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Blind multichannel identification is generally sensitive to background noise. Although there

have been some efforts in the literature devoted to improving the robustness of blind multichannel

identification with respect to noise, most of those works assume that the noise is Gaussian

distributed, which is often not valid in real room acoustic environments. This paper deals with the

more practical scenario where the noise is not Gaussian. To improve the robustness of blind

multichannel identification to non-Gaussian noise, a robust normalized multichannel frequency-

domain least-mean M-estimate algorithm is developed. Unlike the traditional approaches that use

the squared error as the cost function, the proposed algorithm uses an M-estimator to form the

cost function, which is shown to be immune to non-Gaussian noise with a symmetric a-stable

distribution. Experiments based on the identification of a single-input/multiple-output acoustic

system demonstrate the robustness of the proposed algorithm.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4884760]

PACS number(s): 43.60.Fg, 43.60.Mn, 43.72.Kb [MAH] Pages: 693–704

I. INTRODUCTION

Blind multichannel identification, which estimates the

channel impulse responses of an unknown system based only

on the output signals, has the great potential to be used in

many applications such as multimedia signal processing

(Abed-Meraim et al., 1997), geophysical exploration (Luo

and Li, 1998), and communications (Tugnait, 2002) to name

a few. As a result, the blind multi-channel identification tech-

niques have drawn a significant amount of research attention

in recent years, and many algorithms have been developed,

such as the subspace algorithm (Moulines et al., 1995), the

least-squares method (Xu et al., 1995), the cross-relation

algorithm (Xu et al., 1995; Tong et al., 1994), the two-step

maximum likelihood algorithm (Hua, 1996), the higher-order

statistics method (Cadzow, 1996), the blind deconvolution

approach (Roan et al., 2003), the normalized multichannel

frequency-domain least-mean-square (NMCFLMS) algo-

rithm (Huang and Benesty, 2003), etc.

Among those methods, the NMCFLMS algorithm is of

particular interest because it employs the fast Fourier trans-

form to identify the impulse responses of a single-input/

multiple-output acoustic system in the frequency domain and

is, therefore, computationally very efficient. However, this

algorithm was found not very robust to additive noise. An

improved version of the NMCFLMS algorithm, called robust

normalized multichannel frequency-domain least-mean-

square (RNMCFLMS), was then developed (Haque and

Hasan, 2008); it introduced a constraint on the fullband spec-

tral energy to make it immune to additive Gaussian noise.

However, in many practical environments, noise is gen-

erally not Gaussian. For example, in typical teleconferencing

applications, there are many different types of acoustic

noises such as chair creaks, a keyboard clicking, noise pro-

duced from footsteps, a telephone ringing, noise due to pages

turning, door slams, and objects dropping (Georgiou et al.,
1999). These noise signals are not Gaussian, and the

NMCFLMS algorithm and its improved versions often fail
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to converge in such noise environments. Therefore to make

the NMCFLMS-type algorithms robust to non-Gaussian

noise has become an important issue.

In this paper, we present a robust normalized multichannel

frequency-domain least-mean-M-estimate (RNMCFLMM)

algorithm. Unlike the traditional NMCFLMS-type algorithms

that use the squared error as the optimization cost function, the

presented RNMCFLMM method employs an M-estimate func-

tion to form the cost function of the multichannel frequency-

domain adaptive filter. Due to the fact that an M-estimator has

the ability to deal with outliers picked up by microphones, the

resulting algorithm is more robust than the traditional

NMCFLMS-type algorithms to non-Gaussian noise with a

symmetric a-stable (SaS) distribution. Consequently, the

presented RNMCFLMM algorithm is robust to both non-

Gaussian and Gaussian noises as it will be justified by

experiments.

The rest of this paper is organized as follows. In Sec. II,

we formulate the related work and the explicit problem.

Section III describes the SaS noise model. In Sec. IV, we

first derive the proposed RNMCFLMM algorithm, then

select a proper M-estimator and give an adaptive approach

to determine the parameters of the M-estimator, and finally

analyze the convergence condition of the RNMCFLMM

algorithm. Section V experimentally evaluates the robust-

ness of the RNMCFLMM algorithm in non-Gaussian and

Gaussian noise environments. Finally, we give our conclu-

sions in Sec. VI.

II. PROBLEM FORMULATION

The input-output relationship, at the discrete-time

index n, of a single-input/multiple-output acoustic system is

given by

xk nð Þ ¼ s nð Þ�hk þ vk nð Þ; k ¼ 1; 2;…;M; (1)

where s(n) is the source signal, hk is the channel impulse

response between the sound source and the kth microphone,

which is typically modeled by a finite-impulse-response fil-

ter, vk(n) is the additive noise at the kth microphone, and M
is the number of microphones. If we neglect the noise term

in Eq. (1), the following relation can be obtained for any two

different channels i and j (i, j¼ 1, 2,…, M, and i 6¼ j):

yij nð Þ ¼ xi nð Þ � hj ¼ s nð Þ�hi�hj

¼ xj nð Þ � hi

¼ yji nð Þ: (2)

This relation can be written in a matrix-vector form as

xT
i nð Þhj � xT

j nð Þhi ¼ 0; (3)

where

xk nð Þ ¼ xk nð Þ xk n� 1ð Þ � � � xk n� Lþ 1ð Þ
� �T

;

k ¼ 1; 2;…;M; (4)

are the observation signal vectors,

hk ¼ hk;0 hk;1 � � � hk;L�1½ �T ; k ¼ 1; 2;…;M; (5)

are the impulse response vectors of length L, and [�]T stands

for the transpose of a vector or a matrix.

