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This paper studies the problem of single-channel noise reduction in the time domain and presents a

block-based approach where a vector of the desired speech signal is recovered by filtering a frame

of the noisy signal with a rectangular filtering matrix. With this formulation, the noise reduction

problem becomes one of estimating an optimal filtering matrix. To achieve such estimation, a

method is introduced to decompose a frame of the clean speech signal into two orthogonal compo-

nents: One correlated and the other uncorrelated with the current desired speech vector to be esti-

mated. Different optimization cost functions are then formulated from which non-causal optimal

filtering matrices are derived. The relationships among these optimal filtering matrices are dis-

cussed. In comparison with the classical sample-based technique that uses only forward prediction,

the block-based method presented in this paper exploits both the forward and backward prediction

as well as the temporal interpolation and, therefore, can improve the noise reduction performance

by fully taking advantage of the speech property of self correlation. There is also a side advantage

of this block-based method as compared to the sample-based technique, i.e., it is computationally

more efficient and, as a result, more suitable for practical implementation.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4773269]
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I. INTRODUCTION

In many applications of speech processing, an effective

noise reduction algorithm is required. Over the past several

decades, many algorithms have been developed and

improved (Benesty et al., 2009; Loizou, 2007; Chen et al.,
2007; Vary and Martin, 2006; Ephraim, 1992; Lim, 1983).

However, it is well known that these single-microphone

algorithms only achieve noise reduction at a price of modify-

ing the desired speech signal, leading to speech distortion. In

general, the more the noise is attenuated, the more the

speech is distorted.

Recently, it has been shown that by decomposing the

clean speech signal vector into two orthogonal components,

i.e., the desired speech component that is correlated with the

speech sample to be estimated and the interference compo-

nent that is uncorrelated with the speech sample to be

estimated, many new noise reduction filters can be deduced

(Chen et al., 2011; Benesty and Chen, 2011; Benesty et al.,
2012). Particularly, the minimum variance distortionless

response (MVDR) filter can be designed thanks to this or-

thogonal decomposition, which can achieve noise reduction

without distorting the desired speech signal in the single-

channel case, which has never been seen before in the

literature.

The algorithms developed in Benesty et al. (2012) are

sample-based approaches, i.e., one sample at a time is esti-

mated, where the speech signal at the current time instant is

always predicted using the past samples through forward

prediction. In a more recent effort (Li et al., 2012), we

extended the sample-based approach into a block-based

framework and deduced some algorithms that estimate a

vector of the desired speech signal through filtering a frame

of the noisy signal with a rectangular filtering matrix. In

comparison with the sample-based techniques, this block-

based method is shown to have the potential for better noise

reduction performance as it exploits both the forward and
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backward prediction as well as the temporal interpolation

and, therefore, can fully take advantage of the speech prop-

erty of correlation with neighboring (both past and future)

samples. Another side advantage of the block-based frame-

work as compared to the sample-based one is the computa-

tional complexity. As we know, the largest computational

burden of a time-domain noise reduction algorithm is from

the matrix inversion. In the sample-based method, a matrix

inversion is needed for every sample. But in a block-based

algorithm, it is only needed for each vector. So the larger the

vector size, the lower the computational burden.

This paper is a continuation of the work presented in Li

et al. (2012). The major contribution of this work is three-

fold. (1) It extends the previous block-based approach to a

more general form with the inclusion of a delay parameter.

As it will be shown later, this delay parameter adds flexibil-

ity in controlling the degree of non-causality in the filtering

matrices so that the output signal-to-noise ratio (SNR) can

be improved and the speech distortion can be lowered. (2) It

presents a more comprehensive theoretical study and thor-

ough analysis of the block-based noise reduction approach.

(3) More experimental investigation is provided; this further

justifies the advantages of the block-based approach.

The rest of this paper is organized as follows. In Sec. II,

we describe the signal model and the noise reduction prob-

lem that is to be tackled in this work. We then discuss how

to deduce different optimal filtering matrices such as the

maximum SNR, Wiener, MVDR, prediction, and tradeoff fil-

tering matrices in Sec. III. In Sec. IV, we use experiments to

evaluate the performance of the different filters with differ-

ent values of the important parameters. Finally, we give our

conclusions in Sec. V.

II. SIGNAL MODEL AND PROBLEM FORMULATION

In the time domain, we assume that the observed signal,

yðkÞ, is an additive mixture of the clean speech, xðkÞ, and the

noise, vðkÞ, i.e.,

yðkÞ ¼ xðkÞ þ vðkÞ; (1)

where xðkÞ and vðkÞ are assumed to be uncorrelated and

zero-mean random processes, and k is the discrete-time

index. All signals are considered to be real and broadband.

The signal model given in Eq. (1) can be put into a vec-

tor form:

yðkÞ ¼ xðkÞ þ vðkÞ; (2)

where

yðkÞ¢½ yðkÞ yðk � 1Þ � � � yðk � Lþ 1Þ �T (3)

is a vector of length L, superscript T denotes transpose of a

vector or a matrix, and xðkÞ and vðkÞ are defined in a similar

way to yðkÞ.
In this paper, we estimate more than one sample at a

time. Therefore, we define the following two vectors of

length M:

~xðkÞ¢½ xðkÞ xðk � 1Þ � � � xðk �M þ 1Þ �T ; (4)

~xnðkÞ¢~xðk � nÞ; (5)

where M � L and n can be any integer in the interval

½0; L�M � 1�. Our objective in this work is to estimate the

desired signal vector, ~xnðkÞ ¼ ~xðk � nÞ. (Note that the delay

parameter, n, is introduced to allow some flexibility of using

non-causality in the filtering process, which can help improve

noise reduction performance as it will be shown later.) This

can be achieved by applying a linear transformation to yðkÞ
(Benesty et al., 2009; Benesty and Chen, 2011), i.e.,

~zðkÞ ¼ HnyðkÞ ¼ Hn½xðkÞ þ vðkÞ�
¼ ~xf;nðkÞ þ ~vrn;nðkÞ;

(6)

where the vector ~zðkÞ of length M is the estimate of ~xnðkÞ,

Hn ¼ ½ hn;1 hn;2 � � � hn;M �T (7)

is a rectangular filtering matrix of size M � L,

hn;m ¼ ½hn;m;0 hn;m;1 � � � hn;m;L�1�T ;
m ¼ 1; 2; …; M

(8)

are finite-impulse-response (FIR) filters of length L, and

~xf;nðkÞ¢HnxðkÞ; (9)

~vrn;nðkÞ¢HnvðkÞ (10)

are the filtered speech and residual noise, respectively.

