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Expansion Domain
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Abstract—The noise reduction problem is traditionally ap-
proached in the time, frequency, or transform domain. Having
a signal dependent transform has shown some advantages over
the traditional signal independent transform. Recently, the
single-channel noise reduction problem in the Karhunen-Loève
expansion (KLE) domain has received special attention. In this
paper, the noise reduction problem in the KLE domain is studied
from a multichannel perspective. We present a new formulation
of the problem, in which inter-channel and inter-mode correla-
tions are optimally exploited. We derive different optimal noise
reduction filters and present a set of useful performance measures
within this framework. The performance of the different filters is
then evaluated through experiments in which not only noise but
also competing speech sources are present. It is shown that the
proposed multichannel formulation is more robust to competing
speech sources than the single-channel approach and that a better
compromise between noise reduction and speech distortion can be
obtained.

Index Terms—Karhunen-Loève expansion (KLE), maximum
snr filter,minimumvariance distortionless response (MVDR) filter,
multichannel, noise reduction, speech enhancement, tradeoff filter,
wiener filter.

I. INTRODUCTION

I N MANY human-to-machine and human-to-human com-
munication systems, such as hearing-aids, hands-free

communication devices, speech recognition, or voice-con-
trolled systems, the speech signals received by the microphones
are corrupted by noise. The noise comes usually from am-
bient sound sources, competing/interfering speech sources
and reflections. In many situations, this unwanted noise can
degrade significantly the speech quality and intelligibility,
which limits the usability of many communication devices.
In the past decades, there has been a growing interest in the
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development of new techniques to improve the quality of the
signals received by the microphones, which would permit a
better human-to-machine and human-to-human communica-
tion. These techniques are known as noise reduction or speech
enhancement techniques and even though several solutions are
already available, the noise reduction problem is still a rather
challenging problem in many communication applications.
Typically the noise reduction problem is approached by

passing the noisy microphone signals through a linear filter
in order to obtain a cleaner version of the input signal by
increasing the signal-to-noise ratio (SNR) [1]. However, there
is always a tradeoff between noise reduction (NR) and speech
distortion (SD), since the filters might also affect the desired
speech signal. Thus, it is desired to find optimal filters that not
only improve the NR but at the same time preserve a reasonable
quality of the desired speech signal.
The noise reduction problem is traditionally approached in

either the time or frequency domain. The optimal filters are
often estimated by minimizing the mean-square error (MSE)
between the clean signal and its estimate. The time domain
approach can be sample based, estimating one speech sample at
a time [2]–[4], while the frequency domain is often formulated
on a frame basis, i.e. a block of noisy speech signal is trans-
formed into the frequency domain using the discrete Fourier
transform (DFT) and then a filter is estimated and applied
to the frame [5]–[10]. The frequency domain approaches are
in general more flexible with respect to controlling the NR
performance versus the SD, though special attention has to
be paid to the aliasing distortion caused by the independent
processing of subbands. The time domain approaches do not
suffer from aliasing problems, but the tradeoff between NR
and SD is more difficult to control and they exhibit higher
computational complexity [11].
There are other domains in which the noise reduction problem

can be approached. For example, the use of signal-dependent
transforms has shown some advantages with regard to SD and
ND [11]–[14]. Among them, the single-channel noise reduction
problem in the Karhunen-Loève Expansion (KLE) domain has
received special attention in the last decade [11], [15], [16]. The
main difference between this method and the frequency domain
methods, is that the Karhunen-Loève transform (KLT) can ex-
actly diagonalize the signal correlation matrix, resulting in un-
correlated signal components in each subband. Thus, each sub-
band can be processed independently while the Fourier matrix
can only approximately diagonalize the noisy covariance matrix
[11]. One of the main advantages of using the KLT is that if the
covariance matrices are properly calculated, there is no aliasing
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problems and that the desired speech and noise may be better
separated as opposed to the frequency-domain methods [16].
A general formulation of the single-channel KLE domain ap-
proach and the design of different optimal filters has been pre-
viously proposed in [11] and [16]. In those studies, the clean
speech signal is estimated from a noisy observation, which is
obtained from a single microphone. It has been shown that a
better noise reduction performance is achieved when properly
choosing the parameters to calculate the filters.
Microphone arrays are nowadays available in many commu-

