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Abstract—In this paper, we introduce a new class of optimal rect-
angular filtering matrices for single-channel speech enhancement.
The new class of filters exploits the fact that the dimension of the
signal subspace is lower than that of the full space. By doing this,
extra degrees of freedom in the filters, that are otherwise reserved
for preserving the signal subspace, can be used for achieving an
improved output signal-to-noise ratio (SNR). Moreover, the filters
allow for explicit control of the tradeoff between noise reduction
and speech distortion via the chosen rank of the signal subspace.
An interesting aspect is that the framework in which the filters
are derived unifies the ideas of optimal filtering and subspace
methods. A number of different optimal filter designs are derived
in this framework, and the properties and performance of these
are studied using both synthetic, periodic signals and real signals.
The results show a number of interesting things. Firstly, they
show how speech distortion can be traded for noise reduction and
vice versa in a seamless manner. Moreover, the introduced filter
designs are capable of achieving both the upper and lower bounds
for the output SNR via the choice of a single parameter.

Index Terms—Noise reduction, signal enhancement, time-do-
main filtering, maximum SNR filtering matrix, Wiener filtering
matrix, MVDR filtering matrix, tradeoff filtering matrix.

I. INTRODUCTION

T HE problem of speech enhancement, namely that of es-
timating a desired speech signal from noisy observations

[1]–[3], is one of the oldest problems of our community, with
a history that dates back to the dawn of signal processing, and
it remains a widely studied problem today. It occurs in many
systems and devices, including voice over IP, hearing aids,
teleconferencing, mobile telephony, etc. There are primarily
two reasons for this. Firstly, noise has a detrimental impact
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on the perceived quality and intelligibility of speech signals
and causes listener fatigue under extended exposure. Secondly,
many speech processing systems or components are designed
under the premise that only one, clean signal is present at
the time. This is, most often, done to simplify the design of
these, like in the codebooks used in speech coders and in the
statistical models used in automatic speech recognizers. Even
though more and more systems are now using multiple channels
obtained using, for example, microphone arrays, many systems
today are still based on only a single channel, and this is also
the context in which we will study the speech enhancement
problem.
The speech enhancement problem can be posed as a filtering

problem, wherein an estimate of the desired speech signal is ob-
tained via filtering of the observed, noisy signal. An example
of this is the classical Wiener filter. Such filtering approaches
often require that either an estimate of the speech statistics or the
noise statistics be found or known, and in the past decade, most
efforts in improving speech enhancement algorithms has been
devoted to the problem of estimating the noise statistics, with
some examples being [4]–[7]. Recently, a number of important
advances have, however, been made formulating different kinds
of optimal filters. These include the adaptation of the linearly
constrained minimum variance (LCMV) and the minimum vari-
ance distortionless response (MVDR) principles to speech en-
hancement [3], [8] in combination with the orthogonal [3] and
harmonic decompositions [9], as well as the extension of these
to non-causual filters [10].
An alternative approach to speech enhancement is so-called

subspace methods [11], [12], wherein bases of the signal and
noise subspaces are obtained from the eigenvalue decomposi-
tion of the covariance matrix. Then, enhancement is performed
by modifying the eigenvalues corresponding to the signal and
noise subspaces after which an estimate of the clean signal can
be obtained. In the literature, the subspace methods are usu-
ally described as a competing approach to speech enhancement,
although some interpretations of these approaches as filtering
exist [13]. For an up-to-date and complete overview of subspace
methods for speech enhancement, we refer the interested reader
to [14].
In this paper, we introduce a new class of optimal filters that

combines the notion of subspace-based enhancement with clas-
sical filtering approaches. As such, the proposed approach uni-
fies subspace and filtering methods in a common framework.
More specifically, we show how to exploit the nullspace of the
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desired signal correlation matrix to derive a class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment in the time domain. In this framework, we show that it is
clear how the output SNR is bounded, how we can design a filter
to reach this bound, and how we can design filters with lower
output SNRs that instead give lower or no distortion of the de-
sired signal. In some of the filter designs, a tuning parameter is
available, which directly enables trading off noise reduction for
a lower distortion of the desired signal.
The remainder of this paper is organized as follows. In

