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Differential microphone array (DMA), a particular kind of sensor array that is responsive to the dif-

ferential sound pressure field, has a broad range of applications in sound recording, noise reduction,

signal separation, dereverberation, etc. Traditionally, an Nth-order DMA is formed by combining, in

a linear manner, the outputs of a number of DMAs up to (including) the order of N � 1. This

method, though simple and easy to implement, suffers from a number of drawbacks and practical

limitations. This paper presents an approach to the design of linear DMAs. The proposed technique

first transforms the microphone array signals into the short-time Fourier transform (STFT) domain

and then converts the DMA beamforming design to simple linear systems to solve. It is shown that

this approach is much more flexible as compared to the traditional methods in the design of different

directivity patterns. Methods are also presented to deal with the white noise amplification problem

that is considered to be the biggest hurdle for DMAs, particularly higher-order implementations.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4898429]

PACS number(s): 43.60.Fg, 43.72.Dv [TFD] Pages: 3097–3113

I. INTRODUCTION

Microphone array is a generic expression used to refer to

a sound system that has multiple microphones. These micro-

phones can be either distributed into an arbitrary network (of-

ten called a sensor network) or arranged into a particular

geometry (called an organized array) (Huang et al., 2011). In

most of the cases, however, when we say microphone arrays,

we mean organized arrays in which the sensors’ positions rel-

ative to a reference point are known to the subsequent pro-

cessors. These kind of arrays can be used to solve many

important problems such as source localization/tracking,

noise reduction/speech enhancement, source separation, dere-

verberation, spatial sound recording, etc., and, consequently,

the design of such microphone arrays and the associated

processing algorithms has attracted a significant amount of

research and engineering interest over the last four decades.

Many different array systems have been developed, which

can be categorized into two basic classes depending on how

they respond to the sound field, i.e., additive and differential

arrays.

Additive microphone arrays achieve signal enhancement

and noise reduction via the synchronize-and-add principle,

but they have now evolved to include all the arrays with large

inter-element spacing (from a couple of centimeters to a cou-

ple of decimeters) and optimal beamforming in broadside

directions. This kind of arrays have been proven to be useful

in dealing with many problems (Brandstein and Ward, 2001;

Huang et al., 2006; Benesty et al., 2008). However, they are

also found to suffer from a number of limitations in process-

ing broadband signals such as speech. First, the beampattern

of an additive array is frequency dependent and the beam-

width is inversely proportional to the frequency. As a result,

such an array is not effective in dealing with low-frequency

noise and interference. Second, since the beamwidth is larger

at low frequencies than at high frequencies, directional noise

and interference are attenuated in a non-uniform way (more

attenuation at high frequencies and less attenuation at low

frequencies) over its entire frequency spectrum, leading to

some disturbing artifacts at the array’s output (Ward et al.,
1998). Furthermore, if the incident angle of the desired

speech source is different from the array’s look direction,

which happens often in practice, the speech signal will be

low-pass filtered, leading to speech spectral distortion.

To overcome those aforementioned drawbacks, the so-

called broadband beamforming techniques have been stud-

ied. One way to obtain a broadband beamformer is to use

harmonically nested subarrays (Flanagan et al., 1985;

Flanagan et al., 1991; Kellermann, 1991; Elko and Meyer,

2008). In every subarray, the sensors are equally spaced, and

the subarray is designed for operating at a single frequency.

By using a different sensor spacing and different number of

microphones with subarrays, the nested array can be con-

trolled to have a similar spatial response across the fre-

quency range of interest. But such a solution usually requires
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a large array with a large number of microphones even

though subarrays may share sensors in the array. Another

more economic way to design a broadband beamformer is

through narrowband decomposition. A narrowband beam-

former is then designed in each subband with a constraint

applied to control the beamwidth so that all the beamformers

from different subbands have the same beamwidth. Though

it can make constant beamwidth across a wide range of fre-

quencies, this approach to broadband beamforming sacrifices

the array performance in high frequencies. This subband

approach can also be implemented using the filter-and-sum

framework, i.e., applying a finite impulse response (FIR) fil-

ter to every sensor signal and then sums up all the filtered

signals to form the array’s output (Frost, 1972). Constant

beamwidth can be achieved with this framework by properly

adjusting the coefficients of those FIR filters. However, the

array spatial response of such broadband beamformers are

still frequency-varying regardless of the structure.

Differential microphone arrays (DMAs) are responsive to

the spatial derivatives of the acoustic pressure field. In com-

parison with additive arrays, DMAs can have many advan-

tages in processing broadband signals. First, a DMA can form

frequency-invariant beampatterns as it will be discussed later.

This makes it effective for processing both low- and high-

frequency signals. Second, a DMA has the potential to attain

maximum directional gain with a given number of sensors

(Elko, 2000; Elko and Meyer, 2008). Furthermore, DMAs are

generally small in size (relative to the acoustic wavelength)

due to the inherent assumption that the true pressure differen-

tials can be approximated by finite differences of microphone

outputs. Therefore, DMAs can be easily integrated into com-

munication devices. As a consequence, the design of DMAs

and the associated beamforming algorithms have attracted

much interest over the past few decades.

Traditionally, an Nth-order DMA is formed by using

Nþ 1 microphones and its output is generated by subtrac-

tively combining the outputs of two DMAs of order N � 1,

as illustrated in Fig. 1 (Elko and Meyer, 2008; Elko, 2000;

Sessler and West, 1971; Olson, 1946; Elko et al., 2003;

Abhayapala and Gupta, 2010; Kolund�zija et al., 2011). This

way of DMA design, though simple and easy to implement,

has many drawbacks. The most prominent problems are (1)

it lacks flexibility in forming different beampattens; and (2)

it is difficult to deal with the problem of white noise amplifi-

cation, particularly at low frequencies.