nication devices. One benefit of using more channels is that
with multiple microphones, not only the temporal but also the
spatial characteristics of the speech and noise sources can be
exploited [3], [17], [18]. In [19], we proposed the use of mul-
tiple microphone signals to improve the performance of the op-
timal noise reduction Wiener filter in the KLE domain. In that
study, we presented a formulation of the multichannel noise re-
duction problem applying a KLT to each channel. Results show
that a significant improvement is obtained with respect to the
single-channel case. However, by applying a different transform
to each channel, the inter-channel correlations are not fully ex-
ploited. In this paper we present an extension of the proposed
multichannel noise reduction problem in the KLE domain. We
present a new formulation in which the inter-channel as well as
the inter-mode correlations are exploited. A single KLT is ap-
plied to the joint contribution of all the channels. The obtained
coefficients are then expanded into sub-coefficients, which are
then treated as the coefficients corresponding to each channel.
Inter-mode correlations are also exploited to take advantage of
the temporal and spatial correlations contained in each sub-co-
efficient. Note that the proposed multichannel noise reduction
in the KLE domain shares some similarities with the subspace
method proposed in [14], where the correlation matrices are also
diagonalized. In their subspace approach, a joint diagonaliza-
tion of the noisy speech and the noise correlation matrix is done
and the clean speech signal is estimated by applying a weight
to the noisy eigenvectors. In our approach, on the other hand,
we diagonalize only the correlation matrix of the noisy speech
and estimate the clean speech signal by applying a weight to
the KLE coefficients. Additionally, by expanding the KLT into
sub-coefficients, we obtain inter-mode correlations which are no
longer zero and are closely related to the inter-channel correla-
tions. Thus, the proposed formulation allow us to exploit the
inter-channel and inter-mode correlations in a more profound
way.
This paper is organized as follows: In Section II we present

the general problem statement and the signal model that is
used throughout the paper. In Section III we derive the KLE
in the framework of multiple microphones. The problem of
multichannel noise reduction in the KLE domain and the
array model is then discussed in Section IV. In Section V we
recall the definitions of some useful performance measures
already discussed in [16] and [19]. In Section VI we derive
different optimal noise reduction filters in the KLE domain and
discuss their properties and performance. In Section VII we
discuss different experiments done to evaluate the performance
of the filters. A summary of this study is then presented in
Section VIII.

II. SIGNAL MODEL

We consider the classical signal model in which amicrophone
arraywith sensors captures a convolved source signal in some
noise field. The received signals, at the discrete-time index ,
are expressed as [18], [20], [21]

(1)

where , is the impulse response from the
unknown desired speech source to the th microphone and
denotes the convolution operation. The total additive noise at
the th microphone is composed by
a spatially incoherent part and a spatially coherent part

, where is the impulse re-
sponse from an unknown, undesired sound source to the
th microphone and is the total number of undesired sources.
We assume that the signals and are uncorrelated
and zero mean. We assume additionally that and
are also uncorrelated. By definition, the signals are
coherent across the array, and so are the signals . All pre-
vious signals are considered to be real, broadband, and to sim-
plify the development and analysis of the main ideas of this
work, we further assume that they are stationary.
By processing the data by blocks of samples, the signal

model given in (1) can be put into a vector form as

(2)

where is the time-frame index,
is a

vector of length , superscript denotes transpose of a vector
or a matrix, and and are
defined in a similar way to . Let us define the stacked
vector

(3)

where and are defined in a similar
way to .
Since and are uncorrelated by assumption, the

correlationmatrix (of size ) of the stackedmicrophone
signals is

(4)

where denotes mathematical expectation, and
and are the corre-

lation matrices of and , respectively. Note that
since and are also uncorrelated, it follows that

.
In this paper, our desired signal is designated by the clean

(but convolved) speech signal received at microphone 1, namely
(obviously, any signal could be

considered as the reference). Our problem then may be stated
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as follows [20]: given mixtures of two uncorrelated signals
and , our aim is to preserve while minimizing

the contribution of the noise terms at the array output.