Depending on the values of M and n, there are five important

cases of Eq. (6) as described in the following text.

(a) M ¼ 1 and n ¼ 0. In this situation, ~zðkÞ becomes a sca-

lar zðkÞ, which is the estimate of xðkÞ. The filtering ma-

trix H0 degenerates to a causal FIR filter (vector) hT
0 of

length L. This case has been studied in Chen et al.,
(2011); Benesty et al., (2012).

(b) M ¼ 1 and n > 0. In this case, the vector ~zðkÞ, again,

degenerates to the scalar zðkÞ as in the previous situa-

tion. But the difference is that this time, Hn degener-

ates to a non-causal FIR filter hT
n of length L and zðkÞ

is the estimate of xðk � nÞ. This case has been studied

in Jensen et al. (2012).

(c) M ¼ L. In this situation, n has to be 0, ~zðkÞ is a vector

of length L and H0 is a square matrix of size L� L.

This scenario has been widely covered in the literature

such as (Ephraim and Trees, 1995; Jensen et al., 1995;

Hu and Loizou, 2002; Benesty et al., 2009).

(d) 1 � M � L and n ¼ 0. This case has been briefly stud-

ied in Li et al. (2012) and will be more comprehen-

sively investigated in this paper.

(e) 1 � M � L and 0 � n � L. This general case is the

focus of this paper.

By definition, our desired signal is the vector ~xnðkÞ.
Therefore we need to extract it from xðkÞ. For that, we con-

sider decomposing xðkÞ into two orthogonal components:
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One that is correlated with (or is a linear transformation of)

the desired signal ~xnðkÞ and another that is orthogonal to

~xnðkÞ and, hence, will be considered as the interference com-

ponent. Specifically, the vector xðkÞ is decomposed into the

following form:

xðkÞ ¼ Rx~xn
R�1

~xn
~xnðkÞ þ xi;nðkÞ

¼ xd;nðkÞ þ xi;nðkÞ;
(11)

where

xd;nðkÞ¢Rx~xn
R�1

~xn
~xnðkÞ ¼ Cx~xn

~xnðkÞ (12)

is a linear transformation of the desired signal,

R~xn
¢E½~xnðkÞ~xT

n ðkÞ� is the correlation matrix (of size M �M)

of ~xnðkÞ with E½�� denoting mathematical expectation,

Rx~xn
¢E½xðkÞ~xT

n ðkÞ� is the cross-correlation matrix (of size

L�M) between xðkÞ and ~xnðkÞ, Cx~xn
¢Rx~xn

R�1
~xn

, and

xi;nðkÞ ¼ xðkÞ � xd;nðkÞ (13)

is the interference signal. It is easy to see that xd;nðkÞ and

xi;nðkÞ are orthogonal, i.e.,

E½xd;nðkÞxT
i;nðkÞ� ¼ 0L�L: (14)

For the particular case M ¼ L, we have Cx~xn
¼ IL, which is the

identity matrix (of size L� L), and xd;nðkÞ coincides with xðkÞ,
which obviously makes sense. For M ¼ 1, Cx~xn

simplifies to

the normalized correlation vector (Chen et al., 2011):

cx;n ¼
E½xðkÞxðk � nÞ�

E½x2ðk � nÞ� : (15)

Substituting Eq. (11) into Eq. (6), we get

~zðkÞ ¼ Hn½xd;nðkÞ þ xi;nðkÞ þ vðkÞ�
¼ ~xfd;nðkÞ þ ~xri;nðkÞ þ ~vrn;nðkÞ;

(16)

where

~xfd;nðkÞ¢Hnxd;nðkÞ; (17)

~xri;nðkÞ¢Hnxi;nðkÞ (18)

are the filtered desired signal and the residual interference,

respectively. It can be checked that the three terms ~xfd;nðkÞ,
~xri;nðkÞ, and ~vrn;nðkÞ are mutually uncorrelated. Therefore the

correlation matrix of ~zðkÞ is

R~z¢E½~zðkÞ~zTðkÞ� ¼ R~xfd;n
þ R~xri;n

þ R~vrn;n
; (19)

where

R~xfd;n
¼ HnRxd;n

HT
n ; (20)

R~x ri;n
¼ HnRxi;n

HT
n

¼ HnRxHT
n �HnRxd;n

HT
n ;

(21)

R~vrn;n
¼ HnRvHT

n ; (22)

Rxd;n ¼ Cx~xn
R~xn

CT
x~xn

is the correlation matrix (the rank of

which is equal to M) of xd;nðkÞ, Rxi;n¢E½xi;nðkÞxT
i;nðkÞ� is

the correlation matrix of xi;nðkÞ, Rx¢E½xðkÞxTðkÞ� and

Rv¢E½vðkÞvTðkÞ� are the correlation matrices of xðkÞ and

vðkÞ, respectively.

Now, the error signal between the estimated and desired

signals can be defined as a vector of length M:

~enðkÞ¢~zðkÞ � ~xnðkÞ ¼ ~ed;nðkÞ þ ~er;nðkÞ; (23)

where

~ed;nðkÞ¢~xfd;nðkÞ � ~xnðkÞ
¼ ~xfd;nðkÞ � ~xðk � nÞ
¼ ðHnCx~xn

� IMÞ~xðk � nÞ (24)

is the signal distortion due to the rectangular filtering matrix

with IM being the M �M identity matrix and

~er;nðkÞ¢~xri;nðkÞ þ ~vrn;nðkÞ
¼ Hnxi;nðkÞ þHnvðkÞ (25)

represents the residual interference plus noise.