The cross-relation given in Eq. (3) forms the basis for

identifying the M impulse responses. Suppose that ĥk nð Þ is

an estimate of hk at time n. If ĥk nð Þ deviates from hk, which

is generally true in practice due to several reasons such as

the presence of noise, the right-hand side of Eq. (3) is no lon-

ger zero, and an a priori error signal between the ith and jth
channels can be written as

eij nð Þ ¼ ŷij nð Þ � ŷji nð Þ
¼ xT

i nð Þĥj nð Þ � xT
j nð Þĥi nð Þ: (6)

This error signal can then be used to define a cost func-

tion that should be minimized to find an optimal estimate of

the impulse responses. The NMCFLMS algorithm employs

the sum of the squared instantaneous errors between differ-

ent channels to define the cost function in the frequency-

domain (Huang and Benesty, 2003). Using the mth block of

the error signal eij(n), i.e.,

eij mð Þ ¼½eij mLð Þ eij mLþ 1ð Þ � � � eij mLþ L� 1ð Þ�T ;
(7)

the cost function of the NMCFLMS algorithm is defined as

J F mð Þ ¼
XM�1

i¼1

XM

j¼iþ1

eij
H mð Þeij mð Þ; (8)

where

eij mð Þ¼FL�Leij mð Þ

¼G01
L�2L½Dxi

mð ÞG10
2L�Lĥ j mð Þ�Dxj

mð ÞG10
2L�Lĥ i mð Þ�;

(9)

G01
L�2L ¼ FL�L 0L�L IL�L½ �F�1

2L�2L; (10)

Dxi
mð Þ ¼ diag F2L�2Lxi mð Þ2L�1

� �
; (11)

xi mð Þ2L�1¼ ½xi mL� Lð Þ
xi mL� Lþ 1ð Þ � � � xi mLþ L� 1ð Þ�T; (12)

G10
2L�L ¼ F2L�2L IL�L 0L�L½ �TF�1

L�L; (13)

ĥj mð Þ ¼ FL�Lĥj mð Þ; (14)

(�)H denotes the conjugate-transpose of a vector or a matrix,

0L�L is the null matrix of size L � L, IL�L is the identity ma-

trix of size L�L, diag[�] denotes a diagonal matrix with the

indicated vector along the diagonal or a column vector

formed from the main diagonal of a square matrix, FL�L and

F�1
L�L are, respectively, the Fourier and inverse Fourier matri-

ces of size L � L, with the (p, q)th element of FL�L being

FL�Lð Þp;q ¼ e�|2p p�1ð Þ q�1ð Þ=L; p;q ¼ 1;2;…;L; (15)
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and | is the imaginary unit with |2 ¼ �1. Then the update

equations of the NMCFLMS algorithm are derived as

ĥ10
k mþ 1ð Þ ¼ ĥk

10 mð Þ � lfP�1
k mð Þ

XM

i¼1

D�xi
mð Þe01

ik mð Þ;

k ¼ 1; 2;…;M; (16)

where lf is the step size, the superscript * denotes the conju-

gate operator,

ĥ10
k mð Þ ¼ F2L�2L ĥ

T

k mð Þ 01�L

h iT

; (17)

PkðmÞ ¼
XM

i¼1;i 6¼k

D�xi
mð ÞDxi

mð Þ; (18)

e01
ik mð Þ ¼ F2L�2L 01�L eT

ik mð Þ
� �T

: (19)

The NMCFLMS algorithm can achieve good estimation per-

formance in high signal-to-noise ratio (SNR) environments.

The performance of this algorithm, however, deteriorates in

low SNR cases. Haque and Hasan proposed an RNMCFLMS

algorithm by introducing a constraint on the fullband spec-

tral energy into the NMCFLMS algorithm (Haque and

Hasan, 2008). The update equations of the RNMCFLMS

algorithm are then formulated as

ĥ10
k mþ 1ð Þ ¼ ĥ10

k mð Þ � lfrJ 01
NF;k mð Þ þ lfb mð Þ

� rJ 10
P;k mð Þ; k ¼ 1; 2;…;M; (20)

where

rJ 01
NF;k mð Þ ¼ P�1

k mð Þ
XM

i¼1

D�xi
mð Þe 01

ik mð Þ; (21)

rJ 10
P;k mð Þ ¼ 2ĥ10

k mð Þ�jĥ10
k mð Þj2; (22)

b mð Þ ¼
���� rJ 10

P mð Þ
� �HrJ 01

NF mð Þ
krJ 10

P mð Þk2
2

����; (23)

rJ 10
P mð Þ ¼ ½½rJ 10

P;1 mð Þ�T ½rJ 10
P;2 mð Þ�T � � �

½rJ 10
P;M mð Þ�T �T ; (24)

rJ 01
NF mð Þ ¼ ½½rJ 01

NF;1 mð Þ�T ½rJ 01
NF;2 mð Þ�T � � �

½rJ 01
NF;M mð Þ�T �T ; (25)