Section II, the basic signal model is introduced and the speech
enhancement problem is stated, after which the linear filtering
approach with a rectangular filtering matrix is introduced in
Section III. Then, in Section IV, some performance measures
are introduced and used to analyze and bound the performance
of the enhancement filters. In Section V, various optimal
rectangular filtering matrices are derived. These include the
maximum SNR, Wiener, and MVDR filters as well as two
tradeoff filters. The performance and properties of these filters
are then studied in Section VI for the case of periodic signals,
a class of signals to which voiced speech belongs. Finally,
some results obtained for real speech signals are presented in
Section VII, and Section VIII concludes on the work.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The signal enhancement (or noise reduction) problem con-
sidered in this work is one of recovering the desired signal (or
clean signal) , with being the discrete-time index, from
the noisy observation (sensor signal):

(1)

where is the unwanted additive noise, which is assumed to
be uncorrelated with . All signals are considered to be real,
zero mean, broadband, and stationary.
The signal model given in (1) can be put into a vector form

by considering the most recent successive time samples of the
noisy signal, i.e.,

(2)

where

(3)

is a vector of length denotes the transpose of a vector or
a matrix, and and are defined in a similar way to
from (3). Since and are uncorrelated by assumption,
the correlation matrix of size of the noisy signal can be
written as

(4)

where denotes the mathematical expectation, and
and are the correlation

matrices of and , respectively. The noise correlation
matrix, , is assumed to be full rank, i.e., its rank is equal to

. In the rest, we assume that the rank of the desired signal cor-
relation matrix, , is equal to , where is smaller than .
This assumption is reasonable in several applications such as
speech enhancement, where the speech signal can be modeled
as the sum of a small number of sinusoids. In any case, we can
always choose much greater than . Then, the objective of
signal enhancement (or noise reduction) is to estimate the de-
sired signal vector, , or any known linear transformation of
it from . This should be done in such a way that the noise
is reduced as much as possible with little or no distortion of the
desired signal.
Using the well-known eigenvalue decomposition, the desired

signal correlation matrix can be diagonalized as [15]

(5)

where

(6)

is an orthogonal matrix, i.e., , with
being the identity matrix, and

(7)

is a diagonal matrix. The orthonormal vectors
are the eigenvectors corresponding,

respectively, to the eigenvalues of the
matrix , where and

. Let

(8)

where the matrix contains the eigenvectors corre-
sponding to the nonzero eigenvalues of , and the
matrix contains the eigenvectors corresponding to the null
eigenvalues of . It can be verified that

(9)

Notice that and are two orthogonal projection
matrices of rank and , respectively. Hence, is
the orthogonal projector onto the desired signal subspace where
all the energy of the desired signal is concentrated and
is the orthogonal projector onto the null subspace. Using (9), we
can write the desired signal vector as

(10)

where is the transformed desired signal vector
of length . Therefore, the signal model for noise reduction
becomes

(11)

Fundamentally, from the observations, we wish to estimate
the components of the transformed desired signal, i.e., .
Thanks to this transformation and the nullspace of , we are
able to reduce the dimension of the desired signal vector that we
want to estimate. Indeed, there is no need to use the subspace
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since it contains no desired signal information. From (11),
we give another form of the correlation matrix of :

(12)

where

(13)

and, obviously, .

III. LINEAR FILTERING WITH A RECTANGULAR MATRIX

From the general linear filtering approach [1], [3], [11], [16],
[12], we can estimate the desired signal vector, , by ap-
plying a linear transformation to the observation signal vector,

, i.e.,

(14)

where is supposed to be the estimate of ,

(15)

is a rectangular filtering matrix of size ,

(16)

are finite-impulse-response (FIR) filters of length ,

17)

is the filtered transformed desired signal, and

(18)

is the residual noise. As a result, the estimate of is supposed
to be

(19)

where

(20)

is the filtering matrix of size that leads to the estimation
of . The correlation matrix of is then

(21)

where

(22)

(23)

We also observe that and ,
where denotes the trace of a square matrix. The correla-

tion matrix of or is helpful in defining meaningful
performance measures.