Recently, we developed an approach to the design and

implementation of uniform linear DMAs (Benesty and Chen,

2013). The basic idea is illustrated in Fig. 2, which adopted

the widely used analysis-and-synthesis framework in speech

processing (Lim, 1979; Benesty et al., 2009). First, the sig-

nals received by the DMA is partitioned into small overlap-

ping frames. Every frame is then transformed into the short-

time Fourier transform (STFT) domain. In every STFT sub-

band, a differential beamformer is designed and applied to

FIG. 1. (Color online) Traditional implementation of first-, second-, and

third-order DMAs, where d is the inter-element spacing and the delay pa-

rameters s1, s2, and s3 are used to control the null positions.

FIG. 2. (Color online) Illustration of

the DMA design approach in the STFT

domain.
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the multichannel STFT coefficients to reduce noise and esti-

mate the desired signal in the corresponding subband.

Finally, the time-domain signal estimate is constructed using

either the overlap-add or overlap-save technique with the

inverse STFT. The most crucial step in this framework is the

design of the differential beamformers in the STFT sub-

bands, which was preliminarily studied in Benesty and Chen

(2013). This paper is an extension of the work presented in

Benesty and Chen (2013). The major contributions of this

paper are threefold: (1) the DMA design approach is pre-

sented in a more systematic and rigorous way; (2) we cover

some of the important design cases (including beampatterns

with distinct nulls and nulls of multiplicity of more than one)

that were not discussed in Benesty and Chen (2013); and,

most importantly, (3) we present two methods to deal with

the white noise amplification problem, which is a major

issue in DMA design.

The remainder of this paper is organized as follows. In

Sec. II, we present the signal model and the problem of

beamforming. We then give three important performance

measures (beampattern, white noise gain, and directivity

index) in Sec. III, which are widely used for the evaluation

of beamformers. In Sec. IV, we discuss the ideal beampat-

terns of DMAs with different orders. In Sec. V, we describe

a general approach to the design of an Nth-order DMA using

Nþ 1 microphones. Then, in Sec. VI, we present two robust

approaches that use more than Nþ 1 microphones to design

an Nth-order DMA and can deal with the white noise ampli-

fication problem. In Sec. VII, we briefly discuss a possible

design of an Nth-order DMA with less than Nþ 1 micro-

phones. Finally, a summary is given in Sec. VIII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider a uniform linear array consisting of M
omnidirectional microphones as illustrated in Fig. 3, where

the inter-element spacing is equal to d. Suppose that there is

a planewave, propagating in an anechoic environment at the

speed of sound, i.e., c¼ 340 m/s, and impinging on the array

with an incident angle of h. In this scenario, the signal

received at the mth (m¼ 1, 2,…, M) microphone, at the

discrete-time index k, is given by

ymðkÞ ¼ x½k � ðm� 1Þs0 cos h� þ vmðkÞ; (1)

where x(k) is the signal of interest, vm(k) is the noise

observed at the mth microphone, s0¼ d/c is the delay

between the first two sensors (the first sensor is chosen as the

reference) at the angle h¼ 0�.
If we follow the paradigm shown in Fig. 2 and transform

the signals in (1) into the STFT domain, we get

YmðxÞ ¼ e�jðm�1Þxs0 cos hXðxÞ þ VmðxÞ; (2)

where X(x), Vm(x), and Ym(x) are the STFT of x(k), vm(k),

and ym(k), respectively (note that we neglect the frame index

for ease of exposition), j is the imaginary unit with j¼
ffiffiffiffiffiffiffi
�1
p

,

and x¼ 2pf is the angular frequency.

In a vector form, (2) can be rewritten as

yðxÞ¢½Y1ðxÞY2ðxÞ � � � YMðxÞ�T

¼ dðx; cos hÞXðxÞ þ vðxÞ; (3)

where the noise signal vector, v(x), is defined similarly to

y(x),

dðx; cos hÞ¢½1 e�jxd cos h=c � � � e�jðM�1Þxd cos h=c�T (4)

is a phase-delay vector of length M (which is the same as the

steering vector used in traditional beamforming) and the

superscript T is the transpose operator.

The objective of this paper is to design DMA beam-

formers that can recover the signal of interest, X(x), given

y(x). For that, a complex weight, H�m(x), is applied to the

output of the mth microphone, m¼ 1, 2,…, M, where the

superscript * denotes complex conjugation. The weighted

outputs are then summed together to form the beamformer

output as shown in Fig. 2. Putting all the weights together to

form a vector of length M, we get

hðxÞ ¼ ½H1ðxÞH2ðxÞ � � �HMðxÞ�T : (5)

The beamformer output is then

ZðxÞ ¼
XM

m¼1

H�mðxÞYmðxÞ ¼ hHðxÞyðxÞ

¼hHðxÞdðx; cos hÞXðxÞ þ hHðxÞvðxÞ; (6)

where Z(x) is an estimate of the signal of interest, X(x), and

the superscript H is the conjugate-transpose operator. The

problem of beamforming is then to find h(x) so that Z(x) is

a good estimate of X(x). As pointed out in the previous sec-

tion, there are two different types of arrays, resulting in two

different approaches to beamforming: additive and differen-

tial. The former deals with arrays with large apertures while

the latter handles arrays with small apertures (as compared

to the wavelength). The focus of this paper is on differential

beamforming with small apertures, which is to design beam-

formers whose beampatterns are good approximations of the

“ideal” DMA patterns (Buck, 2002).

In order for the beampatterns to be close to the ideal

DMA patterns or, in other words, for the array to be respon-

sive to the differential sound field, we need to make the fol-

lowing assumptions.
FIG. 3. (Color online) Illustration of a uniform linear microphone array

system.
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(1) We assume that the sensor spacing, d, is much smaller

than the acoustic wavelength, k¼ c/f, i.e., d � k (this

implies that xs0 � 2p). This assumption is required so

that the true acoustic pressure differentials can be

approximated by finite differences of the microphones’

outputs.

