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This paper addresses the problem of noise reduction in the time domain where the clean speech

sample at every time instant is estimated by filtering a vector of the noisy speech signal. Such a

clean speech estimate consists of both the filtered speech and residual noise (filtered noise) as the

noisy vector is the sum of the clean speech and noise vectors. Traditionally, the filtered speech is

treated as the desired signal after noise reduction. This paper proposes to decompose the clean

speech vector into two orthogonal components: one is correlated and the other is uncorrelated with

the current clean speech sample. While the correlated component helps estimate the clean speech, it

is shown that the uncorrelated component interferes with the estimation, just as the additive noise.

Based on this orthogonal decomposition, the paper presents a way to define the error signal and

cost functions and addresses the issue of how to design different optimal noise reduction filters by

optimizing these cost functions. Specifically, it discusses how to design the maximum SNR filter,

the Wiener filter, the minimum variance distortionless response (MVDR) filter, the tradeoff filter,

and the linearly constrained minimum variance (LCMV) filter. It demonstrates that the maximum

SNR, Wiener, MVDR, and tradeoff filters are identical up to a scaling factor. It also shows from the

orthogonal decomposition that many performance measures can be defined, which seem to be more

appropriate than the traditional ones for the evaluation of the noise reduction filters.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4726071]

PACS number(s): 43.72.Dv, 43.60.Fg [CYE] Pages: 452–464

I. INTRODUCTION

In applications related to speech, sound recording, tele-

communications, teleconferencing, telecollaboration, and

human-machine interfaces, the signal of interest (usually

speech) that is picked up by a microphone is always contami-

nated by noise. Such a contamination can dramatically change

the statistics of the speech signal and can degrade the speech

quality and intelligibility, thereby causing significant perform-

ance degradation to human-to-human and human-to-machine

communication systems. In order to mitigate the detrimental

effect of noise, it is indispensable to develop digital signal

processing techniques to “clean” the noisy speech before it is

stored, transmitted, or rendered. This cleaning process, which

is referred to as noise reduction, has been a major challenge

for many researchers and engineers over the past few decades

(Boll, 1979; Vary, 1985; Martin, 2001; Ephraim and Malah,

1984; Chen et al., 2009; Benesty et al., 2009; Vary and Mar-

tin, 2006; Loizou, 2007; Benesty et al., 2005).

Typically, noise reduction is formulated as a filtering

problem where the clean speech estimate is obtained by

passing the noisy speech through a digital filter. With such a

formulation, the core issue of noise reduction is to construct

an optimal filter that can fully exploit the speech and noise

statistics to achieve maximum noise suppression without

introducing perceptually noticeable speech distortion. The

design of optimal noise reduction filters can be accomplished

either directly in the time domain or in a transform space.

Practically, working in a transform space such as the fre-

quency (Boll, 1979; Vary, 1985; Martin, 2001; Ephraim and

Malah, 1984) or Karhunen-Loève expansion (KLE) domains

(Chen et al., 2009) may offer some advantages in terms of

real-time implementation and flexibility. But the filter design

process in different domains remains the same and any noise

reduction filter designed in a transform space can be equiva-

lently constructed in the time domain from a theoretical

point of view. So, in this paper we will focus our discussion

on the time-domain formulation. However, any approach

developed here should not be limited to the time domain and

can be extended to other domains.

In the time domain, noise reduction is generally

achieved on a sample-by-sample basis where the clean

speech sample at every time instant is estimated by filtering

a vector of the noisy speech signal. Since the noisy speech

vector is the sum of the clean speech and noise signal vec-

tors, this estimate consists of both the filtered speech and
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residual noise (filtered noise). Traditionally, the filtered

speech is treated as the desired signal after noise reduction.

This definition of the desired speech, however, can cause

many problems for both the design and evaluation of the

noise reduction filters. For example, with this definition, the

output signal-to-noise ratio (SNR) would be the ratio of

the power of the filtered speech over the power of the residual

noise. We should expect then that the filter that maximizes

the output SNR should be a good optimal noise reduction fil-

ter. It has been found, however, that such a filter causes so

much speech distortion that it is not useful in practice. In this

paper, we propose to decompose the clean speech vector into

two orthogonal components: one is correlated and the other is

uncorrelated with the current clean speech sample. While the

correlated component helps estimate the clean speech, we

show that the uncorrelated component interferes with the esti-

mation, just as the additive noise. Therefore, we introduce a

new term, interference, in noise reduction. Based on this or-

thogonal decomposition and the new interference term, we

present a way to redefine the error signal and cost functions.

By optimizing these cost functions, we can derive many new

noise reduction filters such as the minimum variance distor-

tionless response (MVDR) filter and the linearly constrained

minimum variance (LCMV) filter that are impossible to

obtain with the traditional approaches. We show that the

maximum SNR filter derived from the new form of the error

signal is identical, up to a scaling factor, to the Wiener and

MVDR filters. This, on one hand, proves that the new decom-

position makes sense, and on the other hand, demonstrates

that the Wiener filter is an optimal filter not only from the

minimum mean-square error (MMSE) sense but also from

the maximum SNR standpoint. Based on the decomposition

of the filtered speech, we also show that many performance

measures should be redefined and the new measures are more

appropriate to quantify the noise reduction performance than

the traditional ones.

The rest of this paper is organized as follows. In Sec. II,

we formulate the single-channel noise reduction problem in

the time domain. We briefly review the classical approaches

in Sec. III. Section IV presents a new way to decompose the

error signal based on the decomposition of the filtered

speech into the filtered desired speech and interference, and

we explain the difference between the new error signals and

the traditional ones. Section V discusses different perform-

ance measures. In Sec. VI, we derive several optimal noise

reduction filters. Section VII deals with the linearly con-

strained minimum variance (LCMV) filter. Section VIII

presents some experiments confirming the theoretical deriva-

tions. Finally, we give our conclusions in Sec. IX.