III. KARHUNEN-LOÈVE EXPANSION (KLE)

As explained in [11], [22], [23], it may be advantageous to
perform noise reduction in the KLE domain. In this section, we
briefly recall the principle of the KLE which can be applied to

, , or . In this study, we choose to apply it to
while the same concept was developed for in [11],

[22], [23] but in the single-channel case. Fundamentally, we
should not expect much difference if we apply the KLE to
or but, in the context of speech enhancement, it is prefer-
able to apply it to the former as the corresponding covariance
matrix is usually full rank, while the clean speech covariance
matrix can be either rank deficient or ill-conditioned [4], [24].
Let us first diagonalize the correlationmatrix as follows [25]

(5)

where

(6)

and

diag (7)

are, respectively, orthogonal and diagonal matrices. The
orthonormal vectors , for

, are the eigenvectors corresponding, respec-
tively, to the eigenvalues of the matrix . The vector
can be written as a combination (expansion) of the eigenvectors
of the correlation matrix as follows

(8)

where

(9)

are the coefficients of the expansion and is the mode index. The
representation of the vector described by (8) and (9) is the
Karhunen-Loève expansion (KLE) [26]. Equations (8) and (9)
are, respectively, the synthesis and analysis parts of this expan-
sion. From (9), we can verify that

(10)

and

(11)

It can also be checked from (9) that

(12)

where is the Euclidean norm of . The previous
expression shows the energy conservation through the KLE
process.

We also define

(13)

(14)

We can check that

(15)

(16)

From (11), we see that the inter-mode correlation of the coeffi-
cients is equal to 0. But the inter-mode correlations of
the coefficients and are

(17)

(18)

which might not necessarily be equal to 0. If the noise is tem-
porally and spatially white, the noise covariance matrix is a
diagonal matrix. In this case, it can be easily shown that the
inter-mode correlations are equal to 0 (assuming that the de-
sired signal, i.e., speech, is always correlated which is usually
the case).
Left multiplying both sides of (2) by , the time-domain

signal model is transformed into the KLE domain as

(19)

Now, let us define the vector

(20)
for and . It follows that

(21)

where . Thus, the coefficients
are a linear combination of the sub-coefficients . The
sub-coefficient can be seen as the coefficient corre-
sponding to the th-microphone. Applying the same expansion
to and we obtain the sub-coefficients

(22)

(23)

The multichannel noise reduction in the KLE domain
comes to the estimation of the coefficients , for

, from the observations , for
. The variance of the coefficients is

then

(24)
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where and
are the variances of

and , respectively. By applying the expansion in
(21), we can not longer assume that the inter-mode cor-
relations of the sub-coefficients equal 0. That is

for . Thus, in order to opti-
mally use the coefficients, we need to exploit the inter-mode
correlations. Let us define the vectors

(25)

where the function , , describes which
inter-mode correlations are exploited, and is the total number
of modes that is used for that purpose. Note that if we use all
modes, this function takes the form with

. However, as shown later, not all modes might be necessary
for a near optimal performance. In the following, we use the
subindex for the sake of generality.

IV. LINEAR ARRAY MODEL

Usually, in the time domain, the array processing or beam-
forming is performed by applying a temporal filter to each mi-
crophone signal and summing the filtered signals. In the KLE
domain, we are going to focus on the simplest linear model for
array processing, which is realized by applying a real weight to
the output of each sensor and summing across the aperture, i.e.,

(26)

where , which is an estimate of , is the beam-
former output signal,

(27)

is an FIR filter of length , corresponding to the mode index
and microphone signal and

(28)

is the beamforming weight vector (of size ), which is
suitable for performing spatial filtering at the mode index ,

is a
vector of length containing the observations from all sen-
sors at time-frame index , and are defined
in a similar way to , and and

are, respectively, the filtered speech
signal and residual noise in the KLE domain.
At time-frame index , our desired signal is

(and not the whole the vector ). However, the vector
contains both the desired signal, , and the

components and for and
respectively, which are not the desired signals

but signals that are correlated with . Therefore, the
elements and contain both a part of the
desired signal and a component that we consider as an interfer-
ence. This suggests that we should decompose into
two orthogonal vectors corresponding to the part of the desired
signal and interference, i.e.,

(29)

where is a signal vector de-
pending on the desired signal ,

is the interfer-
ence signal vector,
is the interference sub-vector for each channel,

is a vector with
the partially normalized (with respect to ) cross-corre-
lation coefficients between the signals and ,
and

(30)

is the partially normalized (with respect to ) cross-cor-
relation vector (of length ) between and .
The vector can be seen as the steering vector or di-

rection vector since it determines the direction of the desired
signal . This definition is a generalization of the clas-
sical steering vector [17], [27], [28] in the KLE domain.
Substituting (29) into (26), we get

(31)

We observe that the estimate of the desired signal is the sum
of three terms that are mutually uncorrelated. The first one is
clearly the filtered desired signal while the two others are the
filtered undesired signals (interference-plus-noise). Therefore,
the variance of is

(32)

where

(33)

(34)

(35)

(36)
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are the correlation matrices of the vectors , ,
, and , respectively.