(2) In linear DMAs, the mainlobe of the beampattern is at the

endfire direction, i.e., h¼ 0�. We assume that the signal

of interest propagates at this angle. As a result, we have

yðxÞ ¼ dðx; cos 0�ÞXðxÞ þ vðxÞ
¼ dðx; 1ÞXðxÞ þ vðxÞ: (7)

III. ARRAY PERFORMANCE MEASURES

Before discussing the design of different directivity pat-

terns, let us first give three important performance measures

that are commonly used in the evaluation of beamformers.

They are the beampattern, the white noise gain (WNG), and

the directivity index.

A. Beampattern

The beampattern, also called directivity pattern,

describes the sensitivity of a beamformer to a planewave im-

pinging on the array from the direction h. Mathematically, it

is defined as

B½hðxÞ; h�¢dHðx; cos hÞhðxÞ

¼
XM

m¼1

HmðxÞejðm�1Þxs0 cos h: (8)

Figure 4 plots an example of a beampattern of a uniform

linear array with five microphone sensors. The beampattern

consists of a total of seven beams in the range between 0�

and 360�. The one with the highest amplitude (0 dB) is called

mainlobe and all the others are called sidelobes. One

important parameter regarding the mainlobe is the beam-

width (sometimes also called mainlobe width), which is

defined as the angle region between the �3-dB points on ei-

ther side of the mainlobe. The height of the sidelobes repre-

sents the gain pattern for noise and competing sources

present along the directions other than the mainlobe direc-

tion. In array and beamforming design, one hopes to make

the sidelobes as low as possible so that signals coming from

directions other than the mainlobe direction would be attenu-

ated as much as possible. In addition, there are a number of

directions where B½hðxÞ; h� ¼ 0. These are called nulls of

the beampattern. As we pointed out before and will be dis-

cussed again later, the information about these nulls can be

used to optimize DMA beamforming filters.

B. White noise gain

From (2) and the fact that the first microphone is the ref-

erence, we define the input signal-to-noise ratio (SNR) as

iSNR xð Þ¢ /X xð Þ
/V1

xð Þ ; (9)

where /XðxÞ¢E½jXðxÞj2� and /V1
ðxÞ¢E½jV1ðxÞj2� are the

variances of X(x) and V1(x), respectively, with E[�] denot-

ing mathematical expectation.

According to (6), the output SNR can be written as

oSNR h xð Þ½ �¢/X xð Þ jh
H xð Þd x; cos 0�ð Þj2

hH xð ÞUv xð Þh xð Þ
;

¼ /X xð Þ
/V1

xð Þ �
jhH xð Þd x; cos 0�ð Þj2

hH xð ÞCv xð Þh xð Þ
(10)

where

UvðxÞ¢E½vðxÞvHðxÞ� (11)

and

Cv xð Þ¢ Uv xð Þ
/V1

xð Þ (12)

are the correlation and pseudo-coherence matrices of v(x),

respectively. From (10), we deduce that the SNR gain is

G h xð Þ½ �¢ oSNR h xð Þ½ �
iSNR xð Þ ¼

jhH xð Þd x; cos 0�ð Þj2

hH xð ÞCv xð Þh xð Þ
: (13)

Assume that the matrix Cv(x) is nonsingular. In this

case, for any two vectors h(x) and d(x, cos 0�), we have

jhHðxÞdðx; cos 0�Þj2

	 ½hHðxÞCvðxÞhðxÞ�
� ½dHðx; cos 0�ÞC�1

v ðxÞdðx; cos 0�Þ�; (14)

where equality holds if and only if h(x)/ C�1
v ðxÞ d(x, cos 0�).

Using the inequality (14) in (13), we deduce an upper bound

for the gain:
FIG. 4. (Color online) Illustration of a beampattern with a uniform linear

array.
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G½hðxÞ� 	 dHðx; cos 0�ÞC�1
v ðxÞdðx; cos 0�Þ

	 tr½C�1
v ðxÞ�tr½dðx; cos 0�ÞdHðx; cos 0�Þ�

	 Mtr½C�1
v ðxÞ�; (15)

where tr[�] is the trace of a square matrix. We observe how

the gain is upper bounded [as long as Cv(x) is nonsingular]

and depends on the number of microphones as well as on the

nature of the noise.

Now, suppose that the noise is temporally and spatially

white, i.e., Cv(x)¼ IM, where IM is the M�M identity ma-

trix. In this case, the SNR gain is called white noise gain

(WNG), i.e.,

Gwn h xð Þ½ � ¼ jh
H xð Þd x; cos 0�ð Þj2

hH xð Þh xð Þ
: (16)

In our context, the distortionless constraint is desired, i.e.,

hHðxÞdðx; cos 0�Þ ¼ 1: (17)

Then, the WNG is

Gwn h xð Þ½ � ¼ 1

hH xð Þh xð Þ
: (18)

For

h xð Þ ¼ d x; cos 0�ð Þ
M

; (19)

we find the maximum possible gain, which is

Gwn;maxðxÞ ¼ M: (20)

In general, the WNG of an Nth-order DMA is

Gwn;N h xð Þ½ � ¼ 1

hH xð Þh xð Þ
	 M: (21)

We will see how the white noise may be amplified by

DMAs, i.e., Gwn;N½hðxÞ�< 1, especially at low frequencies.

C. Directivity index

In a spherically isotropic noise field, which is often

referred to as the diffuse noise field, the (i, j)th element of

the noise pseudo-coherence matrix can be written as

Cv xð Þ½ �ij ¼ Cdn xð Þ½ �ij ¼
sin x j� ið Þs0½ �

x j� ið Þs0

¼ sinc x j� ið Þs0½ �: (22)

Substituting (22) into (13), we obtain the SNR gain in diffuse

noise, Gdn½hðxÞ�, i.e., the directivity factor. The directivity

index is simply defined as (Beranek, 1986; Elko, 2000; Elko

and Meyer, 2008)

D½hðxÞ�¢10 log10Gdn½hðxÞ�: (23)

In the rest, we denote by Gdn;N½hðxÞ� the directivity factor of

an Nth-order DMA.