II. SIGNAL MODEL

The noise reduction problem considered in this paper is

one of recovering the desired signal (or clean speech) xðkÞ, k
being the discrete-time index, of zero mean from the noisy

observation (microphone signal) (Benesty et al., 2009; Vary

and Martin, 2006; Loizou, 2007)

yðkÞ ¼ xðkÞ þ vðkÞ; (1)

where vðkÞ, assumed to be a zero-mean random process, is

the unwanted additive noise that can be either white or col-

ored but is uncorrelated with xðkÞ. All signals are considered

to be real and broadband, and xðkÞ is assumed to be quasi-

stationary so that its statistics can be estimated on a short-

time basis.

The signal model given in (1) can also be written into a

vector form as

yðkÞ ¼ xðkÞ þ vðkÞ; (2)

where

yðkÞ¼D
�
yðkÞ yðk � 1Þ � � � yðk � Lþ 1Þ

�T
(3)

is a vector of length L, superscript T denotes transpose of a

vector or a matrix, and xðkÞ and vðkÞ are defined in a similar

way to yðkÞ. Since xðkÞ and vðkÞ are uncorrelated by assump-

tion, the correlation matrix (of size L� L) of the noisy signal

can be written as

Ry¼D E½yðkÞyTðkÞ� ¼ Rx þ Rv; (4)

where E½�� denotes mathematical expectation, and

Rx¼D E½xðkÞxTðkÞ� and Rv¼D E½vðkÞvTðkÞ� are the correlation

matrices of xðkÞ and vðkÞ, respectively. The objective of

noise reduction is then to find a “good” estimate of either

xðkÞ or xðkÞ in the sense that the additive noise is signifi-

cantly reduced while the desired signal is not much distorted.

In this paper, we focus only on the estimation of xðkÞ to

make the presentation concise. In other words, we only con-

sider to estimate the desired speech on a sample-by-sample

basis and, at each time instant k, the signal sample xðkÞ is

estimated from the corresponding observation signal vector

yðkÞ of length L.

III. CLASSICAL LINEAR FILTERING APPROACH

In the classical approach, the estimate of the desired sig-

nal xðkÞ is obtained by applying a finite-impulse-response

(FIR) filter to the observation signal vector yðkÞ, (Chen

et al., 2006) i.e.,

x̂ðkÞ ¼ hTyðkÞ ¼ xfðkÞ þ vrnðkÞ; (5)

where

h¼D ½h0 h1 � � � hL�1�T (6)

is an FIR filter of length L, xfðkÞ¼D hTxðkÞ is the filtered

speech, which is treated as the desired signal component af-

ter noise reduction, and vrnðkÞ¼D hTvðkÞ is the residual noise

that is uncorrelated with the filtered speech.

The error signal for this estimation problem is

eðkÞ¼D x̂ðkÞ � xðkÞ ¼ eC
d ðkÞ þ eC

r ðkÞ; (7)

where

J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 Benesty et al.: Time-domain noise reduction 453



eC
d ðkÞ¼

D
xfðkÞ � xðkÞ ¼ hTxðkÞ � xðkÞ (8)

is the signal distortion due to the FIR filter,

eC
r ðkÞ¼

D
vrnðkÞ (9)

represents the residual noise, and we use the superscript C to

denote the classical model.

The mean-square error (MSE) is then

JðhÞ¼D E½e2ðkÞ�: (10)

Since xðkÞ and tðkÞ are uncorrelated, the MSE can be

decomposed into two terms as

JðhÞ ¼ JC
d ðhÞ þ JC

r ðhÞ; (11)

where

JC
d ðhÞ¼

D
Ef½eC

d ðkÞ�
2g: (12)

and

JC
r ðhÞ¼

D
Ef½eC

r ðkÞ�
2g: (13)

Given the definition of the MSE, the optimal noise reduction

filters can be obtained by directly minimizing JðhÞ, or by

minimizing either JC
d ðhÞ or JC

r ðhÞ with some constraint.

IV. A LINEAR MODEL BASED ON AN ORTHOGONAL
DECOMPOSITION FOR DESIRED SIGNAL
EXTRACTION

From the filtering model given in (5), we see that x̂ðkÞ
depends on the vector xðkÞ. However, not all the components

in xðkÞ contribute to the estimation of the desired signal sam-

ple xðkÞ; therefore, treating the filtered speech, i.e.,

xfðkÞ ¼ hTxðkÞ, as the desired signal after noise reduction

seems inappropriate in the derivation and evaluation of noise

reduction filters. To see this clearly, let us decompose the

vector xðkÞ into the following form:

xðkÞ ¼ xðkÞcx þ x0ðkÞ ¼ xdðkÞ þ x0ðkÞ; (14)

where

xdðkÞ ¼ ½ xd;0ðkÞ xd;1ðkÞ � � � xd; L�1ðkÞ �T ¼ xðkÞcx;

(15)

x0ðkÞ ¼ ½ x00ðkÞ x01ðkÞ � � � x0L�1ðkÞ �T

¼ xðkÞ � xðkÞcx; (16)

cx ¼ ½cx;0 cx;1 … cx;L�1�T ¼ ½1 cx;1 … cx; L�1�T

¼ E½xðkÞxðkÞ�
E½x2ðkÞ� (17)

is the (normalized) correlation vector (of length L) between

xðkÞ and xðkÞ,

cx;l ¼
E½xðkÞxðk � lÞ�

E½x2ðkÞ� (18)

is the correlation coefficient between xðkÞ and xðk � lÞ with

�1 � cx;l � 1.

It is easy to check that xdðkÞ is correlated with the

desired signal sample xðkÞ, while x0ðkÞ is uncorrelated with

xðkÞ, i.e., E½xðkÞx0ðkÞ� ¼ 0. To illustrate this decomposition,

we took a frame (400 samples) of an =i:= sound signal

recorded from a female speaker and computed its correlation

coefficients cx;l, l ¼ 0; 1;…; 20, using a short-time average.