The estimate of the vector would be

(37)

where

(38)

for , are the time-domain filtering matrices of size
and . We see from

(37) how the estimation of depends on the observation
vectors . The correlation matrix of

is

(39)

V. PERFORMANCE MEASURES

In this section, we define some useful performance measures
that allow us to study, within this framework, the different mul-
tichannel noise reduction algorithms in the KLE domain devel-
oped later in this paper. Since the signal we want to recover is
the clean (but convolved) signal received at microphone 1, i.e.,

, the first microphone is chosen as the reference sensor.
To examine what happens in each mode, we define the mode

input SNR as

(40)

where and .
The fullmode input SNR is

(41)

where and are the variances
of and , respectively.

The output SNR is the SNR after the filtering operation. The
mode output SNR is defined as1

(42)

where

(43)

is the interference-plus-noise correlation matrix. For the partic-
ular filter , where is the first column of the identity
matrix of size , we have

(44)

which means that with the identity filter , the SNR cannot be
improved.
For any two vectors and and a positive definite

matrix , we have

(45)

Using the previous inequality in (42), we deduce an upper bound
for the mode output SNR:

(46)

We define the mode array gain as the ratio of the mode output
SNR (after beamforming) over the mode input SNR (at the ref-
erence microphone) [27], [17], i.e.,

(47)

From (46), we deduce that the maximum mode array gain is

(48)

We define the fullmode output SNR as

(49)

The mode and fullmode noise reduction factors are [2], [4]

(50)

(51)

These factors should be lower bounded by 1 for optimal filters.
To quantify the speech distortion [2], [4], we give the mode

speech distortion index

(52)

1In this study, we consider the interference as part of the noise in the defini-
tions of the performance measures.
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and the fullmode speech distortion index

(53)

The speech distortion index is usually upper bounded by 1.
We can also quantify signal distortion via the mode and

fullmode speech reduction factors which are defined as [22],
[28]

(54)

(55)

A key observation from (52) or (54) is that the design of a
noise reduction algorithm in the KLE domain that does not dis-
tort the desired signal requires the constraint

(56)

It can be shown that

(57)

(58)

For the multichannel case, it is also of interest to know the per-
formance of the filters with respect to spatially coherent and in-
coherent noise separately. Let us first rewrite (43) as follows

(59)

where

(60)

(61)

are the interference-plus-coherent-noise and incoherent-noise
correlation matrices respectively2. The matrix

is the coherent-noise correlation matrix.

2Note that we omit the term “spatially” for simplicity.

The mode coherent and incoherent noise reduction factors
are, respectively,

(62)

(63)

Using (62) and (63), we can rewrite (50) as

(64)

The full-mode coherent and incoherent noise reduction fac-
tors are, respectively,

(65)

(66)

VI. OPTIMAL NOISE REDUCTION FILTERS

In this section we derive different optimal noise reduction
filters in the KLE domain. The classical noise reduction filtering
techniques is formulated for the multichannel case in the KLE
domain and their performance is discussed.

A. Maximum SNR Filter

The maximum SNR filter, , is obtained by maximizing
the mode output SNR as defined in (42) [16]. Therefore,
is the eigenvector corresponding to the maximum eigenvalue of
the matrix . Let us denote this eigenvalue by .
Since the rank of the matrix is equal to 1, we have

(67)

where denotes the trace of a square matrix. As a result,

(68)

which corresponds to the maximum possible mode output SNR
according to the inequality in (46). We also have

(69)

where is an arbitrary scaling factor different from zero.
While this factor has no effect on the mode output SNR, it has
on the fullmode output SNR and speech distortion (mode and
fullmode). In fact, all filters derived in the rest of this paper are
equivalent up to this scaling factor. These filters also try to find
the respective scaling factors depending on what we optimize.
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B. Mean-Square Error (MSE) Criterion

The error signal between the estimated and desired signals in
the mode is

(70)

This error signal can also be written as the sum of two uncorre-
lated error signals:

(71)

where

(72)

is the speech distortion due to the filter and

(73)

represents the residual interference-plus-noise.
The mode MSE criterion is then [16]