Having defined the error signal, we can now write the

mean-square error (MSE) criterion:

JðHnÞ¢
1

M
� trfE½~enðkÞ~eT

n ðkÞ�g

¼ 1

M
½trðR~xn

Þ þ trðHnRyHT
n Þ � 2trðHnRy~xn

Þ�

¼ 1

M
½trðR~xn

Þ þ trðHnRyHT
n Þ � 2trðHnRx~xn

Þ�;

(26)

where trf�g denotes the trace of a square matrix,

Ry¢E½yðkÞyTðkÞ� is the correlation matrix of yðkÞ, and

Ry~xn
¢E½yðkÞ~xT

n ðkÞ�
¼ E½xðkÞ~xT

n ðkÞ�
¼ Rx~xn

(27)

is the cross-correlation matrix between yðkÞ and ~xnðkÞ.
Using the fact that E½~ed;nðkÞ~eT

r;nðkÞ� ¼ 0M�M, J ðHÞ can

be expressed as the sum of two other MSEs, i.e.,

JðHnÞ ¼ JdðHnÞ þ JrðHnÞ; (28)

where

JdðHnÞ¢
1

M
� trfE½~ed;nðkÞ~eT

d;nðkÞ�g; (29)

JrðHnÞ¢
1

M
� trfE½~er;nðkÞ~eT

r;nðkÞ�g: (30)

With these MSE criteria, we are now ready to derive dif-

ferent optimal filtering matrices. However, before leaving

this section and moving to the next one on optimal filtering

matrices, let us first present a scheme that can jointly diago-

nalize the three symmetric matrices Ry, Rxd;n
, and Rin, where

Rin¢Rxi;n
þ Rv. This diagonalization will be used later on to

analyze some optimal filtering matrices.
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From the signal model given in Eq. (2) and the signal

decomposition in Eq. (11), it is easy to check that

Ry ¼ Rxd;n
þ Rin. The two matrices Rxd;n

and Rin can be

jointly diagonalized as follows (Searle, 1982; Strang, 1988):

BTRxd;n
B ¼ K; (31)

BTRinB ¼ IL; (32)

where B is a full-rank square matrix (of size L� L) and K is

a diagonal matrix the main elements of which are real and

nonnegative. Furthermore, K and B are the eigenvalue and

eigenvector matrices, respectively, of R�1
in Rxd;n

, i.e.,

R�1
in Rxd;n

B ¼ BK: (33)

Because the rank of the matrix Rxd;n
is equal to M, the eigen-

values of R�1
in Rxd;n

can be ordered as k1 � k2

� � � � � kM > kMþ1 ¼ � � � ¼ kL ¼ 0. In other words, the

last L�M eigenvalues of R�1
in Rxd;n

are equal to zero while

its first M eigenvalues are positive, with k1 being the maxi-

mum eigenvalue. We also denote the corresponding eigen-

vectors by b1; b2;…; bM; bMþ1;…; bL. With the preceding

decomposition, it is easy to check that

BTRyB ¼ Kþ IL: (34)

Therefore the three matrices are simultaneously diagonal-

ized. Note that the preceding diagonalization was proposed

and used in Jensen et al. (1995) and Hu and Loizou (2002)

and Hu and Loizou (2003) but for the classical subspace

approach (Ephraim and Trees, 1995).

III. OPTIMAL RECTANGULAR FILTERING MATRICES

In this section, we are going to derive several important

filtering matrices that can help reduce the noise picked up by

the microphone signal.

A. Maximum SNR

First, let us derive a filter that can maximize the output

SNR. From the signal model given in Eqs. (1) or (1), the

input SNR is defined as

iSNR¢
r2

x

r2
v

¼ trðRxÞ
trðRvÞ

; (35)

where r2
x¢E½x2ðkÞ� and r2

v¢E½v2ðkÞ� are the variances of

the desired clean speech and noise signals, respectively.

Now with the use of the decomposition of the output signal

given in Eq. (16), we can write the output SNR as

oSNRðHnÞ ¼
trðR~xfd;n

Þ
trðR~xri;n

þ R~vrn;n
Þ

¼

XM

m¼1

hT
n;mRxd;n

hn;m

XM

m¼1

hT
n;mRinhn;m

:

(36)

(Note that the interference should be treated as part of the re-

sidual noise because it is uncorrelated with desired speech

component.) It is straightforward to see that the maximum

SNR filter is obtained by maximizing Eq. (36). To find such

a filter, let us first give the following lemma.

Lemma I. With the filtering matrix Hn, the output SNR

satisfies

oSNRðHnÞ � max
m

hT
n;mRxd;n

hn;m

hT
n;mRinhn;m

¢v: (37)

Proof. Let us define the following real and positive coef-

ficients: am¢hT
n;mRxd;n

hn;m and bm¢hT
n;mRinhn;m. Then, we

have

XM

m¼1

am

XM

m¼1

bm

¼
XM

m¼1

am

bm
� bmPM

i¼1

bi

0
BBB@

1
CCCA: (38)

Now, let us define the following two vectors:

u¢
a1

b1

a2

b2

� � � aM

bM

� �T

; (39)

u0¢

b1PM
i¼1

bi

b2PM
i¼1

bi

� � � bMPM
i¼1

bi

2
6664

3
7775

T

: (40)

Using the Holder’s inequality, we have

XM

m¼1

am

XM

m¼1

bm

¼ uTu0 � kuk1ku0k1 ¼ max
m

am

bm
; (41)

where k � k1 and k � k1 denote, respectively, the ‘1 and ‘1

norm. Then it follows immediately that the inequality given

in Eq. (37) holds, which completes the proof of the lemma.

Based on the previous Lemma, we can give the follow-

ing theorem.