Both the waveform and correlation coefficients are plotted in

Fig. 1. Using these estimated correlation coefficients and set-

ting the parameter L to 20, we performed the orthogonal

decomposition of the =i:= sound signal xðkÞ. The first and

second coefficients of xdðkÞ and x0ðkÞ as a function of time k
are shown in Fig. 2. Since cx;0 ¼ 1, we have xd;0ðkÞ ¼ xðkÞ
and x00ðkÞ ¼ 0, which can be seen from Figs. 2(a) and 2(b).

But as l increases, the correlation between xðkÞ and xðk � lÞ
decreases, and as a result, the level of xd;lðkÞ decreases while

that of x0lðkÞ increases, which can be seen by comparing

Figs. 2(a) with 2(c) and 2(b) with 2(d). Figures 2(c) and 2(d)

show xd;1ðkÞ and x01ðkÞ. Note that in practice cx cannot be

computed directly since xðkÞ is not accessible. However,

slightly rearranging (17), we get

cx ¼
E½yðkÞyðkÞ� � E½vðkÞvðkÞ�

E½y2ðkÞ� � E½v2ðkÞ� ¼
r2

ycy � r2
vcv

r2
y � r2

v

; (19)

where r2
y ¼

D E½y2ðkÞ� and r2
v ¼

D E½v2ðkÞ� are the variances of

yðkÞ and vðkÞ, respectively. One can see that now cx depends

on the statistics of yðkÞ and vðkÞ. The statistics of yðkÞ can be

computed directly since yðkÞ is accessible while the statistics

of vðkÞ can be estimated based on the use of a voice activity

detector (VAD) (Cohen et al., 2010).

Now substituting (14) into (5), we get

x̂ðkÞ ¼ hTxdðkÞ þ hTx0ðkÞ þ hTvðkÞ: (20)

Since it is correlated with the desired signal sample xðkÞ, the

vector xdðkÞ will help estimate xðkÞ. So, the first term on the

FIG. 1. (Color online) A frame of an =i:= sound signal recorded from a

female talker: (a) waveform and (b) its normalized correlation coefficients

estimated using a short-time average.
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right-hand side of (20) is clearly the filtered desired signal

and we denote it as xfdðkÞ¼D hTxdðkÞ ¼ xðkÞhTcx. In compar-

ison, x0ðkÞ is orthogonal to xðkÞ; so this vector would inter-

fere with the estimation. Therefore, we introduce the term

“interference,” defined as x0riðkÞ¼
D

hTx0ðkÞ. The third term on

the right-hand side of (20) is the residual noise, as in the

classical approaches, i.e., vrnðkÞ¼D hTvðkÞ. So, the signal esti-

mate can now be written as

x̂ðkÞ ¼ xfdðkÞ þ x0riðkÞ þ vrnðkÞ: (21)

It can be checked that the three terms xfdðkÞ, x0riðkÞ, and

vrnðkÞ are mutually uncorrelated. Therefore, the variance of

x̂ðkÞ is

r2
x̂ ¼ r2

xfd
þ r2

x0
ri
þ r2

vrn
; (22)

where

r2
xfd
¼ r2

xðhTcxÞ
2 ¼ hTRxd

h; (23)

r2
x0

ri
¼ hTRx0h ¼ hTRxh� r2

xðhTcxÞ
2; (24)

r2
vrn
¼ hTRvh; (25)

r2
x ¼

D E½x2ðkÞ� is the variance of xðkÞ, Rxd
¼ r2

xcxc
T
x is the

correlation matrix (whose rank is equal to 1) of xdðkÞ, and

Rx0 ¼D E½x0ðkÞx0TðkÞ� is the correlation matrix of x0ðkÞ.
With the above decomposition, one can see that the

objective of noise reduction is to find a good filter that makes

xfdðkÞ as close as possible to xðkÞ and meanwhile minimizes

the effect of both x0riðkÞ and vrnðkÞ. To find such a filter, we

first define the error signal between the estimated and desired

signals as

eðkÞ¼D x̂ðkÞ � xðkÞ ¼ edðkÞ þ erðkÞ; (26)

where

edðkÞ¼D xfdðkÞ � xðkÞ (27)

is the signal distortion due to the FIR filter and

erðkÞ¼D x0riðkÞ þ vrnðkÞ (28)

represents the residual interference-plus-noise.

The MSE is then

JðhÞ ¼ E½e2ðkÞ� ¼ JdðhÞ þ JrðhÞ; (29)

where

JdðhÞ ¼ E½e2
dðkÞ� ¼ r2

xðhTcx � 1Þ2 (30)

and

JrðhÞ ¼ E½e2
r ðkÞ� ¼ r2

x0
ri
þ r2

vrn
: (31)

Comparing (26) with (7) and (29) with (11), one can clearly

see the difference between the new definitions of the error

signal and MSE in our new model and the traditional defini-

tions. It is clear that the objective of noise reduction with the

new linear model is to find optimal FIR filters that would ei-

ther minimize JðhÞ or minimize JrðhÞ or JdðhÞ subject to

some constraint. But before deriving the optimal filters, we

first give some very useful measures that fit well with the

new linear model.

V. PERFORMANCE MEASURES

Many distance measures have been developed to evalu-

ate noise reduction, such as the Itakura distance, the Itakura-

Saito distance (ISD) [that performs a comparison of spectral

envelopes (AR parameters) between the clean and the proc-

essed speech] (Itakura and Saito, 1970; Quackenbush et al.,
1988; Chen et al., 2003), SNR, speech distortion index, noise

reduction factor (Benesty et al., 2009; Benesty et al., 2005;

Chen et al., 2006), etc. Many of these measures are defined

based on the classical linear filter model. As it was shown in

the previous section, the filtered speech (where the desired

signal does not appear explicitly) should be separated into

the filtered desired speech and interference. The interference

part interferes with the estimation of the desired speech sig-

nal and it should be treated as part of the noise. Therefore, it

is necessary to redefine some of the performance measures

originally established for the classical model.