IV. IDEAL DMA PATTERNS

The main focus of his paper is on the design of DMA

patterns. The first question that we need to answer is what is

a DMA. Briefly, DMAs are a particular kind of microphone

arrays that are responsive to the differential sound pressure

field. Since a differential field has different orders, we also

classify DMAs into different orders. Ideally, an Nth-order

DMA has a pattern of the following form (Elko, 2000):

BNðhÞ ¼
XN

n¼0

aN;n cosnh; (24)

where aN,n, n¼ 0,1,…, N, are real coefficients. The different

values of these coefficients give different patterns of the

Nth-order DMA. In the direction of the desired signal, i.e.,

for h¼ 0�, the directivity pattern must be equal to 1, i.e.,

BNð0�Þ ¼ 1. Therefore, we should have

XN

n¼0

aN;n ¼ 1: (25)

As a result, we always choose the first coefficient as

aN;0 ¼ 1�
XN

n¼1

aN;n: (26)

All interesting DMA patterns have at least one null in some

direction. Since cos h is an even function, so is the directiv-

ity pattern BNðhÞ. Therefore, on a polar plot, BNðhÞ is sym-

metric about the axis 0�–180� and any DMA design can be

restricted to the range [0�, 180�]. It follows from (24) that an

Nth-order DMA has at most N distinct nulls in this range.

The most popular DMAs are the first-, second-, and

third-order ones.

A. First-order patterns

According to (24), the ideal pattern of the first-order

DMA has the following form.

B1ðhÞ ¼ ð1� a1;1Þ þ a1;1 cos h: (27)

For the most important first-order patterns, the values of a1,1

are as follows.

(1) Dipole: a1,1¼ 1, a null at cos h¼ 0, and the correspond-

ing pattern is shown in Fig. 5(a).

(2) Cardioid: a1,1¼ 1/2, a null at cos h¼�1, and the corre-

sponding pattern is shown in Fig. 5(b).

(3) Hypercardioid: a1,1¼ 2/3, a null at cos h¼�1/2, and the

corresponding pattern is shown in Fig. 5(c).

(4) Supercardioid: a1,1¼ 2 �
ffiffiffi
2
p

, a null at cos h¼�
ffiffiffi
2
p

/2,

and the corresponding pattern is shown in Fig. 5(d).

B. Second-order patterns

The ideal pattern of the second-order DMA, according

to (24), is described by the following equation:
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B2ðhÞ ¼ ð1� a2;1 � a2;2Þ þ a2;1 cos hþ a2;2 cos2h:

(28)

(1) Dipole: it has a null at cos h¼ 0 and a one (maximum) at

cos h¼�1. Substituting these values into (28), we find

that a2,1¼ 0 and a2,2¼ 1. The corresponding pattern is

shown in Fig. 6(a).

(2) Cardiod: it has two nulls; one at cos h¼�1 and the other

at cos h¼ 0. From these values, one can deduce that

a2,1¼ a2,2¼ 1/2. This pattern is shown in Fig. 6(b).

(3) Hypercardioid: the Nth-order hypercardioid and super-

cardioid are characterized by the fact that they have N
distinct nulls in the interval 0�< h	 180�. Hence, their

general pattern is

BHS;NðhÞ ¼
YN
n¼1

½1N;n þ ð1� 1N;nÞ cos h�; (29)

where 1N,n, n¼ 1, 2,…, N are real coefficients. Using

(28) and (29), one can find the values of a2,1 and a2,2 for

the second-order hypercardioid, i.e., a2,1¼ 2/5, a2,2¼ 4/5

(Elko, 2000; Sena et al., 2012). This pattern is plotted in

Fig. 6(c).

(4) Supercardioid: one can also derive the values of a2,1 and

a2,2 for the second-order supercardioid according to (28)

and (29), i.e., a2,1 
 0.484, a2,2 
 0.413. This pattern is

shown in Fig. 6(d) (Elko, 2000; Sena et al., 2012).

C. Third-order patterns

The ideal pattern of the third-order DMA is given by

B3ðhÞ ¼ ð1� a3;1 � a3;2 � a3;3Þ þ a3;1 cos h

þ a3;2 cos2 hþ cos3 h: (30)

The values of a3,n (n¼ 1, 2, 3) for four important patterns

are as follows.

(1) Dipole: by analogy with the first-order and second-order

dipoles, we define the Nth-order dipole as

BD;NðhÞ ¼ cosN h; (31)

implying that aN,N¼ 1 and aN,N–1¼ aN,N–2¼ � � � ¼ aN,0¼ 0.

The Nth-order dipole has only one null (in the range

0�–180�) at h¼ 90�. For the third-order dipole, it can be

checked that a3,1¼ a3,2¼ 0 and a3,3¼ 1. The corresponding

pattern is shown in Fig. 7(a).

(2) Cardioid: by analogy with the first-order and second-

order cardioids, we define the Nth-order cardioid as

BC;N hð Þ ¼ 1

2
þ 1

2
cos h

� �
cosN�1h; (32)

implying that aN,N¼ aN,N–1¼ 1
2

and aN,N–2¼ aN,N–3

¼ � � � ¼ aN,0¼ 0. This Nth-order cardioid has only two

FIG. 5. (Color online) Four conven-

tional first-order DMA patterns.
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distinct nulls (in the range 0�–180�): one at h¼ 90� and

the other at h¼ 180�. So, for a third-order cardioid, we

have a3,1¼ 0 and a3,2¼ a3,3¼ 1/2. This pattern is plotted

in Fig. 7(b).

(3) Hypercardioid: using (28) and (29), we find that

a3,1¼�4/7, a3,2¼ 4/7, and a3,3¼ 8/7. This pattern is

shown in Fig. 7(c).