Theorem I. The maximum SNR filtering matrix is given by

Hmax;n ¼

b1bT
1

b2bT
1

�

bmbT
1

2
66664

3
77775; (42)

where bm;m ¼ 1; 2;…;M are real numbers with at least one

of them different from 0, and b1 is the eigenvector of the ma-

trix R�1
in Rxd

corresponding to the maximum eigenvalue k1.

The corresponding output SNR is

oSNRðHmax;nÞ ¼ k1: (43)

Proof. From Lemma I, we know that the output SNR is

upper bounded by v the maximum value of which is clearly

k1. On the other hand, it can be checked from Eq. (43) that

oSNRðHmax;nÞ ¼ k1. Because this output SNR is maximal, it
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is straightforward to see that Hmax is the maximum SNR fil-

tering matrix.

Now, we can check that the maximum SNR filtering

matrix has the following property.

Property I. The output SNR with the maximum SNR fil-

tering matrix is always greater than or equal to the input

SNR, i.e., oSNRðHmax;nÞ � iSNR.

This property can be easily verified, which will not be

presented here.

From the preceding analysis, we can see that for a fixed

L, increasing the value of M (from 1 to L) will, in general,

increase the output SNR of the maximum SNR filtering ma-

trix because more and more information is taken into

account. However, we should expect that the amount of

speech distortion due to the maximum SNR filter would also

increase significantly as M is increased.

B. Wiener

If we differentiate the MSE criterion, JðHnÞ, defined in

Eq. (26), with respect to Hn and equate the result to zero, we

find the Wiener filtering matrix:

HW;n ¼ RT
y~xn

R�1
y ¼ RT

x~xn
R�1

y : (44)

Using the identity filtering matrix Ii ¼ ½IM 0M�ðL�MÞ�, we can

rewrite the Wiener filtering matrix as

HW;n ¼ IiRxR�1
y ¼ IiðIL � RvR�1

y Þ: (45)

Because

Rx~xn
¼ Cx~xn

R~xn
; (46)

we can rewrite Eq. (44) as

HW;n ¼ R~xn
CT

x~xn
R�1

y : (47)

The correlation matrix of yðkÞ can be written as

Ry ¼ Rxd;n
þ Rin ¼ Cx~xn

R~xn
CT

x~xn
þ Rin: (48)

Determining the inverse of Ry from Eq. (48) with the Wood-

bury’s identity gives

R�1
y ¼ R�1

in þ R�1
in Cx~xn

ðR�1
~xn
þ CT

x~xn
R�1

in Cx~xn
Þ�1

� CT
x~xn

R�1
in : (49)

Now, substituting Eq. (49) into Eq. (47), we get another

interesting formulation of the Wiener filtering matrix:

HW;n ¼ ðIM þ R~xn
CT

x~xn
R�1

in Cx~xn
Þ�1

R~xn
CT

x~xn
R�1

in

¼ ðR�1
~xn
þ CT

x~xn
R�1

in Cx~xnÞ
�1CT

x~xn
R�1

in :
(50)

C. MVDR

The celebrated MVDR approach, requiring no distortion

to the desired signal, is usually derived in the multichannel

case. Interestingly, with the new block-based framework, we

can also derive the MVDR in the single-channel case, just

like in Chen et al. (2011) and Benesty and Chen (2011). The

corresponding rectangular filtering matrix is obtained by

minimizing the MSE of the residual interference-plus-noise,

JrðHnÞ, with the constraint that the desired signal is not dis-

torted. Mathematically, this is equivalent to

HMVDR;n ¼ arg min
Hn

1

M
� trðHnRinHT

n Þ

subject to HnCx~xn
¼ IM: (51)

The solution to the preceding optimization problem is

HMVDR;n ¼ ðCT
x~xn

R�1
in Cx~xn

Þ�1CT
x~xn

R�1
in ; (52)

which is interesting to compare to HW;n in Eq. (50).

Obviously, by using the Woodbury’s identity of R�1
y in

Eq. (49) we can rewrite Eq. (52) as

HMVDR;n ¼ ðCT
x~xn

R�1
y Cx~xn

Þ�1CT
x~xn

R�1
y : (53)

From Eqs. (47) and (53), we deduce the relationship

between the MVDR and Wiener filtering matrices:

HMVDR;n ¼ ðHW;nCx~xn
Þ�1

HW;n: (54)

D. Prediction

Let Gn be a temporal prediction matrix of size M � L so

that

xðkÞ � GT
n ~xnðkÞ: (55)

A new distortionless filtering matrix for noise reduction

based on preceding prediction can be derived by

HP;n ¼ arg min
Hn

trðHnRyHT
n Þ

subject to HnGT
n ¼ IM; (56)

from which we deduce the solution

HP;n ¼ ðGnR�1
y GT

n Þ
�1

GnR�1
y : (57)

The best way to find Gn is in the minimum MSE

(MMSE) sense. Indeed, define the error signal vector:

eP;nðkÞ¢xðkÞ �GT
n ~xnðkÞ (58)

and form the MSE:

JðGnÞ¢E½eT
P;nðkÞeP;nðkÞ�: (59)

The minimization of JðGnÞ with respect to Gn leads to

Gn;o ¼ CT
x~xn
; (60)

and substituting this result into Eq. (57) gives
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HP;n ¼ ðCT
x~xn

R�1
y Cx~xn

Þ�1CT
x~xn

R�1
y ; (61)

which is identical to the MVDR.

It is interesting to observe that the error signal vector

with the optimal matrix, Gn;o, corresponds to the interference

signal vector, i.e.,

eP;n;oðkÞ ¼ xðkÞ � Cx~xn
~xnðkÞ ¼ xi;nðkÞ: (62)

This result is a consequence of the orthogonality principle.

E. Tradeoff

In the tradeoff approach, we minimize the speech distor-

tion index with the constraint that the noise reduction factor

is equal to a positive value that is greater than 1. Mathemati-

cally, this is equivalent to

min
Hn

JdðHnÞ subject to JrðHnÞ ¼ bJrðIiÞ; (63)

where 0 < b < 1 to ensure that we get some noise reduction.