IV. PERFORMANCE MEASURES

In this section, we define the most useful performance mea-
sures for time-domain signal enhancement in the single-channel
case with a rectangular filtering matrix. We can divide these
measures into two categories. The first category evaluates the
noise reduction performance while the second one evaluates the
desired signal distortion. We also discuss the very convenient
mean-square error (MSE) criterion and show how it is related
to the performance measures.

A. Noise Reduction

One of the most fundamental measures in all aspects
of speech enhancement is the SNR. The input SNR is a
second-order measure which quantifies the level of noise
present relative to the level of the desired signal. It is defined as

where and are the variances
of and , respectively.
The output SNR, obtained from (21), helps quantify the SNR

after filtering. It is given by

(24)

The objective is to find an appropriate to make the output
SNR greater than the input SNR. Consequently, the quality of
the noisy signal will be enhanced. It can be shown that [3]

(25)

which implies that

(26)

where is the maximum eigenvalue of the ma-
trix . This shows how the output SNR is upper bounded.
It is easy to check that

(27)

and

(28)

Fundamentally, there is no difference between and . Both
matrices lead to the same result as we should expect.
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The noise reduction factor quantifies the amount of noise
being rejected by . This quantity is defined as the ratio of the
power of the noise at the sensor over the power of the noise re-
maining after filtering, i.e.,

(29)

Any good choice of should lead to .

B. Desired Signal Distortion

The desired speech signal can be distorted by the rectangular
filtering matrix. Therefore, the desired signal reduction factor is
defined as

(30)

Clearly, a rectangular filtering matrix that does not affect the
desired signal requires the constraint:

(31)

where is the identity matrix. Hence, in
the absence of distortion and in the presence of
distortion. Taking the minimum -norm solution of (31), we
get

(32)

This solution corresponds to theMVDR filter for the white noise
case (see Subsection V-C).
By making the appropriate substitutions, one can derive the

relationship among the measures defined so far, i.e.,

(33)

When no distortion occurs, the gain in SNR coincides with the
noise reduction factor.
Another way to measure the distortion of the desired signal

due to the filtering operation is via the desired signal distortion
index defined as

(34)

The desired signal distortion index is always greater than or
equal to 0 and should be upper bounded by 1 for optimal rectan-

gular filtering matrices; so the higher is the value of ,
the more the desired signal is distorted.

C. MSE Criterion

Since the transformed desired signal is a vector of length ,
so is the error signal. We define the error signal vector between
the estimated and desired signals as

which can also be expressed as the sum of two orthogonal error
signal vectors:

(35)

where

(36)

is the signal distortion due to the rectangular filtering matrix and

(37)

represents the residual noise. Therefore, the MSE criterion is

(38)

Using the fact that can be ex-
pressed as the sum of two other MSEs, i.e.,

(39)

where

(40)

and

(41)

We deduce that

(42)

From (40)–(42), we observe how the MSEs are related to the
performance measures.

V. OPTIMAL RECTANGULAR FILTERING MATRICES

In this section, we derive the most important rectangular fil-
tering matrices that can help mitigate the level of the noise
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picked up by the sensor signal. We will see how these optimal
matrices depend explicitly on the desired signal subspace and,
in some cases, how the nullspace of is exploited.