The first measure is the input SNR defined as

iSNR ¼ r2
x

r2
v

: (32)

FIG. 2. (Color online) The orthogonal decomposition of the signal in Fig. 1:

(a) xd;0ðkÞ ¼ xðkÞ, (b) x00ðkÞ, (c) xd;1ðkÞ, and (d) x01ðkÞ.
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To quantify the level of noise remaining at the output of the

filter, we define the output SNR as the ratio of the variance

of the filtered desired signal over the variance of the residual

interference-plus-noise (in this paper, we consider the inter-

ference as part of the noise in the definitions of the perform-

ance measures since it is uncorrelated with the desired

signal), i.e.,

oSNRðhÞ ¼
r2

xfd

r2
x0

ri

þ r2
vrn

¼ r2
xðhTcxÞ

2

hTRinh
; (33)

where

Rin ¼ Rx0 þ Rv (34)

is the interference-plus-noise correlation matrix. The objec-

tive of the noise reduction filter is to make the output SNR

greater than the input SNR so that the quality of the noisy

signal will be enhanced. For the particular filter h ¼ i0,

where i0 is the first column of the identity matrix I (of size

L� L), we have

oSNRði0Þ ¼ iSNR: (35)

Now, let us define the quantity

oSNRmax¼D kmaxðR�1
in Rxd

Þ; (36)

where kmaxðR�1
in Rxd

Þ denotes the maximum eigenvalue of

the matrix R�1
in Rxd

. Since the rank of the matrix Rxd
is equal

to 1, we also have

oSNRmax ¼ tr½R�1
in Rxd

� ¼ r2
xc

T
x R�1

in cx; (37)

where tr½�� denotes the trace of a square matrix. It can be

checked that the quantity oSNRmax corresponds to the maxi-

mum SNR that can be achieved through filtering since the

filter, hmax, that maximizes oSNRðhÞ [Eq. (33)] is the eigen-

vector corresponding to the maximum eigenvalue of

R�1
in Rxd

. As a result, we have

oSNRðhÞ � oSNRmax; 8h (38)

and

oSNRmax ¼ oSNRðhmaxÞ � oSNRði0Þ ¼ iSNR: (39)

The noise reduction factor (Benesty et al., 2005; Chen et al.,
2006) quantifies the amount of noise that is rejected by the

filter. This quantity is defined as the ratio of the variance of

the noise at the microphone over the variance of the interfer-

ence-plus-noise remaining after the filtering operation, i.e.,

nnrðhÞ ¼
D r2

v

r2
x0

ri

þ r2
vrn

¼ r2
v

hTRinh
: (40)

The noise reduction factor is expected to be lower bounded

by 1 for optimal filters.

In practice, the FIR filter, h, distorts the desired signal.

In order to evaluate the level of this distortion, we define the

speech reduction factor (Benesty et al., 2009) as the variance

of the desired signal over the variance of the filtered desired

signal at the output of the filter, i.e.,

nsrðhÞ¼
D r2

x

r2
xfd

¼ 1

ðhTcxÞ
2
: (41)

An important observation is that the design of a filter that

does not distort the desired signal requires the constraint

hTcx ¼ 1: (42)

Thus, the speech reduction factor is equal to 1 if there is no

distortion and expected to be greater than 1 when distortion

occurs.

By making the appropriate substitutions, one can derive

the relationship among the four previous measures:

oSNRðhÞ
iSNR

¼ nnrðhÞ
nsrðhÞ

: (43)

When no distortion occurs, the gain in SNR coincides with

the noise reduction factor.

Another useful performance measure is the speech dis-

tortion index (Benesty et al., 2005; Chen et al., 2006)

defined as

vsdðhÞ ¼
Ef½xfdðkÞ � xðkÞ�2g

r2
x

¼ ðhTcx � 1Þ2: (44)

The speech distortion index is always greater than or equal

to 0 and should be upper bounded by 1 for optimal filters; so

the higher is the value of vsdðhÞ, the more the desired signal

is distorted.

VI. OPTIMAL FILTERS

We have defined the MSE criterion with the new linear

model in Sec. IV. For the particular filter h ¼ i0, the MSE is

Jði0Þ ¼ r2
v : (45)

In this case, there is neither noise reduction nor speech dis-

tortion. We can now define the normalized MSE (NMSE) as

~JðhÞ ¼ JðhÞ
Jði0Þ

¼ iSNR � vsdðhÞ þ
1

nnrðhÞ
; (46)

where

vsdðhÞ ¼
JdðhÞ
r2

x

; (47)

nnrðhÞ ¼
r2

v

JrðhÞ
: (48)
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This shows how the MSEs are related to some of the per-

formance measures.

It is clear that the objective of noise reduction with the

new linear model is to find optimal FIR filters that would ei-

ther minimize JðhÞ or minimize JrðhÞ or JdðhÞ subject to

some constraint. In this section, we derive three fundamental

filters with the revisited linear model and show that they are

fundamentally equivalent. We also show their equivalence

with hmax (i.e., the maximum SNR filter).

A. Wiener

The Wiener filter is easily derived by taking the gradient

of the MSE, i.e., JðhÞ defined in (29), with respect to h and

equating the result to zero:

hW ¼ R�1
y Rxi0 ¼ ½I� R�1

y Rv�i0: (49)

Since

Rxi0 ¼ r2
xcx; (50)

we can rewrite (49) as

hW ¼ r2
xR�1

y cx: (51)

From Sec. IV, it is easy to verify that

Ry ¼ r2
xcxc

T
x þ Rin: (52)

Determining the inverse of Ry from (52) with Woodbury’s

identity

R�1
y ¼ R�1

in �
R�1

in cxc
T
x R�1

in

r�2
x þ cT

x R�1
in cx

(53)

and substituting the result into (51), we get another interest-

ing formulation of the Wiener filter:

hW ¼
R�1

in cx

r�2
x þ cT

x R�1
in cx

; (54)

that we can rewrite as

hW ¼
R�1

in Ry � I

1� Lþ tr½R�1
in Ry�

i0 ¼
R�1

in Rxd

1þ oSNRmax

i0: (55)

Using (54), we deduce that the output SNR is

oSNRðhWÞ ¼ oSNRmax ¼ tr½R�1
in Ry� � L; (56)

and the speech distortion index is a clear function of the

maximum output SNR:

vsdðhWÞ ¼
1

ð1þ oSNRmaxÞ2
: (57)

The higher is the value of oSNRmax, the less the desired sig-

nal is distorted.