By using a Lagrange multiplier, l > 0, to adjoin the con-

straint to the cost function and assuming that the matrix

Cx~xn
R~xn

CT
x~xn
þ lRin is invertible, we easily deduce the trade-

off filtering matrix:

HT;l;n ¼ R~xn
CT

x~xn
ðCx~xn

R~xn
CT

x~xn
þ lRinÞ�1; (64)

which can be rewritten, thanks to the Woodbury’s identity,

as

HT;l;n ¼ ðlR�1
~xn
þ CT

x~xn
R�1

in Cx~xn
Þ�1CT

x~xn
R�1

in ; (65)

where l satisfies JrðHT;l;nÞ ¼ bJrðIiÞ. Usually, l is chosen in

a heuristic way, so that we have the following cases:

(a) When l ¼ 1, we have HT;1;n ¼ HW;n, which is the

Wiener filtering matrix.

(b) When l ¼ 0 [from Eq. (65)], we get HT;0;n ¼ HMVDR;n,

which is the MVDR filtering matrix.

(c) If l > 1, the tradeoff filter tends to attenuate more

noise as compared to Wiener; but this is achieved at

the expense of higher speech distortion.

(d) If l < 1, the tradeoff filter tends to have less noise

reduction with also lower distortion as compared to

Wiener.

For the tradeoff filtering matrix, we have the following

property.

Property II. The output SNR with the tradeoff filtering

matrix is always greater than or equal to the input SNR, i.e.,

oSNRðHT;l;nÞ � iSNR; 8l � 0.

This property can be proved by induction, which will

not be presented here.

Comparing the output SNRs of the MVDR, Wiener,

and tradeoff filtering matrices, we have the following

inequalities.

(a) If l � 1,

oSNRðHMVDR;nÞ�oSNRðHW;nÞ�oSNRðHT;l;nÞ
�oSNRðHmax;nÞ: (66)

(b) If l � 1,

oSNRðHMVDR;nÞ�oSNRðHT;l;nÞ�oSNRðHW;nÞ
�oSNRðHmax;nÞ: (67)

Using the joint diagonalization given from Eqs. (31) to (34),

we can write the tradeoff filtering matrix into the so-called

subspace form. Indeed, from Eq. (64), we get

HT;l;n ¼ T

"
Rl 0M�ðL�MÞ

0ðL�MÞ�M 0ðL�MÞ�ðL�MÞ

#
BT ; (68)

where

T ¼ IiB
�T (69)

and

Rl ¼ diag
k1

k1 þ l
;

k2

k2 þ l
;…;

kM

kM þ l

� �
(70)

is an M �M diagonal matrix. Expression (68) can also be

written as

HT;l;n ¼ IiMT;l; (71)

where

MT;l ¼ B�T

"
Rl 0M�ðL�MÞ

0ðL�MÞ�M 0ðL�MÞ�ðL�MÞ

#
BT : (72)

So, the tradeoff filter HT;l;n is the product of two matrices:

The rectangular identity matrix and an adjustable square ma-

trix of size L� L the rank of which is equal to M.

Note that HT;l;n as given in Eq. (68) is not, in theory,

valid for l ¼ 0 as this expression was derived from Eq. (64),

which is clearly not defined for this particular case. In prac-

tice, however, it is possible to set l ¼ 0 in Eq. (68); but this

does not lead to the MVDR filter.

F. Particular case: M5L

For M ¼ L, the parameter n can only be 0 and the rec-

tangular matrix Hn becomes a square matrix of size L� L.

To distinguish this particular scenario from the previous gen-

eral case where Hn is a rectangular matrix, let us denote

Hn ¼ H0 as HS in this situation. It can be verified, in this

case, that xi;nðkÞ ¼ xiðkÞ ¼ 0L�1 and, as a result, Rin ¼ Rv,

Rxi;n
¼ Rxi

¼ 0L�L, and Rxd;n
¼ Rxd

¼ Rx. Given these con-

ditions, it can be checked that

HS;max ¼

b1bT
1

b2bT
1

�

bLbT
1

2
66664

3
77775; (73)
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HS; W ¼ RxR�1
y ¼ IL � RvR�1

y ; (74)

HS; MVDR ¼ IL; (75)

HS; T;l ¼ RxðRx þ lRvÞ�1

¼ ðRy � RvÞ½Ry þ ðl� 1ÞRv��1; (76)

where b1, a vector of length L, is the eigenvector corresponding

to the maximum eigenvalue, k1, of the matrix R�1
v Rx. In this

case, the MVDR is the identity matrix and all the studied opti-

mal filtering matrices are very different. It can be shown that

(a) for l � 1,

iSNR¼ oSNRðHS;MVDRÞ � oSNRðHS;WÞ
� oSNRðHS;T;lÞ � oSNRðHS;maxÞ ¼ k1; (77)

(b) for 0 � l � 1,

iSNR ¼ oSNRðHS;MVDRÞ � oSNRðHS;T;lÞ
� oSNRðHS;WÞ � oSNRðHS;maxÞ ¼ k1: (78)

Applying the joint diagonalization given from Eqs. (31) to

(34) to Eq. (76), we get

HS; T;l ¼ B�TKðKþ lILÞ�1
BT ; (79)

where K¼ diagðk1; k2; …; kL Þ and B¼ ½b1 b2 � � � bL �
are the two matrices that consist of, respectively, the eigenval-

ues and eigenvectors of the matrix R�1
v Rx. It is believed that a

speech signal can be modeled as a linear combination of a

number (smaller than the dimension of the signal vector) of

some linearly independent basis vectors (Ephraim and Trees,

1995; Jensen et al., 1995; Dendrinos et al., 1991; Hu and Loi-

zou, 2003; Jabloun and Champagne, 2005; Hermus et al.,
2007). As a result, the vector space of the noisy signal can be

decomposed in two subspaces: The signal-plus-noise subspace

of length Ls and the identity subspace of length Ln, with

L¼ LsþLn. This implies that the last Ln eigenvalues of the

matrix R�1
v Rx are equal to zero. Therefore we can rewrite

Eq. (79) to obtain the subspace-type filtering matrix:

HS;T;l ¼ B�T Rl 0Ls�Ln

0Ln�Ls
0Ln�Ln

� �
BT ; (80)

where now

Rl ¼ diag
k1

k1 þ l
;

k2

k2 þ l
;…;

kLs

kLs
þ l

� �
(81)

is an Ls � Ls diagonal matrix. This algorithm is often

referred to as the generalized subspace approach. One should

note, however, that there is no noise-only subspace with this

formulation. Therefore noise reduction can only be achieved

by modifying the speech-plus-noise subspace by setting l to

a positive number.