A. Maximum SNR

From Subsection IV-A, we know that the output SNR is
upper bounded by , which we can consider as
the maximum possible output SNR. Then, it is easy to verify
that with

...
(43)

where are arbitrary real numbers with at
least one of them different from 0, and is the eigenvector
of the matrix corresponding to , we
have

(44)

As a consequence, can be considered as the maximum
SNR filtering matrix. Clearly,

(45)

and

(46)

The choice of the values of is extremely
important in practice; with a poor choice of these values,
the transformed desired signal vector can be highly distorted.
Therefore, the ’s should be found in such a way that distortion
is minimized. We can rewrite the distortion-based MSE as

(47)

Substituting (43) into (47), we get

(48)

and minimizing this expression with respect to the ’s, we find

(49)

where . Substituting these op-
timal values in (43), we obtain the optimal maximum SNR fil-
tering matrix with minimum desired signal distortion:

(50)

We also deduce that the maximum SNR filtering matrix for the
estimation of is

(51)

B. Wiener

If we differentiate the MSE criterion, , with respect to
and equate the result to zero, we find the Wiener filtering

matrix:

(52)

We deduce that the equivalent Wiener filtering matrix for the
estimation of the vector is

(53)

which corresponds to the classical Wiener filtering matrix [1]. It
is extremely important to observe that, thanks to the eigenvalue
decomposition and the nullspace of , the size of the
proposedWiener filtering matrix is smaller than the size
of the classical Wiener filtering matrix, for the estimation of the
desired signal vector , while the two methods lead to the
exact same result. We deduce that the optimal Wiener filter for
the estimation of is

(54)

where is the th column of .
By applying the Woodbury’s identity in (12) and then substi-

tuting the result in (52), we easily deduce another form of the
Wiener filtering matrix:

(55)

The expression is interesting because it shows an obvious link
with some other optimal rectangular filtering matrices as it will
be verified later. We also have

(56)

If is diagonal, i.e., , the previous expression
simplifies to

(57)

This shows how the desired signal subspace is modified to get
a good estimate of from with Wiener.
Property 5.1: The output SNR with the Wiener filtering

matrix is always greater than or equal to the input SNR, i.e.,

.
Obviously, we have

(58)
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and, in general,

(59)

C. Minimum Variance Distortionless Response

The celebrated minimum variance distortionless response
(MVDR) filter proposed by Capon [17], [18] is usually derived
in a context where we have at least two sensors available.
Interestingly, with the signal model proposed in this work, we
can also derive the MVDR with one sensor only by minimizing

the MSE of the residual noise, , with the constraint
that the desired signal is not distorted. Mathematically, this is
equivalent to

(60)

The solution to the above optimization problem is

(61)

which is interesting to compare to [eq. (55)]. We deduce
that the MVDR filter for the estimation of is

(62)

Of course, for , the MVDR filtering matrix degenerates
to the identity matrix, i.e., . As a consequence,
we can state that the higher is the dimension of the nullspace of
, the more the MVDR is efficient in terms of noise reduction.

The best scenario corresponds to . If , the
MVDR simplifies to [19], [11]

(63)

In this case, signal enhancement consists of projecting
onto the desired signal subspace. Obviously, with the MVDR
filtering matrix, we have no distortion, i.e.,

and (64)

Using the Woodbury’s identity, we can rewrite the MVDR
filtering matrix as

(65)

From (65), we deduce the relationship between the MVDR and
Wiener filtering matrices:

(66)

Expression (65) can also be derived from the following rea-
soning. We know that

(67)

where can be seen as a temporal prediction matrix. Left
multiplying the previous expression by , we see that the dis-
tortionless constraint is . Now, by minimizing the
energy at the output of the filtering matrix, i.e., ,
with the distortionless constraint, we find (65).