(4) Supercardioid: again, with (28) and (29), we find that

a3,1 
 0.217, a3,2 
 0.475, and a3,3 
 0.286. This pattern

is shown in Fig. 7(d).

V. DESIGN OF DMA FILTERS

The objective of the DMA filter design is to find the fil-

ter coefficients in (5) so that the beampattern formed from

the filter as given in (8) would approach to an ideal Nth-

order DMA pattern in (24). It is seen from the previous sec-

tion that an ideal DMA pattern has a one at the angle h¼ 0�

and a number of nulls in some specific directions. Therefore,

the filter of a given linear DMA can be designed by posting

one constraint at h¼ 0�, so that the resulting gain is equal to

1 at this direction, and a number of other constraints in the

directions of the nulls. In this section, we study the filter

design of an Nth-order DMA with Nþ 1 microphones. We

divide this general design problem into two cases: (1) the

DMA has N distinct nulls and (2) the DMA has multiple

nulls at the same angle.

A. Filter design with distinct nulls

Without loss of generality, we assume that the N distinct

nulls are at the angles hN,n, n¼ 1, 2,…, N, which satisfy

0�< hN,1< hN,2< � � �< hN,N	 180�. Then, we can construct

the following linear system of Nþ 1 equations (Benesty and

Chen, 2013):

Dðx; aÞhðxÞ ¼ i; (33)

where

a¢½1 aN;1 � � � aN;N�T

¼ ½cos 0� cos hN;1 � � � cos hN;N�T ; (34)

is a vector of length Nþ 1, aN,n ¢ cos hN,n,

Dðx; aÞ¢

dHðx; 1Þ
dHðx; aN;1Þ

..

.

dHðx; aN;NÞ

2
666664

3
777775

(35)

is the constraint matrix of size (Nþ 1)� (Nþ 1), d(x, aN,n)

is the steering vector of length N þ 1 as defined in (4), h(x)

is a filter of length N þ 1 as defined in (5),

FIG. 6. (Color online) Four conven-

tional second-order DMA patterns.
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i¢½1 0 � � � 0�T (36)

is a vector of length N þ 1 containing the gains at the N þ 1

different angles.

Expanding all the steering vectors in (35) according to

(4), we can see that D(x, a) is a Vandermonde matrix of full

rank (Benesty and Chen, 2013; Turner, 1966). The inverse

of this matrix can be expressed as (Turner, 1966)

D�1ðx; aÞ ¼ UL; (37)

where U and L are upper and lower triangular matrices of

size (N þ 1)� (N þ 1), respectively. The elements lij, i¼ 1,

2,…, N þ 1, j¼ 1, 2,…, N þ 1, of L are given by

lij ¼

0; i < j

1; i ¼ j ¼ 1

Yi

p¼1;p 6¼j

1

ejxs0aN;j�1 � ejxs0aN;p�1
; otherwise;

8>>>>><
>>>>>:

(38)

where aN,0 ¢ cos 0� ¼ 1. The elements uij, i¼ 1, 2,…, N þ 1,

j¼ 1, 2,…, N þ 1, of U are given by (Turner, 1966)

uij ¼
1; j ¼ i
0; j ¼ 1

ui�1;j�1 � ui;j�1ejxs0aN;j�2 ; otherwise;

8<
:

(39)

where

u0j ¼ 0: (40)

Using (37), we can write the solution of (33) as

hðxÞ¼D–1ðx; aÞi ¼ ULi: (41)

1. First-order patterns

For the general first-order DMA with one null, we have

the following linear system of two equations:

1 ejxs0

1 ejxs0a1;1

� �
hðxÞ ¼ 1

0

� �
: (42)

The DMA filter is then

h xð Þ ¼ 1

1� ejxs0 1�a1;1ð Þ
1

�e�jxs0a1;1

� �
: (43)

Depending on how the coefficient a1,1 is chosen, we can

have different patterns. For a1,1¼ cos h1,1¼ 0 (i.e., h1,1

¼ 90�), we get the dipole; for a1,1¼ cos h1,1¼�1 (i.e.,

h1,1¼ 180�), we get the cardioid; and for a1,1¼ cos h1,1

¼�
ffiffiffi
2
p

/2 (i.e., h1,1¼ 135�), we obtain the supercardioid as

given in Sec. IV A.

Figure 8 plots the patterns, WNGs, and directivity fac-

tors of the first-order cardioid and supercardioid designed

FIG. 7. (Color online) Four conven-

tional third-order DMA patterns.
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with (43) and d¼ 1 cm. It is seen that the designed patterns

are the same as the ideal ones shown in Fig. 5. The cardioid

has a directivity factor of approximately 5 dB and the super-

cardioid has a directivity factor close to 6 dB. Both the cardi-

oid and supercardioid have a WNG smaller than 1 (or 0 dB),

indicating that the DMA amplifies the white noise. This is

indeed a problem with all DMAs, particularly at low fre-

quencies. Ways to circumvent this problem are discussed in

Sec. VI.

2. Second-order patterns

For the general second-order DMA and two distinct

nulls, we have the following linear system of three

equations:

1 ejxs0 ej2xs0

1 ejxs0a2;1 ej2xs0a2;1

1 ejxs0a2;2 ej2xs0a2;2

2
4

3
5hðxÞ ¼

1

0

0

2
4
3
5: (44)

FIG. 8. (Color online) Patterns, WNGs,

and directivity factors of the first-order

cardioid and supercardioid designed

with (43) and d¼ 1 cm.
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The solution to (44) is

h xð Þ ¼ 1

1� ejxs0 1�a2;1ð Þ½ � 1� ejxs0 1�a2;2ð Þ½ �

�
1

�e�jxs0a2;1 � e�jxs0a2;2

�e�jxs0 a2;1þa2;2ð Þ

2
4

3
5: (45)

The values of a2,1 and a2,2 for some important patterns are as

follows.