G. Summary

Note that it can be shown that all the optimal filtering

matrices derived in this section are related to the following

expression:

Ho ¼ AoC
T
x~xn

R�1
in ; (82)

where Ao is a square matrix of size M �M. Depending on

how we choose Ao, we can easily obtain the different opti-

mal filtering matrices given previously. In other words, these

optimal filtering matrices derived before are equivalent up to

the matrix Ao.

IV. EXPERIMENTAL RESULTS

A. Performance evaluation with known signal
statistics

The clean speech signal used in the experiments was

recorded from a male talker in a quiet office room. It was

sampled at 8 kHz. The overall length of the signal is 30 s.

Noise is added into the clean speech to control the input

SNR.

The implementation of the noise reduction filtering mat-

rices derived in Sec. III requires the estimation of the corre-

lation matrices Ry, Rx, Rx~xn
, and R�1

~xn
. We compute all these

matrices directly from the corresponding signals so that we

can put our focus on illustrating the noise reduction perform-

ance of the proposed methods with different values of the pa-

rameters. Specifically, at each frame, the matrix Ry is

computed using the most recent 600 samples of the noisy

speech signal with a short-time average, and the matrices

Rx, Rx~xn
, and R�1

~xn
are computed using a same short-time av-

erage but from the clean speech signal.

To evaluate the amount of noise reduction, the output

SNR, as defined in Eq. (36), is adopted as the objective per-

formance measure. The higher is the value of oSNRðHnÞ,
the more the noise is reduced.

We also evaluate the amount of speech distortion using

the speech distortion index (Chen et al., 2011; Benesty and

Chen, 2011):

tsdðHnÞ ¼
E½~ed;nðkÞ~eT

d;nðkÞ�
trðR~xn

Þ : (83)

The speech distortion index is always greater than or equal

to 0 and should be upper bounded by 1 for optimal filtering

matrices; so the higher is the value of tsdðHnÞ, the more the

desired signal is distorted. Both the output SNR and speech

distortion index are computed based on the 30-s long proc-

essed signals using a long-time average.

The first experiment investigates the influence of the fil-

ter length L on the noise reduction performance. White

Gaussian noise is used and the input SNR is 10 dB. We set

the delay parameter n to 0. The results of this experiment are

plotted in Fig. 1. Figure 1(a) shows that the output SNR of

both the Wiener and MVDR filtering matrices first increases

with L for all the studied values of M. The SNR improve-

ment is then saturated and does not increase much with L.

Therefore we need to choose an appropriately large value of

L (e.g., L � 30) to achieve a reasonable amount of SNR

improvement in practice; but it should not be too large

because this can significantly increase the computational

complexity without leading to much performance
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improvement. Figure 1(b) shows that the speech distortion

index of the Wiener filtering matrix decreases linearly with

L, while such index of the MVDR filtering matrix is approxi-

mately 0 for all the different values of M and L.

The second experiment evaluates the noise reduction per-

formance as a function of the block size M. Again, white Gaus-

sian noise is used, the input SNR is 10 dB, and the delay

parameter n is set to 0. Based on the previous experiment, we

set L to 44. The results for this experiment are plotted in Fig. 2.

One can see from Fig. 2(a) that the output SNR of the Wiener

and tradeoff (with l ¼ 0:5 and l ¼ 1:5) filtering matrices

increases quickly as M increases up to 8, and then continues to

increase but with a slower rate, while the output SNR of the

MVDR filtering matrix decreases as M increases. The speech

distortion index of the Wiener and tradeoff filtering matrices

increases with M, while the speech distortion index of the

MVDR filtering matrix is always approximately 0. One can see

that the MVDR filtering matrix achieves less noise reduction as

compared to the Wiener filtering matrix, but it does not intro-

duce speech distortion, which is a strong advantage in practice.

The third experiment assesses the noise reduction per-

formance of the different filtering matrices as a function of

the input SNR, i.e., iSNR. Again, we only consider the case

n ¼ 0. Based on the previous experiments, we set M ¼ 4 and

L ¼ 44. The results are sketched in Fig. 3. One can observe

from Fig. 3(a) that the output SNR of all the studied three

filtering matrices increases linearly with iSNR. In comparison,

the output SNR of the MVDR filtering matrix increases faster

than that of the Wiener and tradeoff filters as the input SNR

increases. The speech distortion index of the Wiener and

tradeoff filtering matrices decreases quickly first and slowly

approaches to zero. As compared with the Wiener filtering

matrix, one can clearly see that the tradeoff filter with l ¼ 0:5

leads to a smaller SNR improvement but also introduces less

speech distortion, while with l ¼ 1:5 leads to a larger SNR

improvement but with more speech distortion.

The fourth experiment studies the effect of the delay pa-

rameter n on the noise reduction performance of the different

optimal filtering matrices. Figure 4 presents the results for the

Wiener, MVDR, and tradeoff (l ¼ 0:5, l ¼ 1:5) filtering

FIG. 2. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the block size M in

white Gaussian noise: (a) output SNR and (b) speech distortion index. The

input SNR is 10 dB, L ¼ 44, and n¼ 0.

FIG. 3. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the input SNR in white

Gaussian noise: (a) output SNR and (b) speech distortion index. M ¼ 4,

L¼ 44, and n ¼ 0.