Property 5.2: The output SNR with the MVDR filtering
matrix is always greater than or equal to the input SNR, i.e.,

.
Moreover, we have

(68)

D. Tradeoff I

In the tradeoff approach [1], [3], we minimize the speech dis-
tortion index with the constraint that the noise reduction factor
is equal to a positive value that is greater than 1. Mathemati-
cally, this is equivalent to

(69)

where to insure that we get some noise reduction. By
using a Lagrange multiplier, , to adjoin the constraint to
the cost function and assuming that the matrix
is invertible, we easily deduce the tradeoff filtering matrix:

(70)

which can be rewritten, thanks to the Woodbury’s identity, as

(71)

where satisfies . Usually, is chosen
in a heuristic way, so that for
• , which is the Wiener filtering matrix;
• , the problem in (69) does not have a solution since

is not invertible but one can obtain
from (71) that , which is the MVDR fil-
tering matrix;

• , results in a filtering matrix with low residual noise
at the expense of high desired signal distortion (as com-
pared to Wiener); and

• , results in a filtering matrix with high residual noise
and low desired signal distortion (as compared to Wiener).

Property 5.3: The output SNR with the tradeoff filtering
matrix is always greater than or equal to the input SNR, i.e.,

.
We should have, for ,

(72)

(73)

and for ,

(74)

(75)
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Let us end this subsection by writing the tradeoff filtering
matrix for the estimation of :

(76)

which clearly shows how the desired signal subspace should be
modified in order to make a compromise between noise reduc-
tion and desired signal distortion.

E. Tradeoff II

We can also come up with another, and maybe more useful,
tradeoff filter than the classical one by inheriting the principle
behind the MVDR filter in Section V-C. Here, the principle is
used to obtain a filter that minimizes the MSE of the residual
noise, , with the constraint that the filter should be dis-
tortionless with respect to the th most dominant subspace
components, i.e.,

(77)

where

(78)

and . Obviously, needs to be an integer, as it refers
to a certain number of columns in . Solving (77) wrt. the
unknown filter response, yields

(79)

We can then deduce that the tradeoff filter for the estimation of
is given by

(80)

We can then obtain different filters by using different values of
which enable us to trade off signal distortion for noise reduction.
Moreover, we observe the following:
• if and the noise is white, the tradeoff filter in (80)
resembles the maximum SNR filter in (51), i.e.,

;
• if , the tradeoff filter in (80) resembles the MVDR
filter in (62), i.e., ; and

• if , a tradeoff filter, , is obtained
that has noise reduction and signal distortion measures in
between those of the maximum SNR and MVDR filters,
respectively.

The tradeoff filter proposed in this section exhibits a smooth and
always increasing/decreasing behaviour in terms of output SNR
and signal distortion index as a function of . That is,

(81)

(82)

Fig. 1. Plots of (a) the output SNR and (b) the signal reduction factor for the
, and filters as functions of the filter length, .

We note that the tradeoff filter, , can attain themaximum
output SNR with a signal distortion bounded by the distortion
of the maximum SNR filter in white Gaussian noise scenarios.
This is opposed to the tradeoff filter in Section V-D which may
never reach the maximum SNR, and it will most likely intro-
duce much more signal distortion than the maximum SNR filter.
More details and observations on the comparison of the tradeoff
filters can be found in the experimental part of the paper.

VI. CASE STUDY: PERIODIC SIGNALS

Then, we proceed with a case study of the rectangular fil-
tering methods proposed in Sec. V. In this study, the desired
signal is assumed to be periodic, which is a valid assumption
for short segments of, e.g., recordings of voiced speech and mu-
sical instruments. As it becomes clear later, the periodicity as-
sumption enables us to derive closed-form expressions for the
performance measures of the filters that, eventually, facilitates
evaluation of the filters’ performance without having to estimate
any statistics. This is an important observation since we can then
conduct evaluations of the filters that are not disturbed by esti-
mation errors in the statistics. On a side note, the resemblance
between the filters proposed herein and previously proposed fil-
tering methods for periodic signals [20], [21] also becomes clear
from this case study.
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Fig. 2. Plots of (a) the output SNR and (b) the signal reduction factor for the
, and filters as functions of the filter length, ,

when two harmonics are missing.