Since the Wiener filter maximizes the output SNR

according to (56), we have

oSNRðhWÞ � oSNRði0Þ ¼ iSNR: (58)

It is interesting to see that the two filters hW and hmax both

maximize the output SNR. So, they are equivalent (different

only by a scaling factor).

With the Wiener filter the noise reduction factor is

nnrðhWÞ ¼
ð1þ oSNRmaxÞ2

iSNR � oSNRmax

� 1þ 1

oSNRmax

� �2

: (59)

Using (57) and (59) in (46), we find the minimum NMSE

(MNMSE):

~JðhWÞ ¼
iSNR

1þ oSNRðhWÞ
: (60)

B. MVDR

The celebrated MVDR filter proposed by Capon

(Capon, 1969) is usually derived in a context where we have

at least two sensors (or microphones) available. Interest-

ingly, with the new linear model, we can also derive the

MVDR (with one sensor only) by minimizing the MSE of

the residual interference-plus-noise, JrðhÞ, with the con-

straint that the desired signal is not distorted. Mathemati-

cally, this is equivalent to

min
h

hTRinh subject to hTcx ¼ 1: (61)

The solution to the above optimization problem is

hMVDR ¼
R�1

in cx

cT
x R�1

in cx

; (62)

which can also be written as

hMVDR ¼
R�1

in Ry � I

tr½R�1
in Ry� � L

i0 ¼
R�1

in Rxd

oSNRmax

i0: (63)

Obviously, we can rewrite the MVDR as

hMVDR ¼
R�1

y cx

cT
x R�1

y cx

: (64)

The Wiener and MVDR filters are simply related as follows

hW ¼ ahMVDR; (65)

where

a ¼ hT
Wcx ¼

oSNRmax

1þ oSNRmax

: (66)
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So, the two filters hW and hMVDR are equivalent up to a scal-

ing factor. From a theoretical point of view, this scaling is

not significant. But from a practical point of view it can be

important. Indeed, the signals are usually nonstationary and

the estimations are done on a frame-by-frame basis, so it is

essential to have this scaling factor right from one frame to

another in order to avoid large distortions. Therefore, it is

recommended to use the MVDR filter rather than the Wiener

filter in speech enhancement applications.

Locally, a scaling factor should not affect the SNR, but

it can change the level of speech distortion and noise reduc-

tion. We should have

oSNRðhMVDRÞ ¼ oSNRðhWÞ; (67)

vsdðhMVDRÞ ¼ 0; (68)

nsrðhMVDRÞ ¼ 1; (69)

nnrðhMVDRÞ ¼
oSNRmax

iSNR
� nnrðhWÞ; (70)

and

1 � ~JðhMVDRÞ ¼
iSNR

oSNRmax

� ~JðhWÞ: (71)

However, from a global viewpoint, the time-varying scaling

factor may put more attenuation in silence periods where the

desired speech is absent and less attenuation when speech is

present. This weighting process can cause some performance

differences between the MVDR and Wiener filters if the per-

formance is evaluated on a long-term basis. We will come

back to this point when we discuss the experiments.

C. Tradeoff

In the tradeoff approach, we try to compromise between

noise reduction and speech distortion. Instead of minimizing

the MSE as we already did to find the Wiener filter, we could

minimize the speech distortion index with the constraint that

the noise reduction factor is equal to a positive value that is

greater than 1. Mathematically, this is equivalent to

min
h

JdðhÞ subject to JrðhÞ ¼ br2
v ; (72)

where 0 < b < 1 to insure that we get some noise reduction.

By using a Lagrange multiplier, l � 0, to adjoin the con-

straint to the cost function, we easily deduce the tradeoff

filter:

hT;l ¼ r2
x ½r2

xcxc
T
x þ lRin��1cx ¼

R�1
in cx

lr�2
x þ cT

x R�1
in cx

;

(73)

where the Lagrange multiplier, l, satisfies JrðhT;lÞ ¼ br2
v .

Taking l ¼ 1, we obtain the Wiener filter while for l ¼ 0,

we get the MVDR filter. With l, we can make a compromise

between noise reduction and speech distortion. Again, we

observe here as well that the tradeoff and Wiener filters are

equivalent up to a scaling factor. Locally at each time instant

k, the scaling factor should not affect the SNR. So, the output

SNR of the tradeoff filter is independent of l and is identical

to the output SNR of the Wiener filter, i.e.,

oSNRðhT;lÞ ¼ oSNRðhWÞ; 8l: (74)

VII. THE LCMV FILTER

We can derive an LCMV filter (Frost, 1972; Er and Can-

toni, 1983) which can handle more than one linear con-

straint, by exploiting the structure of the noise signal.