FIG. 1. (Color online) Performance of the Wiener and MVDR filtering mat-

rices as a function of the filter length L in white Gaussian noise: (a) output

SNR and (b) speech distortion index. The input SNR is 10 dB, M ¼ 1; 2, and

4, and n ¼ 0.
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matrices with M ¼ 4 and L ¼ 44. It is seen from Fig. 4 that

the output SNR first increases while the speech distortion

decreases as the value of n is increased, after reaching an

extremum, the output SNR decreases while the speech distor-

tion increases; this indicates that allowing some flexibility on

the non-causality can help improve the noise reduction per-

formance. Interestingly, the best performance is achieved

when n is approximately ðL�MÞ=2. The underlying reason

may be explained as follows. A speech sample is generally

correlated with both its past and future samples. The correla-

tion is stronger between closely neighboring samples than

between far-distance samples. In general, the degree of such

correlation seems to be approximately symmetric. In other

words, given a lag time, the amount of correlation between

the current and previous samples is similar to that between the

current and future samples. As a result, when n ¼ ðL�MÞ=2,

the speech self correlation is fully utilized during the filtering

process, which leads to the best performance.

In the fifth and sixth experiments, instead of using white

Gaussian noise, we use a car noise signal, which was

recorded in a sedan car running at 50 miles/h on a highway.

Figure 5 presents the effect of the delay parameter n on the

noise reduction performance of the different optimal filtering

matrices. Again, we set M ¼ 4 and L ¼ 44. One can see that

the trend of the performance as a function of n is similar to

that in Gaussian noise shown in Fig. 4, and the best perform-

ance is achieved when n is approximately ðL�MÞ=2. In

comparison with the performance in white Gaussian noise,

we get less noise reduction with the same filtering matrix in

car noise. Figure 6 presents the noise reduction results as a

function of the input SNR, i.e., iSNR, where M ¼ 4, L ¼ 44,

and n ¼ 20 [according to ðL�MÞ=2�. One can observe that

the performance trend is similar to that shown in Fig. 3: The

output SNR of all the studied three filtering matrices

increases linearly with the input SNR; the speech distortion

index of the Wiener and tradeoff filtering matrices decreases

quickly first and slowly approaches to zero while the distor-

tion index for the MVDR filtering matrix is always zero.

In the seventh and eighth experiments, we consider a bab-

ble noise signal, which was recorded in a New York Stock

FIG. 5. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the parameter n in car

noise: (a) output SNR and (b) speech distortion index. The input SNR is

10 dB, M ¼ 4, and L ¼ 44.

FIG. 6. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the input SNR in car

noise: (a) output SNR and (b) speech distortion index. M ¼ 4, L ¼ 44, and n
¼ 20.

FIG. 4. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the parameter n in

white Gaussian noise: (a) output SNR and (b) speech distortion index. The

input SNR is 10 dB, M ¼ 4, and L ¼ 44.
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Exchange (NYSE) room; it consists of sounds from various

sources such as speakers, telephone rings, electric fans, etc.

Figure 7 presents the effect of the delay parameter n on the

noise reduction performance of different optimal filtering mat-

rices, where M ¼ 4 and L ¼ 44. Once again, we observe that

the performance changes with n in a similar way to that in

white Gaussian and car noise conditions. Figure 8 presents the

noise reduction results as a function of the input SNR, i.e.,

iSNR, where M ¼ 4, L ¼ 44, and n ¼ 20.

Note that all the experiments demonstrated that it is pos-

sible for the Wiener, MVDR, and tradeoff filtering matrices

to gain more noise reduction by choosing a proper value of

M that is greater than 1 as compared to the case with M ¼ 1.

This shows the advantage of using a filtering matrix over

using a filtering vector developed in Benesty and Chen

(2011) and Chen et al. (2011).

Another benefit of using a filtering matrix instead of a

filtering vector is that the implementation can be made com-

putationally more efficient. As a matter of fact, it can be eas-

ily checked that the complexity of the studied algorithms in

this paper is a function of the filter length L and block size

M. For example, the complexity of the Wiener filter in terms

of the number of multiplications is summarized in Table I

(the results of the MVDR and tradeoff filters are similar to

that of the Wiener filter), where we assume that the correla-

tion matrix is computed using a short time average and the

matrix inversion is implemented using the Gauss–Jordan

elimination method, which requires 3� L3 multiplications

(Cormen et al., 1990). Figure 9 plots the complexity of the

FIG. 8. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the input SNR

in NYSE noise: (a) output SNR and (b) speech distortion index. M ¼ 4,

L ¼ 44, and n ¼ 20.

TABLE I. Computational complexity of the Wiener filter as a function of

the filter length L and block size M.

Algorithm step (Real-valued) multiplications

Estimation of Ry M � L2

(with short time average)

Estimation of Rx ¼ Ry � Rv M � L2

(with short time average)

Computing

Cx~xn
¼ Rx~xn

R�1
~xn

3 �M3 þM2 � L

(Gauss-Jordan elimination)

Computing

Rin ¼ Ry � Cx~xn
R~xn

CT
x~xn

M2 � Lþ L2 �M

Computing

HW;n ¼ ðR�1
~xn
þ CT

x~xn
R�1

in Cx~xn
Þ�1

�CT
x~xn

R�1
in 6 �M3 þ 2�M2 � L

þ 2� L2 �M þ 6� L3

Total/block: 9�M3 þ 4�M2 � L

þ 5� L2 �M þ 6� L3

Total/sample: 9�M2 þ 4�M � L

þ 5� L2 þ ð6� L3Þ=M

FIG. 9. (Color online) Complexity of the Wiener filter (with L ¼ 44) as a

function of the block size M.