(1) Cardioid: a2,1¼ 0, a2,2¼�1 (i.e., h2,1¼ 90�, h2,2¼ 180�).
(2) Hypercardioid: a2,1¼ 0.31, a2,2¼�0.81 (i.e., h2,1 
 72�,

h2,2 
 144�).
(3) Supercardioid: a2,1¼�0.28, a2,2¼�0.89 (i.e., h2,1


 106�, h2,2 
 153�).

FIG. 9. (Color online) Patterns, WNGs,

and directivity factors of the second-order

cardioid and supercardioid designed with

(45) and d¼ 1 cm.
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(4) Quadrupole: a2,1¼
ffiffiffi
2
p

/2, a2,2¼�
ffiffiffi
2
p

/2 (i.e., h2,1¼ 45�,
h2,2¼ 135�).

Figure 9 plots the patterns, WNGs, and directivity fac-

tors of the second-order cardioid and supercardioid designed

with (45) and d¼ 1 cm. Comparing this figure with Fig. 8,

one can see that the beamwidth of the second-order patterns

is narrower than that of the first-order patterns, and the

second-order DMA can achieve a higher directivity factor

than the first-order DMA, by paying the price of more white

noise amplification.

3. Third-order patterns

For the general third-order DMA with three distinct nulls,

we have the following linear system of three equations:

dHðx; 1Þ
dHðx; a3;1Þ
dHðx; a3;2Þ
dHðx; a3;3Þ

2
66664

3
77775hðxÞ ¼

1

0

0

0

2
664
3
775; (46)

for which the solution is

h xð Þ ¼ 1

1� ejxs0 1�a3;1ð Þ½ � 1� ejxs0 1�a3;2ð Þ½ �

� 1

1� ejxs0 1�a3;3ð Þ½ �

1

c1

c2

c3

2
66664

3
77775; (47)

where

c1 ¼ �e�jxs0a3;1 � e�jxs0a3;2 � e�jxs0a3;3 ; (48)

c2 ¼ e�jxs0ða3;1 þ a3;2Þ þ e�jxs0ða3;2þa3;3Þ

þ e�jxs0ða3;1 þ a3;3Þ; (49)

c3 ¼ e�jxs0ða3;1 þ a3;2þa3;3Þ: (50)

Choosing a3,1¼ 0, a3,2¼�1/2, and a3,3¼�1 (i.e.,

h3,1¼ 90�, h3,2¼ 120�, and h3,3¼ 180�), we obtain the

supercardioid.

Figure 10 plots the patterns, WNG, and directivity factor

of the third-order supercardioid designed with (47) and

d¼ 1 cm. It is seen that the third-order supercardioid has a

higher directivity factor than both the first- and second-order

supercardiods, but it also has a more serious problem of

white noise amplification.

B. Filter design with nulls of multiplicity more than
one

In this part, we consider designing an Nth-order DMA

pattern that has N nulls but one of multiplicity P (1	P	N)

at aN,n¼ cos hN,n. In this case, the ideal DMA pattern can be

expressed as

BNðhÞ ¼ BN�PðhÞ � ðcos h� aN;nÞP: (51)

If we take the pth-order partial derivative of BNðhÞ with

respect to a¼ cos h, it follows immediately that

@pBN hð Þ
@ap

���
a¼aN;n

¼ 0; p ¼ 1; 2;…;P� 1: (52)

FIG. 10. (Color online) Patterns, WNGs,

and directivity factors of the third-order

supercardioid designed with (47) and

d¼ 1 cm.
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Now, from (8), we can derive the pth-order partial deriva-

tive of the beampattern B½hðxÞ; h� with respect to a¼ cos h as

@pB h xð Þ; h½ �
@ap

¼
@p dH x; að Þh xð Þ
h i

@ap

¼ jxs0ð Þp Rpd x; að Þ
� 	H

h xð Þ; (53)

where R¼ diag(0, 1,…, M � 1) is a diagonal matrix.

Comparing (52) and (53), we should have, for an Nth-order

DMA having a null of multiplicity P at the angle hN,n:

dHðx; aN;nÞhðxÞ ¼ 0; (54)

½Rdðx; aN;nÞ�HhðxÞ ¼ 0; (55)

..

.

½RP�1dðx; aN;nÞ�HhðxÞ ¼ 0: (56)

Therefore, we can construct the following linear system of

Nþ 1 equations for the Nth-order DMA:

D0ðx; aÞhðxÞ ¼ i; (57)

where

a¢½1 aN;1 � � � aN;n�1 aN;n � � � aN;n aN;nþP � � � aN;N �T

(58)

is a vector of length Nþ 1,

D0ðx; aÞ¢

dHðx; 1Þ
dHðx; aN;1Þ

..

.

dHðx; aN;nÞ
dHðx; aN;nÞR

..

.

dHðx; aN;nÞRP�1

dHðx; aN;nþPÞ
..
.

dHðx; aN;NÞ

2
666666666666666666666664

3
777777777777777777777775

(59)

is the constraint matrix of size (N þ 1)� (N þ 1), and i is

defined in (36). It can be checked that D0(x, a) is of full

rank. The solution to (57) is then

hðxÞ5D0
�1ðx; aÞi : (60)

Figure 11 plots the second- and third-order cardioids

designed with (60) that have a null of multiplicity 2 and 3,

respectively, at 180�.

C. Filter design with ideal DMA pattern information

We discussed, in the previous subsections, how to

design DMA filters using only the null position information.

As long as the nulls and order of the DMA are given, the cor-

responding filter can be easily computed. A more general

approach to the design is to include not only the null but also

the directivity pattern information from other angles.