When the desired signal is periodic, we can rewrite the signal
model in (1) as

(83)

where is the number of harmonics constituting the periodic
signal, is the fundamental frequency relating the harmonics,

and are the complex amplitude, the
real amplitude and the phase of the th harmonic, respectively,
and denotes the elementwise conjugate of a scalar, vector
or matrix. The single snapshot, signal model in (83) can be ex-
tended to a vector model as

(84)

where

(85)

(86)

(87)

(88)

Fig. 3. Plots of (a) the output SNR and (b) the signal reduction factor for the
, and filters as functions of the input SNR.

with denoting the th column of a matrix, and de-
noting the complex conjugate transpose of a vector or matrix.

A. Link Between MVDR and Harmonic LCMV Filters

In cases where the desired signal is indeed periodic and the
above-mentioned model holds, the matrix spans the
signal subspace, i.e., and we
have that [21]

(89)

with

(90)

(91)

Substituting (89) and (90) into, e.g., the expression for the
MVDR filter in (61), we get

(92)

This is clearly related to the harmonic LCMV filterbank,
, proposed in [20], [21] for fundamental frequency

estimation as

(93)
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Fig. 4. Plots of (a) the output SNR and (b) the signal reduction factor for the
, and filters as functions of .

By means of the framework considered in this paper, the har-
monic LCMV filterbank can be interpreted as a filterbank esti-
mating the amplitudes of the harmonics in a transform domain
where the inverse transform is :

(94)

Adopting the idea of estimating parameters in a transform do-
main and applying an inverse transform on those to get an es-
timate of yields the following version of the harmonic
LCMV filterbank:

(95)

Interestingly, it can be shown that, for periodic signals, this fil-
terbank is identical to the corresponding version of the MVDR
filterbank, i.e.,

(96)

B. Performance Evaluation for Periodic Signals

We can also further specify the model of the covariance ma-
trix of the desired signal, when the desired signal is periodic. In
that case, is given by [22]

(97)

Fig. 5. Plots of (a) the output SNR and (b) the signal reduction factor for the
, and filters as functions of .

That is, the covariance matrix of the desired signal is fully spec-
ified by the fundamental frequency, the model order, and the
amplitudes of the harmonics in cases with periodic, desired sig-
nals. If the covariance matrix model of the noise is also known
as in, e.g., the white Gaussian noise case where ,
these expressions for the covariance matrices can be inserted in
the expressions for the performance measures of the different
filter designs proposed herein to get closed-form performance
measure expressions.
In this way, we evaluated the filters in different scenarios

with periodic signals as described in the following. The so-ob-
tained results provide insight into how the filters would per-
form for enhancement of, e.g., speech and musical instrument
recordings, as most of such signals can be assumed periodic
for short segments. In these scenarios, we assumed that the de-
sired signal was periodic, having a fundamental frequency of

and harmonics. The amplitudes of the har-
monics were assumed to be .
Using this setup, we first evaluated the MVDR, Wiener, and
maximum SNR filters for different filter lengths, , and the re-
sults are depicted in Fig. 1. From the figure, we see that the
maximum SNR filter expectedly has the highest output SNR,
but also the highest signal reduction factor, for all different filter
lengths. TheWiener filter outperforms theMVDR filter in terms
of output SNR, but at the expense of signal distortion. At high
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Fig. 6. Spectrograms for (a) a clean speech signal, (b) the speech signal in noise, and the noisy signals enhanced using the (c) maximum SNR, (d) Wiener, and
(e)–(f) MVDR filters. The MVDR filters were applied with two different assumed model orders, i.e., (e) and (f) .