(74)

where

is the cross-correlation matrix between the two signal vectors
and . We can rewrite the mode MSE as

where

(75)

and

(76)

For the particular filter , we get

(77)

C. Wiener Filter

The Wiener filter is derived by taking the gradient of the
MSE, , with respect to and equating the result to
zero [9]:

(78)

Since

(79)

we can rewrite (78) as

(80)

It can be verified that

(81)

Determining the inverse of from (81) with the Wood-
bury’s identity

(82)

and substituting the result into (80), leads to another interesting
formulation of the Wiener filter:

(83)

that we can rewrite as

(84)

We can deduce from (83) that the mode output SNR is

(85)

and the mode speech distortion index is a clear function of the
mode output SNR:

(86)

The higher is the value of , the less the desired
signal is distorted.
It follows that

(87)

since the Wiener filter maximizes the mode output SNR.
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It is of great interest to observe that the two filters and
are equivalent up to a scaling factor. Indeed, taking

(88)

in (69) (maximum SNR filter), we find (84) (Wiener filter).
With the Wiener filter, the mode noise reduction factor is

(89)

The fullmode output SNR is

(90)

Property 6.1: With the optimal KLE-domain Wiener filter
given in (78), the fullmode output SNR is always greater than
or equal to the fullmode input SNR, i.e., .

Proof: See Section VI-E.

D. Minimum Variance Distortionless Response (MVDR) Filter

Another important filter, proposed by Capon [29], [30], is
the minimum variance distortionless response (MVDR) beam-
former which is obtained by minimizing the variance of the in-
terference-plus-noise at the beamformer output with the con-
straint that the desired signal is not distorted. Mathematically,
this is equivalent to

subject to (91)

for which the solution is

(92)

We can rewrite the MVDR as

(93)

Taking

(94)

in (69) (maximum SNR filter), we find (92) (MVDR filter),
showing how the maximum SNR, MVDR, and Wiener filters
are equivalent up to a scaling factor. From a mode point of
view, this scaling is not significant but from a fullmode point
of view it can be important since speech signals are broadband
in nature. Indeed, it can be shown that this scaling factor affects
the fullmode output SNRs and the fullmode speech distortion
indices. While the mode output SNRs of the maximum SNR,
Wiener, and MVDR filters are the same, the fullmode output
SNRs are not because of the scaling factor.

It is clear that we always have

(95)

(96)

(97)

(98)

The fullmode output SNR is

(99)

Property 6.2: With the optimal KLE-domain MVDR filter
given in (92), the fullmode output SNR is always greater than
or equal to the fullmode input SNR, i.e.,

.
Proof: See Section VI-E.

E. Tradeoff Filter

In the tradeoff approach, we try to compromise between noise
reduction and speech distortion. Instead of minimizing theMSE
to find the Wiener filter or minimizing the MSE of the residual
interference-plus-noise with the constraint of no distortion to
find the MVDR, we could minimize the speech distortion index
with the constraint that the noise reduction factor is equal to
a positive value that is greater than 1. Mathematically, this is
equivalent to

subject to (100)

where to insure that we get some noise reduction.
By using a Lagrange multiplier, , to adjoin the constraint
to the cost function, we deduce the tradeoff filter:

(101)

where the Lagrange multiplier, , satisfies
. However, in practice it is not easy to determine the

optimal . Therefore, when this parameter is chosen in an
ad-hoc way, we can see that for
• , , which is the Wiener filter;
• [replacing in the second line of eq. (101)],

, which is the MVDR filter;
• , results in low residual noise at the expense of high
speech distortion;

• , results in high residual noise and low speech dis-
tortion.

Again, we observe here as well that the tradeoff and Wiener
filters are equivalent up to a scaling factor. As a result, the mode
output SNR with the tradeoff filter is the same as the mode
output SNR with the Wiener filter, i.e.,

(102)
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and does not depend on . However, the mode speech distortion
index is now both a function of the variable and the mode
output SNR:

(103)

From (103), we observe how can affect the desired signal.
The tradeoff filter is interesting from several perspectives

since it encompasses both the Wiener and MVDR filters. It is
then useful to study the fullmode output SNR and the fullmode
speech distortion index of the tradeoff filter, which both depend
on the variable .
Using (101) in (49), we find that the fullmode output SNR is

(104)

We propose the following:
Property 6.3: The fullmode output SNR of the tradeoff filter

is an increasing function of the parameter .
Proof: The complete proof can be found in [31].