FIG. 7. (Color online) Performance of the Wiener, MVDR, and tradeoff

(l ¼ 0:5, l ¼ 1:5) filtering matrices as a function of the parameter n in

NYSE noise: (a) output SNR and (b) speech distortion index. The input

SNR is 10 dB, M ¼ 4, and L ¼ 44.
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Wiener filter as a function of the block size M for L ¼ 44. It

is clearly seen that the complexity of the Wiener filter

decreases with M. This illustrates the advantage of the

block-based approach (M > 1) over the sample-based

method (M ¼ 1) in terms of computational complexity.

B. Performance evaluation with estimated statistics

In the previous experiments, we assumed that the clean,

noisy, and noise signals were accessible so that their correla-

tion matrices can be directly computed from the correspond-

ing signals. This assumption enabled us to properly study the

impact of the different parameters on the noise reduction

performance as well as the performance upper bounds of the

different filtering matrices. In real-world applications, how-

ever, the statistics of the clean speech and noise have to be

estimated because both the clean and noise signals are not

accessible. In this section, we use experiments to evaluate

the performance of the optimal rectangular filtering matrices

deduced in Sec. III in a realistic application scenario where

only the noisy signal is accessible. In this case, we typically

need a voice activity detector (VAD) to detect the noise sig-

nal and compute the noise correlation matrix Rv from the

estimated noise signal. Then an estimate of the clean speech

correlation matrix Rx can be obtained by subtracting the

noise correlation matrix from the noisy one. The matrices

Rx~xn
and R~xn

can be estimated in a similar way. As can be

seen, the paramount issue in noise estimation in real applica-

tions is a VAD, which has been intensively studied in the

literature. Many methods have been developed, and repre-

sentative ones include the explicit speech/non-speech detec-

tion method, the minimum statistics approach (Martin,

2001), the histogram based method (Hirsch and Ehrlicher,

1995), the quantile-based method (Stahl et al., 2000), the sta-

tistical method with signal presence probability (Cohen,

2003), and the sequential estimation using single-pole recur-

sion (Diethorn, 1997; Chen et al., 2006), etc. In this experi-

ment, we adopt the VAD algorithm based on the so-called

two-sided single-pole recursion developed in (Diethorn,

1997; Chen et al., 2006). This algorithm can achieve fairly

accurate estimation of the noise signal and the noise statistics

from the noisy speech and has been used in several practical

noise reduction systems. For a detailed description of this

VAD algorithm and its implementation, see Diethorn

(1997); Chen et al. (2006).

As seen in the previous experiments, we have three dif-

ferent types of noise environments, i.e., white Gaussian, car,

and NYSE noises. Due to space limitation, we only report

the results in the car noise environment where the input SNR

is 10 dB. Based on the previous study, we set L ¼ 44 and

vary the value of M from 1 to 20. The delay parameter n is

chosen as n ¼ ðL�MÞ=2.

The results of this experiment are shown in Fig. 10,

where besides the output SNR and speech distortion index,

we also plot the scores measured with the perceptual evalua-

tion of speech quality (PESQ) algorithm (ITU-T P.862).

PESQ scores are well known to have a high correlation with

subjective quality evaluation. As can be seen, all the three

studied filtering matrices can improve the SNR and speech

quality with the statistics estimated using a VAD because

the output SNR is always greater than the input SNR, and

the PESQ scores between the clean and enhanced speech is

always larger than that between the clean and noisy speech.

The output SNR of the Wiener and tradeoff (with l ¼ 1:5)

filters increases slightly with M, while it decreases with M
for the MVDR filter. This corroborates with the results

observed previously. The value of the speech distortion

index of the Wiener and tradeoff filtering matrices increases

with M; but it is approximately 0 for the MVDR filtering ma-

trix. The PESQ score between the clean and enhanced

speech depends on many factors such as the SNR and the

amount of speech distortion. Both the Wiener and tradeoff

(with l ¼ 1:5) filters have a slightly higher output SNR with

a larger value of M; but they also introduce more speech dis-

tortion in this case. As a result, their PESQ scores do not

change much with M. In comparison, the MVDR filter does

not introduce speech distortion; but it achieves less noise

reduction as M is increased. So, its PESQ score decreases

with M.

FIG. 10. (Color online) Performance of the Wiener, MVDR, tradeoff

(l ¼ 0:5), and tradeoff (l ¼ 1:5) filtering matrices as a function of the parame-

ter M in car noise, where the noise statistics are estimated with a VAD based on

a two-sided single-pole recursion. The input SNR is 10 dB, L ¼ 44,

and n ¼ ðL�MÞ=2. The PESQ score between the clean and noisy speech

is 2.4.

1100 J. Acoust. Soc. Am., Vol. 133, No. 2, February 2013 Long et al.: Single-channel noise reduction



Comparing the results of this experiment with those in

Fig. 5, one can see that the noise reduction performance with

the use of VAD is close to (slightly lower output SNR and

larger speech distortion index) that with the signal statistics

being directly computed from the corresponding signals. Of

course, the accuracy of VAD always plays a very important

role in noise reduction performance in practical applications.

This is, however, beyond the scope of this paper.

V. CONCLUSIONS

In this paper, we developed a block-based approach to

noise reduction where a vector of the desired clean speech is

recovered through filtering a frame of the noisy signal with a

rectangular filtering matrix. In this framework, the most crit-

ical issue is how to find an optimal filtering matrix. To obtain

such a matrix, we presented a scheme that decomposes the

clean speech vector into two orthogonal components, i.e.,

the desired speech part and the interference component.

Based on this orthogonal decomposition, we formed differ-

ent MSE criteria and deduced several optimal filtering matri-

ces including Wiener, tradeoff, prediction, and MVDR.

Through both theoretical derivation and experiments, it was

demonstrated that (1) the block-based method, when the

block size is properly chosen, can yield better noise reduc-

tion performance than the sample-based technique; (2) the

block-based approach can be computationally more efficient

and therefore is more practical to implement than the

sample-based method; (3) introducing a delay parameter to

control the flexibility in the non-causality can help improve

the noise reduction performance; and (4) in the single-

channel case with the use of filtering matrices, it is possible

to derive an MVDR that achieves noise reduction without

distorting the desired clean speech.
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