In Sec. IV, we decomposed the vector xðkÞ into two or-

thogonal components to extract the desired signal, xðkÞ. We

can also decompose (but not for the same reason) the noise

signal vector, vðkÞ, into two orthogonal vectors:

vðkÞ ¼ vðkÞcv þ v0ðkÞ; (75)

where cv and v0ðkÞ are defined in a similar way to cx and

x0ðkÞ.
Our problem this time is the following. We wish to per-

fectly recover our desired signal, xðkÞ, and completely

remove the correlated components, vðkÞcv. Thus, the two

constraints can be put together in a matrix form as

CTh ¼ i; (76)

where

C ¼ ½cx cv� (77)

is our constraint matrix of size L� 2 and

i ¼ ½1 0�T :

Then, our optimal filter is obtained by minimizing the energy

at the filter output, with the constraints that the correlated

noise components are cancelled and the desired speech is

preserved, i.e.,

hLCMV ¼ arg min
h

hTRyh subject to CTh ¼ i: (78)

The solution to (78) is given by

hLCMV ¼ R�1
y C½CTR�1

y C��1
i: (79)

By developing (79), it can easily be shown that the LCMV

can be written as a function of the MVDR:

hLCMV ¼
1

1� q2
hMVDR �

q2

1� q2
t; (80)

where

q2 ¼
ðcT

x R�1
y cvÞ

2

ðcT
x R�1

y cxÞðcT
v R�1

y cvÞ
; (81)

with 0 � q2 � 1, hMVDR is defined in (64), and
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t ¼
R�1

y cv

cT
x R�1

y cv

: (82)

We observe from (80) that when q2 ¼ 0, the LCMV filter

becomes the MVDR filter; however, when q2 tends to 1,

which happens if and only if cx ¼ cv, we have no solution

since we have conflicting requirements.

Obviously, we always have

oSNRðhLCMVÞ � oSNRðhMVDRÞ; (83)

vsdðhLCMVÞ ¼ 0; (84)

nsrðhLCMVÞ ¼ 1; (85)

and

nnrðhLCMVÞ � nnrðhMVDRÞ � nnrðhWÞ: (86)

The LCMV filter is able to remove all the correlated noise

but at the price that its overall noise reduction is lower than

that of the MVDR filter.

VIII. EXPERIMENTAL RESULTS

We have redefined the error signals, optimization cost

functions, and evaluation criteria for the noise reduction

problem in the time domain and derived several new optimal

noise reduction filters. In this section, we study those filters

through experiments.

The clean speech signal used in our experiments was

recorded from a female speaker in a quiet office room. It was

originally sampled at 16 kHz and then downsampled to 8

kHz. The overall length of the signal is approximately 10

min, but only the first 30 s is used in our experiments. Noisy

speech is obtained by adding noise to the clean speech (the

noise signal is properly scaled to control the input SNR

level). We consider three types of noise: a white Gaussian

random process, a babble noise signal recorded in a New

York Stock Exchange (NYSE) room, and a competing

speech signal recorded from a male speaker. The NYSE

noise and the competing speech signal were also digitized

with a sampling rate of 16 kHz, but again they were down-

sampled into 8 kHz. Compared with Gaussian random noise

which is stationary and white, the NYSE noise is nonstation-

ary and colored. It consists of sounds from various sources

such as electrical fans, telephone rings, and background

speech. See Huang et al. (2008) for a more detailed descrip-

tion of this babble noise. The male interference speech signal

will be used to evaluate the LCMV filter for its performance

in reducing correlated noise.

A. Estimation of correlation matrices and vectors

The implementation of most of the noise reduction filters

derived in Secs. VI and VII requires the estimation of the cor-

relation matrices Ry, Rx, and Rv, the correlation vector cx,

and the signal variance r2
x . Computation of Ry is relatively

easy because the noisy signal yðkÞ is accessible. But in prac-

tice, we need a noise estimator or a VAD to compute all the

other parameters. The problems regarding noise estimation

and VAD have been widely studied in the literature and we

have developed a recursive algorithm in our previous

research that can achieve reasonably good noise estimation in

practical environments (Chen et al., 2006). However, in this

paper, we will focus on illustrating the basic ideas while set-

ting aside the noise estimation issues. So, we will not use any

noise estimator in the following experiments. Instead, we

directly compute the noise statistics from the noise signal.

Specifically, at each time instant k, the matrix Ry (its size is

in the range between 4� 4 and 80� 80) is computed using

the most recent 400 samples (50 ms long) of the noisy signal

with a short-time average. The matrix Rv is also computed

using a short-time average; but noise is in general stationary

(except for the competing speech case where Ry and Rv are

computed in the same way), so we use 640 samples (80 ms

long) to compute Rv. Then the R̂x matrix is computed

according to R̂x ¼ R̂y � R̂v, and ĉx is calculated using (19).

B. Comparison between the traditional and new
performance measures

In this experiment, we compare the traditional perform-

ance measures defined based on the filtered speech xfðkÞ
with the new performance measures defined using the fil-

tered desired signal xfdðkÞ and interference x0riðkÞ. The Wie-

ner filter given in (51) is used in this experiment, which is

the same for both the traditional definition of the error signal

shown in (7) and the new decomposition of the error signal

given in (26) (since the Wiener filter minimizes the overall

MSE, which is not affected by any decomposition form of

the error signal). Specifically, at each time instant k, we first

compute the correlation matrix R̂y, the correlation vector ĉx,

and the signal variance r̂2
x as described in the previous sub-

section. A Wiener filter is then constructed according to

(51). Applying this Wiener filter to yðkÞ, xðkÞ, and vðkÞ, we

obtain the enhanced signal x̂ðkÞ, the filtered signal xfðkÞ, the

filtered desired signal xfdðkÞ, the interference x0riðkÞ, and the

residual noise vrnðkÞ. To illustrate the importance of separat-

ing the filtered signal into the filtered desired signal and in-

terference, we computed the ISDs between the clean speech

xðkÞ and the signals x̂ðkÞ, xfðkÞ, xfdðkÞ, and x0riðkÞ obtained

with the Wiener filter. The results as a function of the filter

length L for the white Gaussian noise case with iSNR ¼ 10

dB are plotted in Fig. 3(a). It is seen that the ISD between

the clean speech xðkÞ and the filtered desired signal xfdðkÞ is

approximately 0, indicating that these two signals are almost

the same. In comparison, the ISD between xðkÞ and x0riðkÞ is

very large, which shows that these two signals are signifi-

cantly different in spectrum. Therefore, x0riðkÞ should not be

treated as part of the desired signal after filtering, which veri-

fies the necessity of separating the filtered signal into the fil-

tered desired signal and residual interference. The ISD

between the clean speech and the filtered signal xfðkÞ is

larger than that between the clean speech and the filtered

desired signal xfdðkÞ; but it is significantly smaller than the

ISD between xðkÞ and x0riðkÞ. This shows that xfdðkÞ is the

dominant component in xfðkÞ while the intensity of x0riðkÞ is
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much lower than that of xfdðkÞ, which is desired in noise