From Property 6.3, we deduce that the MVDR filter gives the
smallest fullmode output SNR, which is

(105)

We give another interesting property.
Property 6.4: We have

(106)
Proof: It can be derived from (104) [31].

While the fullmode output SNR is upper bounded, it can be
shown that the fullmode noise reduction factor and fullmode
speech reduction factor are not. So when goes to infinity so
are and .
The fullmode speech distortion index is

(107)

Property 6.5: The fullmode speech distortion index of the
tradeoff filter is an increasing function of the parameter .

Proof: We can verify that

(108)

which ends the proof [31].
It is clear that

(109)

Therefore, as increases, the fullmode output SNR increases at
the price of more distortion to the desired signal.
Property 6.6: With the tradeoff filter, , the fullmode

output SNR is always greater than or equal to the fullmode input
SNR, i.e., .

Proof: We know that

(110)

which implies that

(111)

and hence,

(112)

But from Proposition 6.3, we have

(113)

as a result,

(114)

which completes the proof [31].

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the multi-
channel noise reduction filters in the KLE domain. Here, we
focus on the MVDR, Wiener, and tradeoff filters, and discuss
the effect of different parameters in the design of the filters.

A. Simulation Environment

In the following experiments, we used an anechoic recording
of a female speaker as our desired clean signal. The sampling
rate of the signal was 8 kHz and the length of the signal was
35 s. The clean signal was then corrupted by a spatially coherent
noise source and a spatially incoherent noise. The spatially co-
herent noise source consisted of an anechoic recording of a dif-
ferent female speaker.We used two types of spatially incoherent
noises: the first one was a computer generated stationary white
Gaussian noise. The second was a babble speech signal gener-
ated assuming an ideal spherical diffuse sound field [32]. Note
that the latter is partially spatially coherent, which is discussed
later on in the experimental results. The noisy signal is then the
addition of the clean anechoic speech, the spatially incoherent
and spatially coherent noise. The level of the signals was ad-
justed so it matched the input signal-to-incoherent-noise ratio
(iSINR) and the input signal-to-coherent-noise ratio (iSCNR).
In the simulations the microphone(s) and sources were lo-

cated in a room of dimensions , and m. The
room’s reverberation time (RT60) was set to 0.5 s and the room
impulse responses were calculated using the imagemethod [33].
The microphone arrays were simulated to have an uniformly
spaced geometry with a distance of m between mi-
crophones. Since in our noise reduction formulation we used
one of the microphones as a reference to calculate the filters,
the spacing between microphones should not significantly in-
fluence the performance of the noise reduction filters.
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Fig. 1. First column of the inter-mode correlation for a 5-seconds speech
signal, and .

The desired signal was simulated to be located 1 m away
from the array at azimuth and elevation, where the point
( ) is located right in front of the center of the array. The
spatially coherent noise source was simulated to be located
1.5 m away from the array at azimuth and elevation.

B. Choice of modes

As mentioned in Section III, in order to fully exploit the
noise reduction in the KLE domain, inter-mode correlations
should be taken into account. However, not all modes are highly
correlated, which suggests that a selection of the modes with
high correlation is sufficient for the practical implementation.
First, let us take a look at the structure of these correla-
tions. As an example, we use an array of three microphones
( ) and a 5-seconds speech signal. For convenience,
we stack all the coefficients of the three microphones in a
vector of length , i.e. ,
where and .
The inter-mode correlation matrix is thus defined as

. Fig. 1 shows the magni-
tude of these inter-mode correlations for the first mode, i.e.
first column of . It is clear from Fig. 1 that the inter-mode
correlations are mostly dominated by the modes , i.e.,

(115)

Therefore, we do not need to make use of all modes, but
instead it is sufficient to exploit only those
modes that carry relevant information, which substantially re-
duces the size of the correlation matrix and computational
complexity. We define thus

(116)

This empirical selection criteria is used in the following exper-
iments.