Specifically, for an Nth-order DMA with N þ 1 micro-

phones, we can form the following linear system of N þ 1

equations (Benesty and Chen, 2013):

Dðx; aÞhðxÞ ¼ b; (61)

where the constraint matrix D(x, a) is defined in (35) and

a ¼ ½1 aN;1 � � � aN;N�T ; (62)

b ¼ ½1 bN;1 � � � bN;N�T (63)

are vectors of length N þ 1 containing the design coefficients

of the directivity pattern. If aN,n (n¼ 1,…, N) corresponds to a

null position, bN,n should be zero; otherwise, bN,n should be

the gain at hN,n of the desired DMA pattern that we want to

design. Note that the major difference between the linear sys-

tem here and that in Sec. V A is that here aN,n, n¼ 1,…, N
may not correspond to the null positions and, therefore, this

method can be used to design any DMA pattern.

However, attention has to be paid to the choice of aN,n

and bN,n to ensure that the resulting pattern is the same as the

desired one. The rules of thumb are as follows.

(1) The N coefficients aN,n should be chosen in such a way

that D(x, a) is well conditioned so that its inverse can be

computed without any numerical problem.

(2) The N pairs of coefficients (aN,n, bN,n) should take values

from the desired ideal DMA pattern.

(3) The pairs of coefficients (aN,n, bN,n) should contain all

the different nulls of the desired ideal DMA pattern.

If the above rules are satisfied, The filter can be found as

hðxÞ ¼ D–1ðx; aÞb: (64)

VI. WNG IMPROVEMENT

From the previous sections, one can see that a DMA

may have a WNG smaller than 1, meaning that it amplifies

white noise, particularly at low frequencies. The higher the

DMA order, the more severe is this amplification. Indeed,

this is one of the most important issues in DMAs. Ways to

circumvent this fundamental problem is by using more than

N þ 1 microphones to design an Nth-order DMA as dis-

cussed in the following subsections.

A. Maximization of the WNG

Suppose that we have a linear array with M (M�N þ 1)

microphones and we want to design an Nth-order DMA with

the highest WNG. From the previous sections, we know that

an Nth-order DMA can be designed by solving the linear

system of N þ 1 equations, i.e.,

Dðx; aÞhðxÞ ¼ b; (65)

where h(x) is a filter of length M, but now
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Dðx; aÞ ¼

dHðx; 1Þ
dHðx; aN;1Þ

..

.

dHðx; aN;NÞ

2
66664

3
77775 (66)

is the constraint matrix of size (N þ 1)�M,

dðx; aN;nÞ ¼ ½1 e�jxs0aN;n � � � e�jðM�1Þxs0aN;n �T ;

n ¼ 1; 2;…;N (67)

is the steering vector of length M, and

a ¼ ½1 aN;1 � � � aN;N�T ; (68)

FIG. 11. (Color online) Patterns, WNGs,

and directivity factors of the second-

order cardioid (with one null of multi-

plicity 2 at 180�) and third-order cardioid

(with one null of multiplicity 3 at 180�)
designed with (40) and d¼ 1 cm.
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b ¼ ½1 bN;1 � � � bN;N�T (69)

are vectors of length N þ 1 containing the design coefficients

of the Nth-order DMA.

Now, the problem of designing an Nth-order DMA with

maximum WNG can be described, according to (21), as

max
h xð Þ

1

hH xð Þh xð Þ
subject to D x; að Þh xð Þ ¼ b; (70)

which is equivalent to

min
hðxÞ

hHðxÞhðxÞ subject to Dðx; aÞhðxÞ ¼ b: (71)

The solution of (71) leads to the maximum WNG

(MaxWNG) filter

hMaxWNGðxÞ ¼ DHðx; aÞ½Dðx; aÞDHðx; aÞ��1
b; (72)

which is the minimum-norm solution of (65).

The WNG and the directivity factor of the above

MaxWNG filter are, respectively,

Gwn hMaxWNG xð Þ½ � ¼ 1

bT D x; að ÞDH x; að Þ
h i�1

b

(73)

and

Gdn hMaxWNG xð Þ½ � ¼ 1

hH
MaxWNG xð ÞCdn xð ÞhMaxWNG xð Þ

:

(74)

It is easy to check that if M¼N þ 1, the MaxWNG filter

degenerates to the DMA filter designed in Sec. V. If M>Nþ 1,

the MaxWNG filter has the potential to form an Nth-order DMA

with less white noise amplification or even a WNG greater than

1. It should be mentioned that in this case the array length is

larger as compared to the case of M¼Nþ 1.

Figure 12 plots the patterns and WNGs of the first-order

cardioid (given in Sec. V A 1) designed according to (72)

with 2, 5, 10, and 30 microphones. It is clearly seen that the

WNG increases with the number of microphones. With 30

microphones, there is approximately 15 dB SNR gain for

most of the frequencies.

Note that if M is much larger than N þ 1, the order of

the DMA may not be equal to N anymore as seen in Fig. 12.

As a result, the resulting shape of the beampattern may be

slightly different from the one obtained with M¼N þ 1.

This approach is optimal as long as the WNG is concerned.

However, one can still design the ideal Nth-order DMA pat-

tern with M microphones by adding more constraints, which

is discussed in the next subsection.

B. Minimum-norm approach with additional
constraints

If M is much larger than N þ 1, we can design an Nth-

order DMA using more constraints than the N þ 1 funda-

mental constraints. Now, suppose that we have K more con-

straints at (aK,k, bK,k), k¼ 1, 2,…, K, where aK,k’s

(�1< aK,k< 1) are different from all the aN,n’s. The linear

system can then be constructed as

~Dðx; ~aÞhðxÞ ¼ ~b; (75)

where

~Dðx; ~aÞ ¼ Dðx; aÞ
Dðx; aÞ

� �
; (76)

~b ¼ b

b

� �
; (77)

the matrix D(x, a) and vector b are defined in (66) and (69)

[note that D0(x, a) defined in (59) can be used instead],

a ¼ ½aK;1 aK;2 � � � aK;K�T ; (78)

Dðx; aÞ ¼

dHðx; aK;1Þ
dHðx; aK;2Þ

..