reduction. It is noticed that the filter length L does not affect

much the ISD between xðkÞ and xfdðkÞ. But the ISD between

xðkÞ and xfðkÞ slightly increases with L. This variation is

mainly caused by the residual interference. The ISD between

the clean speech and its estimate, x̂ðkÞ, first decreases as L
increases up to 30; but it does not change much if we further

increase L. This confirms the results reported in Chen et al.
(2006) and indicates that for the time-domain Wiener filter

with an 8 kHz sampling rate, 30 is a sufficient filter length

and, a larger length will not significantly improve the speech

quality but would dramatically increase the complexity of

the algorithm.

With the new decomposition of the error signal, the out-

put SNR [given in (33)] is defined as the ratio of the intensity

of the filtered desired signal over the intensity of the residual

interference-plus-noise. Traditionally, however, the whole

filtered signal xfðkÞ is treated as the desired signal after noise

reduction, so the output SNR of the Wiener filter is in the

following form

oSNRCðhWÞ ¼
r2

xf

r2
vrn

; (87)

where, again, we use the superscript C to indicate the

“classical” definition. Both oSNRðhWÞ and oSNRCðhWÞ are

plotted in Fig. 3(b) as a function of the filter length L. The

trends between the two versions of the output SNR and the

filter length L are similar. But the new definition should be

more accurate as the residual interference is not treated as

part of the desired speech signal.

Also plotted in Fig. 3 is the speech distortion index

defined in (44). For the purpose of comparison, we also

showed the “classical” definition of this index, which is given

by

vC
sdðhWÞ ¼

Ef½xfðkÞ � xðkÞ�2g
r2

x

: (88)

It is seen that vsdðhWÞ decreases with L (rapidly for small L
values). But with the classical definition, the speech distor-

tion index increases with L, which is similar to the ISD

between xðkÞ and xfðkÞ in Fig. 3(a). This difference between

the two indices is due to the residual interference.

We also studied the case of the NYSE babble noise. The

results are shown in Fig. 4. Again, the appropriateness of the

new performance measures is verified.

C. Comparison between the Wiener and MVDR filters

With the new decomposition of the error signal, we

have shown that it is now possible to derive an MVDR filter

for single-channel noise reduction. The difference between

the MVDR and Wiener filters is a scaling factor, which is

given in (66). If this scaling factor is time-invariant, the Wie-

ner and MVDR filters have the same performance. However,

in speech applications, the desired speech signal is always

nonstationary and noise statistics may change with time. As

a result, the scaling factor is in general time-varying, which

can cause some performance difference between the two fil-

ters. This subsection studies the difference between the

MVDR and Wiener filters through experiments. Based on

the previous experiment, we set the filter length L to 20.

White Gaussian noise is used and the correlation matrix R̂y

is computed using the method described in Sec. VIII A.

However, unlike the previous experiment, here we directly

compute ĉx and r̂2
x from the signal xðkÞ using a same short-

time average as R̂y. We then estimate the scaling factor

between the MVDR and Wiener filters according to (66).

The first 3 s of the noisy speech (with iSNR ¼ 10 dB) and

the computed scaling factor are plotted in Fig. 5 (in both the

linear and dB scales). It is seen that the value of the scaling

FIG. 3. (Color online) Comparison between the traditional performance

measures [based on xfðkÞ� and the new performance measures [based on

xfdðkÞ and x0riðkÞ� with the Wiener filter. The white Gaussian noise is used

and the input SNR is 10 dB.
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factor is large (close to 1) during the presence of speech; but

it is very small (close to 0) in silence periods. Figure 5(d)

plots the noisy speech multiplied with the scaling factor. It is

seen that the noise in silence periods is significantly attenu-

ated while the noise level in the presence of speech remains

almost unchanged. This indicates that the Wiener filter is

more aggressive in suppressing silence periods while it

behaves almost the same as the MVDR filter during the pres-

ence of speech.

The performance results for this experiment are sketched

in Fig. 6. One can notice that speech distortion either meas-

ured by the ISD or by the speech distortion index is zero with

the MVDR filter. When the SNR is above 15 dB, the MVDR

and Wiener filters have almost the same performance. How-

ever, as the SNR decreases, the Wiener filter tends to have

more noise reduction, but it has more speech distortion as

well. It should be noted that all the performance measures

shown in Fig. 6 are computed globally with the use of all the

signal samples. If we evaluate the measures on a short-time

basis, the two filters would have similar output SNRs during

the presence of speech. The reason that the Wiener filter

achieves a higher global output SNR is that it suppresses

more noise during the absence of speech. This, however,

causes some discontinuity in the residual noise level, which is

unpleasant to listen to and should be avoided in practice.

Experiments using the NYSE noise were also conducted

and the performance difference between the two filters is

similar to that in the white Gaussian noise case.

D. The tradeoff filter

The tradeoff filter derived in Sec. VI C introduces a non-

negative parameter l to control the residual noise level.

When l ¼ 0, the tradeoff filter degenerates to the MVDR fil-

ter. This experiment is to investigate the effect of l on the

output SNR and speech distortion. Similar to the MVDR and

Wiener filters, we need to know the matrix R̂y, the vector ĉx,

and the signal variance r̂2
x . Again, these parameters are com-

puted using the method described in Sec. VIII A. The results

for both the white Gaussian and NYSE noise cases are

shown in Fig. 7. It is seen that both the output SNR and

speech distortion index increase as l increases. Theoretically

at each time instant k, increasing l should not affect the out-

put SNR. But the value of the parameter l controls how

FIG. 4. (Color online) Comparison between the traditional performance

measures [based on xfðkÞ� and the new performance measures [based on

xfdðkÞ and x0riðkÞ� with the Wiener filter. The NYSE noise is used and the

input SNR is 10 dB.