C. Estimation of Correlation Matrices

In order to estimate the filter coefficients, we need to calculate
the correlation matrices , , and . The noisy cor-
relation matrix can be estimated directly from the noisy signal

using (4) by approximating the mathematical expectation

with a sample average. This sample average should be done
on a short-term basis, given that speech is in practice non-sta-
tionary. In this study, we calculated at each time frame
by using the most recent 40 ms of the signals received by each
microphone. Additionally, in [11] it is suggested to combine the
short-term sample average and a moving average to estimate
the correlation matrices. At time frame , the correlation ma-
trix is estimated by

(117)

where is a forgetting factor and
is the frame correla-

tion matrix at time frame and is the window length.
The KLT is then obtained using eigenvalue decomposition.
To estimate the correlation matrix we use the same
approach as in (117), namely

(118)
where is the corresponding forgetting factor. The forget-
ting factors were set to and , which were
found to be optimal in terms of noise reduction and speech dis-
tortion. Amore detailed evaluation of the effect of the forgetting
factors in the performance of the filters can be found in [11]. To
estimate we would need in practice a noise estimator or a
voice activity detector (VAD) to be able to compute the coeffi-
cients . Even though an analysis of issues concerning noise
estimators or VADs would be interesting, it is out of the scope
of this paper to investigate their influence on the noise reduc-
tion in the KLE domain. In this study, we are mainly interested
on assessing the performance of the noise reduction filters in
the KLE domain when using multiple channels compared to the
single channel case. Thus, in order not to include the influence
of possible errors from the noise estimator or the VAD in our
experiments, we calculated the coefficients directly from
the noise signals. The estimation of is done in a similar
fashion as in (118), with .

D. Experimental Results with Stationary White Gaussian
Noise

In the first experiments we evaluated the performance of the
filters in the presence of spatially incoherent stationary noise.
The simulated noise was a computer generated white Gaussian
process and the level of the signal was adjusted to control the
iSINR.
Let us first take a look at the performance of the Wiener filter

as a function of frame length . Fig. 2 shows these performance
results calculated for different frame lengths and number of
microphones . In the simulated scenario, the iSINR was set to
20 dB and the iSCNR to 0 dB.
While for the single-channel case the performance does not

vary with frame length, the performance improves with longer
frames for the multichannel case. The improvement is particu-
larly noticeable in the coherent noise reduction (CNR) factor,
which increases with the number of microphones and shows
to be the dominant factor in the overall noise reduction. The
single-channel case performs better with respect to incoherent
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Fig. 2. Noise reduction, speech distortion, incoherent-noise reduction and co-
herent-noise reduction as a function of frame size and number of microphones
. The desired speech signal is corrupted by another speech signal and sta-

tionary white Gaussian noise; , dB, dB,
s.

Fig. 3. Noise reduction, speech distortion, incoherent-noise reduction and co-
herent-noise reduction as a function of number of microphones and filter
type. The desired speech signal is corrupted by another speech signal and sta-
tionary white Gaussian noise; , dB, dB,

s.

noise reduction (INR) for smaller frame lengths ( ). How-
ever, for , the performance with respect to INR becomes
comparable to the multichannel channel case for . The
multichannel filters introduce, in general, less speech distortion
than the single-channel Wiener filter.
The poor performance of the single-channel in this scenario

can be attributed to the small iSCNR simulated, which implies
that the noise term is generally dominated by signals with sim-
ilar statistics to those of the desired signal. Given that in the
single-channel scenario the spatial information is not exploited,
a poor performance of the filters is expected when competing
sources are dominant. In the case of multichannel setups, even
though larger noise reduction and coherent noise reduction fac-
tors are obtained, less speech distortion is introduced. This sug-
gests that the multichannel filters make a better use of the inter-
channel as well as the inter-mode correlations.
Fig. 3 shows the noise reduction, speech distortion, coherent

noise reduction and incoherent noise reduction for the tradeoff
filter calculated for different number of microphones and
different values of the Lagrange multiplier . Recall that for

, , which is the Wiener filter and for ,
, when using the second line of Eq. (101),

Fig. 4. Noise reduction, speech distortion, incoherent-noise reduction and co-
herent-noise reduction as a function of iSINR and iSCNR. The desired speech
signal is corrupted by another speech signal and stationarywhite Gaussian noise;

, , s, and .

which is the MVDR filter. In this experiment, the iSINR and
the iSCNR were also set to 20 dB and 0 dB respectively.
As observed before, the speech distortion factor decreases

when using multiple microphones ( ). However, a slight
increase with can be observed in this experiment. The noise
reduction factor increases with number of microphones and ,
though the improvements become marginal as the number of
microphones increases. The multichannel cases show again a
clear improvement with respect to CNR. In the case of single-
channel case, there is a better performance with respect to INR
compared to the multichannel case, though the CNR factor is
substantially smaller. There is also a substantial performance
improvement with respect to CNR between (MVDR) and