filter lengths, the Wiener and MVDR filters have similar perfor-
mances. Then, we again investigated the filters’ performance
versus the filter lengths, but with two missing harmonics, i.e.,
the second and fourth. In this case, the rank of the signal sub-
space is only , whereas it was in the previous
setup. This means that the MVDR filter can be designed with
fewer constraints compared to the HLCMV filter, while still
being distortionless. Effectively, this should leave more degrees
of freedom in the filter for noise reduction. This was also con-
firmed by our experimental results in Fig. 2, where the MVDR
filter is shown to outperform the HLCMV filter in terms of
output SNR, while both filters are distortionless. We then pro-
ceeded to evaluate the filters versus different input SNRs as
shown in Fig. 3. An interesting observation from this experi-
ment is that theWiener filter has a higher signal reduction factor
than the maximum SNR filter at low iSNRs, while it also has a
lower output SNR. Furthermore, the MVDR and Wiener filters
asymptotically yield the same performance. Finally, we investi-
gated the performance of the different tradeoff filters. Both fil-
ters are indeed able to trade off the signal reduction factor for a

higher output SNR (see Figs. 4 and 5). The second tradeoff filter,
, seems more efficient in doing this, though, as both its

output SNR and signal reduction factor are bounded by those
of the maximum SNR and MVDR filters. This is opposed to the
first, classical tradeoff filter, which never attains the output SNR
of the maximum SNR filter, and it introduces even more distor-
tion than the maximum SNR filter.

VII. EXPERIMENTAL STUDY

In this section, we present the evaluation of the maximum
SNR, Wiener, and MVDR filters on real-life speech. This is to
verify that the filters are indeed applicable on real-life signals,
and that the relations between the performance measures of the
different filters hold. For this experiment, we used a 2.4 sec-
onds long, female, speech excerpt from the Keele database [23],
with the spectrogram shown in Fig. 6(a). Then, we added white
Gaussian noise to the speech signal so the average input SNR
was 10 dB, and the maximum SNR, Wiener and MVDR filters
were applied to the noisy, speech signal. The spectrogram of
the noisy signal is shown in Fig. 6(b). To design the filters at
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Fig. 7. Plots of the (a) output SNRs and (b) signal reduction factors of the
maximum SNR filter , the Wiener filter, and the MVDR filter (
and ) obtained from an experiment with real, female speech in white

Gaussian noise at an input SNR of 10 dB.

each time instance, we used outer product averaged, statistics
estimates obtained from the past 400 samples. The length of the
filters was , the maximum SNR filter was designed
with , and the MVDR filter was designed with both

and . Using this setup, the filters were designed
and applied for enhancement, and the resulting spectrograms of
the enhanced signals, output SNRs and signal reduction factors
are depicted in Figs. 6 and 7. Note that since we get a vector of
time-consecutive speech estimates at every time instance, these
vectors will be overlapping for one time instance and the fol-
lowing. For one time instance, the final speech estimate is there-
fore obtained from all vectors containing a speech estimate re-
lated to this time instance by averaging those estimates.
From the plots, we first of all observe that all filters improve

the SNR. Our informal listening tests also confirmed this. Sec-
ondly, the output SNR and signal reduction factor of the MVDR
filter depends heavily on the choice of which is not known in
practice. In this experiment, we just used a fixed , whereas
it is known to be time-varying in practice. In most cases, the
MVDR filter seems to give a lower signal reduction factor than
the Wiener filter, especially so for . The maximum SNR
filter yields the highest output SNR but also gives by far the
most signal distortion. This was also confirmed by listening. The
maximum SNR filter should therefore be regarded as the filter
setting a bound on the output SNR rather than a competitor in
practical solutions. The above observations are also consistent
with the spectrograms of the enhanced signals.

VIII. CONCLUSION

In this paper, a new class of optimal filters for speech en-
hancement has been introduced. These are derived based on the
ideas of subspace-based speech enhancement methods so that
the observed signal is projected onto the signal subspace after
which filtering is performed. By doing this, additional degrees
of freedom are achieved in the filter, which means that filters
derived this way have the potential to achieve improved output
SNRs compared to traditional approaches. In this framework, a
number of classical as well as some new filters have been de-
rived. With the new filters, it is possible to trade off signal dis-
tortion for better noise reduction. The results confirm that this
is indeed the case for both synthetic, periodic signals and real
speech signals. In fact, it is possible to seamlessly achieve the
maximum output SNR at the cost of speech distortion.
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