FIG. 5. (Color online) (a) The clean speech waveform, (b) the noisy speech

waveform, (c) the scaling factor a between the Wiener and MVDR filters

given in (66), (d) the scaling factor in the dB scale, and (e) the noisy speech

multiplied by the scaling factor. The white Gaussian noise is used with

iSNR ¼ 10 dB and L ¼ 20.
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aggressive the filter suppresses silence periods where the

desired speech is absent. A larger value of l indicates that

the filter is more aggressive in suppressing silence periods.

So, when we evaluate the output SNR globally, we have

more SNR gain for a larger value of l.

It is noticed that in the NYSE noise case, the output SNR

is lower and the speech distortion index is larger. This is due

to the fact that this noise is nonstationary and, hence, more

difficult to deal with than with the white Gaussian noise.

E. The LCMV filter

The LCMV filter is derived based on the constraints that

the desired speech ought to be perfectly recovered while the

correlated components in noise (if any) should be removed. In

other words, the LCMV filter needs to meet two constraints

simultaneously, i.e., cT
x h ¼ 1 and cT

v h ¼ 0. Consequently, the

filter length of the LCMV filter should be much longer than

that of the MVDR filter since the latter only needs to satisfy

cT
x h ¼ 1 while minimizing the interference-plus-noise. The

performance of the LCMV filter depends not only on the filter

length, but also on the degree of speech and noise self correla-

tion. In this experiment, we investigate the LCMV filter in

three different noise backgrounds: white Gaussian noise,

NYSE noise, and speech from a competing talker. In the first

case, the noise samples are completely uncorrelated. There-

fore, we have cv ¼ i0. Forcing cT
v h ¼ 0 in this case means h0

should be 0, which implies that the current speech sample

xðkÞ is completely predicted from the previous L� 1 samples.

In the NYSE noise case, there will be some but weak correla-

tion among neighboring samples, while in the competing

speech case, the correlation between signal samples can be

very strong. The results of this experiment are shown in

Fig. 8. The input SNR is 10 dB, and again the noisy correla-

tion matrix and the speech and noise correlation vectors are

directly computed from the noisy, clean, and noise signals. It

is seen that the speech distortion index in the three conditions

is very small (of the order of 10�14), indicating that the

desired speech signal is estimated without speech distortion.

The output SNR in three conditions increases with the filter

length L. When L is reasonably large (>50), slightly more

SNR gain is achieved in the NYSE noise case than in the

FIG. 6. (Color online) Comparison between the Wiener and MVDR filters

in the white Gaussian noise case with L ¼ 20.

FIG. 7. (Color online) Performance of the tradeoff filter as a function of l.

The input SNR is 10 dB and L ¼ 20.

462 J. Acoust. Soc. Am., Vol. 132, No. 1, July 2012 Benesty et al.: Time-domain noise reduction



white Gaussian noise case, while the output SNR for the com-

peting speech situation is significantly higher than those in the

NYSE and Gaussian noise cases. This coincides with the the-

oretical analysis that the LCMV is designed to remove corre-

lated components in noise. The stronger the noise self

correlation, the higher the SNR improvement.

It is also noticed that for the white Gaussian and NYSE

noise cases, the output SNR is lower than the input SNR.

This indicates that the LCMV filter boosts the uncorrelated

components of noise while removing its correlated compo-

nents. This problem is more serious when the filter length is

short. One way to circumvent this issue is to put a penalty

term in the cost function so as the filter does not amplify the

uncorrelated noise components, i.e.,

hLCMV ¼ arg min
h
ðhTRyhþ dhThÞ subject to CTh ¼ i;

(89)

where d is a positive constant that controls how strongly we

impose the penalty. The solution to (89) is given by

hLCMV ¼ ðRy þ dIÞ�1
C½CTðRy þ dIÞ�1

C��1
i: (90)

Comparing (90) with (79), one can see that adding a penalty

term is identical to putting a regularization parameter when

computing the inverse of the noisy correlation matrix. By

choosing a proper value of this regularization, the LCMV fil-

ter can be more robust to the uncorrelated noise component.

But we should note that, unlike the MVDR filter, the LCMV

is not designed to reduce the self uncorrelated noise. So, no

matter how we control the regularization factor, we should

not expect much SNR improvement if the noise is white.

IX. CONCLUSIONS

This paper studied the noise reduction problem in the

time domain. We presented a new way to decompose the

clean speech vector into two orthogonal components: one is

correlated and the other is uncorrelated with the current

clean speech sample. While the correlated component helps

estimate the clean speech, the uncorrelated component inter-

feres with the estimation, just as the additive noise. With

this new decomposition, we discussed how to redefine the

error signal and form different cost functions and addressed

the issue of how to design different optimal noise reduction

filters by optimizing these new cost functions. We showed

that with the redefined error signal, the maximum SNR filter

is equivalent to the widely known Wiener filter. We demon-

strated that it is possible to derive an MVDR filter that can

reduce noise without adding any speech distortion in the

single-channel case. This new MVDR filter is different from

the Wiener filter only by a scaling factor, where by adjust-

ing this scaling factor, the Wiener filter tends to be more

aggressive in suppressing noise during silence periods,

which can cause significant discontinuity in the residual

noise level that is unpleasant to listen to. We also showed

that an LCMV filter can be developed to remove correlated

components in noise without adding distortion to the desired

speech signal. Furthermore, several performance measures

have been defined based on the new orthogonal decomposi-

tion of the clean speech vector, which are more appropriate

than the traditional ones for the evaluation of the noise

reduction filters.
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