm and its recursive version always achieve sim-
ilar performance.
The second set of experiments is to examine the performance

of the four studied TDE algorithms in the situations where there
are both noise and reverberation. Figs. 6 and 7 depict, respec-
tively, the TDE results versus SNR in a moderately (

ms) and a lightly ( ms) reverberant environ-
ments, where four microphones are used, and the prediction
order is again set to 80. When reverberation is dominant (e.g.,

dB for the moderate reverberation condition and
dB for the light reverberation condition), one can

see that both theMCSTP algorithm and theMCCCmethod with
pre-whitening obtain better performance than the MCCC algo-
rithm, again showing that using both the spatial and temporal
information can help improve robustness of TDE against rever-
beration. However, if noise ismore dominant (e.g., dB
for the moderate reverberation case and dB for
the light reverberation condition), the MCCC algorithm obtains
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Fig. 6. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates versus SNR in a moderately reverberant
environment ( ms). Four microphones are used and the prediction
order is 80.

better performance. This is understandable. The motivation of
usingMCSTP or pre-whitening is to remove the impact of signal
self correlation (either caused by reverberation or due to the fact
that the source signal is self correlated) on TDE. When spatially
and temporally white noise is very strong, it becomes difficult
to reliably estimate the predictor or the pre-whitening filter.
In the previous experiments, the source signals are assumed

to be speech. In the third set of experiments, we investigate the
case of non-speech source signals. To this end, we first setup
a recording system by a noisy urban road and record a traffic
noise signal. This traffic noise is then used as the source signal
to generate the microphone array outputs. Fig. 8 presents the
TDE results as a function of the reverberation time for the
case where four microphones are used with the prediction order
of 80. It is clearly seen from Fig. 8 that the MCSTP algorithm
produces better performance than the MCCC algorithm with or
without pre-whitening, which shows that the MCSTP algorithm
works not only for speech signals but for non-speech signals as
well.
We also carried out some experiments to study the impact

of different source positions on the TDE performance. When
the source position changes, the reverberation structure may
change significantly though the reverberation time stays
approximately the same. This will lead to some fluctuation in
the probability of anomalous estimates as well as the RMSE of

Fig. 7. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates versus SNR in a lightly reverberant envi-
ronment ( ms). Four microphones are used and the prediction order
is 80.

nonanomalous estimates for all the TDE algorithms [19]. How-
ever, the impact of source position on TDE performance is neg-
ligible as compared to that of noise and reverberation. There-
fore, the results are not plotted here to make the presentation
more concise.

IV. CONCLUSIONS

In this paper, a new TDOA estimator based on MCSTP is
developed. This new estimator can exploit both the spatial
and temporal information embedded in the multichannel mi-
crophone signals to improve TDOA estimation performance.
A theoretical analysis is presented to illustrate the underlying
reason why the MCSTP algorithm is robust to reverberation. A
recursive version of the MCSTP algorithm is also developed,
which can achieve similar performance as MCSTP, but is more
efficient in terms of computational complexity. Experiments
show that MCSTP is better than MCCC (using only spatial
information) in performance in the presence of reverberation,
indicating that using both spatial and temporal information
can help deal with reverberation. The MCSTP method is also
superior to MCCC combined with pre-whitening (using both
spatial and temporal information) in reverberant and noisy
environments, justifying that MCSTP can jointly use spatial
and temporal information in an optimal way.
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Fig. 8. Probability of (a) anomalous time delay estimates and (b) RMSE of
nonanomalous time delay estimates versus . Four microphones are used and
the prediction order is 80. The source signal is a traffic noise signal pre-recorded
by a busy urban main road.

APPENDIX
DERIVATIONS OF TDE ALGORITHM BASED

ON THE RECURSIVE MCSTP

The error signal vector of the multichannel forward predic-
tion is expressed as

(59)

where

(60)

is the coefficient matrix (of size ) of the multichannel
forward predictor, and

(61)

is the time-shifted signal vector received at the microphones.
Then, the MSE of the multichannel forward predictor is given
by

(62)

The derivative of with respect to the coefficient ma-
trix is

(63)

Thus, the Wiener-Hopf equations for the multichannel forward
prediction can be obtained as follows:

(64)

where is the optimal coefficient matrix of the multi-
channel forward prediction,

...
...

. . .
...

(65)

and

(66)

By employing the augmented correlation matrix of size
:

(67)

and the Wiener-Hopf equations for the multichannel forward
prediction, the augmented multichannelWiener-Hopf equations
for the multichannel forward prediction are derived as follows:

(68)

where

(69)

is the correlation matrix (of size ) of the forward pre-
diction error vector, with

(70)

Similar to the multichannel forward prediction, the error
signal vector of the multichannel backward prediction is written
as

(71)
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where

(72)

is the coefficient matrix (of size ) of the multichannel
backward predictor, and

(73)
is the time-shifted signal vector received at microphones.
Then, the Wiener-Hopf equations for the multichannel back-
ward prediction are achieved by minimizing the MSE of the
multichannel backward predictor:

(74)

where is the optimal coefficient matrix of the multi-
channel backward prediction, and

(75)

By employing the augmented correlation matrix of size
:

(76)

and the Wiener-Hopf equations for the multichannel backward
prediction, the augmented multichannelWiener-Hopf equations
for the multichannel backward prediction can be found:

(77)

where

(78)

is the correlation matrix (of size ) of the backward pre-
diction error vector, with

(79)

In order to find the recursive solution of the multichannel
Wiener-Hopf equations, let us construct two systems. One is
from (68), (75), and (76):

(80)

where

(81)

The other system is as follows by using (66), (67), and (77):

(82)

where

(83)

If we post-multiply both sides of (82) by ,
we get

(84)

Subtracting (84) from (80) results

(85)

Comparing (68) with (85), we can obtain the following two
recursions:

(86)
and

(87)
Similarly, if both sides of (80) are post-multiplied by

, we obtain:

(88)

Subtracting (88) from (82) yields

(89)
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Comparing (77) with (89), we can again obtain the following
two recursions:

(90)
and

(91)
From the prediction error vectors and

, we get:

(92)

It follows that

(93)

Similarly, we have

(94)

It is seen from (93) and (94) that the following relation holds:

(95)

It should be straightforward then how to deduce the recursive
algorithm given in Table I.
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