. This improvement becomes then marginal for larger
values of . As expected, theMVDR filter for the single-channel
case results in no speech distortion but no noise reduction either,
which can be deduced from (98) and it is in agreement with [11].
The MVDR ( ) filter shows in general a poor performance.
This suggests that in order to significantly reduce a spatially and
temporally coherent source such as a competing speaker, there
must be a compromise in speech distortion.
To understand better the influence of coherent and incoherent

noise sources in the performance of the filters, the third experi-
ment tested the performance of the Wiener filter calculated for
an array of 4 microphones ( ) with different iSCNR and
iSINR. The frame length was set to . Fig. 4 shows
the speech distortion, noise reduction, incoherent-noise reduc-
tion, and coherent-noise reduction factors for this experiment.
As expected, the noise reduction factor increases with smaller
iSCNR, while more speech distortion is introduced. From the
INR we can see that the performance of the filters is rather in-
dependent of the iSCNR. As expected, the CNR factor improves
with larger iSINR and smaller iSCNR.

E. Experimental Results with Spherical Isotropic Noise

In the following experiments, the performance of the noise-
reduction filters in the KLE domain is evaluated in the presence
of non-stationary diffuse noise as spatially incoherent noise. The
non-stationary noise source was simulated using babble speech
signals assuming an ideal spherical isotropic sound field [32].
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Fig. 5. Noise reduction and speech distortion as a function of: (a) frame size and number of microphones for , dB, dB
(b) number of microphones and filter type for , dB, dB and (c) iSINR and iSCNR for , , . The desired
speech signal is corrupted by another speech signal and babble-noise; s.

Notice that the simulated babble noise is spatially coherent at
low frequencies. Additionally, some coherence across frames is
expected due to the temporal characteristics of the speech sig-
nals. That is, the incoherent-noise correlation matrix de-
fined in Eq. (61) will not only contain incoherent-noise com-
ponents, but also coherent information. Consequently, the CNR
and INR factors defined in Eq. (65) and Eq. (66) can be regarded
as meaningless in this scenario. In the following experiments,
we will therefore focus only on the overall NR and SD factors.
Fig. 5(a) shows the performance of theWiener filter as a func-

tion of frame size and number of microphones . Similarly
to the experiments with Gaussian noise, the iSINR was set to
20 dB and the iSCNR to 0 dB. Note that since in this scenario
the diffuse noise is partially coherent, the actual iSCNR is ex-
pected to be smaller than the simulated one, i.e. negative and the
actual iSINR larger. In spite of this, we can see that the noise re-
duction factors obtained are quite comparable to those of the sta-
tionary white Gaussian noise case. This supports the argument
that the proposed multichannel noise reduction formulation in
KLE domain is rather robust to spatially coherent sources. In
the single-channel case, we do not observe a decrease in per-
formance due to the already small iSINR. When evaluating the
NR and SD factors for different number of microphones and
values of theLagrangemultiplier , as shown inFig. 5(b),we can
also see little difference compared to the stationary noise case.
Fig. 5(c) shows the results obtained with the Wiener filter

at different iSINR and iSCNR, when using four microphones
( ) and a frame size of . In general, the NR factor
is comparable to the stationary noise case, though in the case
of iSINR = 20 dB, there is an improvement in NR when the
iSCNR is larger than 5 dB. This is clearly a result of the expected
decrease in the actual iSCNR,which again supports the previous
observations.

VIII. CONCLUSIONS

In this paper we studied the multichannel noise reduction
problem in the Karhunen-Loève expansion (KLE) domain. We
derived a new formulation in which the KLT is applied to the

joint contribution of multiple receivers. The KLE coefficients
are then expanded into sub-coefficients, which can be seen as
the coefficients corresponding to each channel. Inter-mode cor-
relations are also utilized to fully take advantage of the spa-
tial information contained in the input signals. Optimal noise
reduction filters were derived, within this framework, and a
set of useful performance measures were discussed. The filters
were evaluated in the presence of undesired speech sources and
spatially incoherent noise. Two spatially incoherent noise sce-
narios were simulated: stationary noise and non-stationary dif-
fuse noise. Through experiments, we demonstrated that a better
performance is obtained when using multiple microphones to
solve the noise reduction problem in the KLE domain. The mul-
tichannel filters show to be specially robust to undesired speech
sources and spatially coherent noise sources.
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