.

dHðx; aK;KÞ

2
6666664

3
7777775
; (79)

and

b ¼ ½b
K;1

b
K;2
� � � b

K;K
�T : (80)

Now, similar to the previous section, we can design an Nth-

order DMA by solving the following problem:

min
hðxÞ

hHðxÞhðxÞ subject to ~Dðx; ~aÞhðxÞ ¼ ~b: (81)

The solution of (81) gives another maximum WNG (MaxWNG)

filter

h0MaxWNGðxÞ ¼ ~D
Hðx; ~aÞ½~Dðx; ~aÞ~DHðx; ~aÞ��1~b; (82)

which is the minimum-norm solution of (75). The corre-

sponding WNG is

Gwn h0MaxWNG xð Þ
� 	

¼ 1

~b
T ~D x; ~að Þ~DH

x; ~að Þ
h i�1

~b

: (83)

Figure 13 plots the patterns and WNGs of the first-order

cardioid (given in Sec. V A 1) designed according to (82)

with M¼ 30 and with the following:

(1) no additional constraint, in which case the h0MaxWNG(x)

filter degenerates to the hMaxWNG(x) filter;

(2) one additional constraint at a1,1¼ cos 90� ¼ 0;

(3) three additional constraints at a3,1¼ cos 45� ¼
ffiffiffi
2
p

/2,

a3,2¼ cos 90� ¼ 0, and a3,3¼ cos 135� ¼�
ffiffiffi
2
p

/2; and

(4) five additional constraints at a5,1¼ cos 30� ¼
ffiffiffi
3
p

/2,

a5,2¼ cos 60� ¼ 1/2, a5,3¼ cos 90� ¼ 0, a5,4¼ cos 120�

¼�1/2, and a5,5¼ cos 150� ¼�
ffiffiffi
3
p

/2.

It is seen that by increasing the number of constraints,

the designed pattern is closer to the ideal first-order cardi-

oid and the resulting DMA suffers more from white noise

amplification. Generally, if we use M microphones to

design an Nth-order DMA, we can use a minimum of Nþ 1
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constraints (the fundamental ones) and a maximum of M
constraints. The more the constraints, the closer the

designed pattern is to the ideal one; but there will be more

white noise amplification. So, the h0MaxWNG(x) filter is

indeed a tradeoff filter that can make a compromise

between white noise amplification and ideal DMA pattern

approximation.

Before finishing this section, we want to point out that

careful attention has to be paid when choosing the additional

constraints, just as we did for the fundamental ones. The fun-

damental constraints are chosen based on the DMA’s null

positions. The additional constraints are different from the

null positions. However, they should be chosen in such a

way that ~D
Hðx; ~aÞ is of full row rank.

FIG. 12. (Color online) Patterns (at

f¼ 1 kHz) and WNGs of the first-order

cardioid designed with (72), different

values of M, and d¼ 1 cm.
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VII. LEAST-SQUARES APPROACH

We have discussed in Sec. V the design of an Nth-order

DMA using N þ 1 microphones. We also discussed in Sec.

VI how to design an Nth-order DMA using more than N þ 1

microphones, which turned out to be the minimum-norm so-

lution of a linear system with a given number of constraints.

The advantage of using more microphones is that the WNG

increases significantly with the number of microphones. For

completeness, we briefly discuss in this section the

FIG. 13. (Color online) Pattern (at f
¼ 1 kHz) and WNGs of the first-order

cardioid designed with (82), 30 micro-

phones, and d¼ 1 cm.
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possibility of designing an Nth-order DMA with less than

N þ 1 microphones.

Again, we assume that we have M microphones with

M<N þ 1. If we want to design an Nth-order DMA, we can

construct the following linear system:

Dðx; aÞhðxÞ ¼ b; (84)

where h(x) is a filter of length M as defined in Sec. II, D(x, a)

is the constraint matrix of size (Nþ 1)�M similar to that

defined in (66) except that now we have M<Nþ 1.

Given the linear system in (84), one can find the least-

squares filter

hLSðxÞ ¼ ½DHðx; aÞDðx; aÞ��1
DHðx; aÞb: (85)

Note that the fundamental constraints of an N-order

DMA on the nulls may not be fulfilled with the filter given

in (85) since only M � 1 nulls can be generated given M
microphones. As a result, the designed DMA may differ sig-

nificantly from the ideal Nth-order DMA depending on N
and M. But this is the best we can achieve given the

situation.

VIII. SUMMARY

In this paper, we developed a general theory for the

design and implementation of linear DMAs, which can pro-

cess broadband signals such as speech. This approach works

in the STFT domain. It first transforms the microphone array

signals into the STFT domain. In each STFT subband, a dif-

ferential beamformer is designed and applied to the multi-

channel noisy spectra, thereby producing an estimate of the

desired signal spectrum in this subband. Finally, the time-

domain desired speech estimate is constructed using the

inverse STFT. Within this framework, the core issue of

DMA processing is the design of the desired differential

beamformer in every subband. To accomplish this, the DMA

design issue is divided into three cases depending on the

order of the DMA and the number of microphones. The first

case covers the situation of designing an Nth-order DMA

with N þ 1 microphones. Three methods were presented for

this scenario, which share the common principle of convert-

ing the DMA beamforming issue into one of solving simple

linear systems. The first method uses only the null informa-

tion with the assumption that all the nulls are at different

positions, the second one also uses only the null information

but there can be multiple nulls at the same angle, whereas

the third approach handles both the null information and

some constraints at directions other than nulls. The second

case covers the situation where an Nth-order DMA is

designed using more than N þ 1 microphones. We presented

two minimum-norm solutions that can approximate an Nth-

order DMA by maximizing the array WNG with a given

number of constraints. The last case covers the least-squares

technique for the design of an Nth-order DMA with less than

N þ 1 microphones.
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