� denotes element-by-element division of two vectors, j � j2 is

carried out in a component-wise way, and k � k2 denotes the

‘2 norm. The spectral constraint introduced by the

RNMCFLMS algorithm ensures spectral flatness of the esti-

mated channel coefficients in the presence of Gaussian noise

(Haque and Hasan, 2008; Haque et al., 2011; Haque et al.,
2007). Thus the RNMCFLMS algorithm is robust to Gaussian

noise. However, this algorithm is sensitive to non-Gaussian

noise. In the following sections, we first model non-Gaussian

noise and then propose a robust algorithm for blind identifica-

tion of a single-input/multiple-output acoustic system.

III. THE SaS NOISE MODEL

A broad and increasingly important class of non-

Gaussian phenomena encountered in practice can be charac-

terized as impulsive, such as chair creaks, a keyboard

clicking, noise produced from footsteps, a telephone ringing,

noise due to pages turning, door slams, and objects dropping

(Georgiou et al., 1999). Noises in this class tend to produce

large-amplitude excursions from the average value more fre-

quently than Gaussian noise. They are more likely to exhibit

sharp spikes or occasional bursts than one would expect

from normally distributed noise. Generally, such noise can

be modeled by a “zero-centered” SaS distribution (Nikias

and Shao, 1995). For noise v with an SaS distribution, its

characteristic function is described as

/ðvÞ ¼ e�cjvja ; (26)

where the parameter c, usually called the dispersion, is a pos-

itive constant related to the scale of the distribution, and the

shape parameter a (0< a� 2) is called the characteristic

exponent. The Gaussian distribution is the limiting case with

a¼ 2. The corresponding probability density functions

(PDFs) for different values of a are plotted in Fig. 1. It can

be seen that a smaller value of a corresponds to a statistical

distribution that has a heavier tail. This indicates that there

exist more samples far away from the mean or median val-

ues; larger bursts (sharp pulses) or more outliers are more

likely present in the random process. An important property

of the SaS distribution is that only the pth-order (0� p< a)

moment exists; this indicates that the second-order statistics

(SOS) does not exist if a< 2.

IV. THE PROPOSED RNMCFLMM ALGORITHM

A. Algorithm derivation

As mentioned previously, although the RNMCFLMS

algorithm is more robust to Gaussian noise, it often fails to

converge if the noise is not Gaussian. The underlying reason

is that the mean-squared error (MSE)-based criterion can be

greatly affected by outliers in the microphone signals, mak-

ing the resulting algorithm sensitive to non-Gaussian noise

(Huber, 1981).

FIG. 1. PDFs of the SaS distribution for different values of a.

J. Acoust. Soc. Am., Vol. 136, No. 2, August 2014 He et al.: Robust blind multichannel identification 695



This subsection derives the RNMCFLMM algorithm

that is more robust than the NMCFLMS-type algorithms to

non-Gaussian noise. Instead of using the squared error, we

use an M-estimator (Huber, 1981) to form the cost function

of the multichannel frequency-domain adaptive filter. The

cost function is then defined as

J FMðmÞ ¼
XM�1

i¼1

XM

j¼iþ1

XmLþL�1

n¼mL

q½eijðnÞ�; (27)

where q[�] is an M-estimator, which is a real-valued even

function, and its first-order derivative is an odd function

(more detailed description of the function q[�] will be given

in Sec. IV B). The comparison between a typical M-

estimator and a traditional quadratic function is shown in

Fig. 2. It can be seen that when the error signal is small, the

M-estimator approaches the quadratic function. However,

the M-estimator changes more slowly with the error signal

than the quadratic function when the error is large. The pur-

pose of using the M-estimate function, instead of the squared

error, is to smooth out the momentary fluctuations due to

large bursts, thereby limiting the adverse effect of large

bursts on the cost function.

Newton’s method (Huang and Benesty, 2003) is used to

develop the RNMCFLMM algorithm. To this end, we need

to calculate the first-order gradient of J FMðmÞ with respect

to ĥ�kðmÞ and the corresponding Hessian matrix. First of all,

we formulate the conjugate of eij(n) (n¼mL, mLþ 1,…,

mLþ L � 1) as a function of ĥ�i ðmÞ and ĥ�j ðmÞ [notice that

eij(n) is a real number, but we need to do so for calculation],

i.e.,

e�ijðnÞ ¼ eH
ij ðmÞun�mLþ1

¼ ĥH
j ðmÞðG10

2L�LÞ
HDH

xi
ðmÞ � ĥH

i ðmÞ
h
� ðG10

2L�LÞ
HDH

xj
ðmÞ
i
F�H

2L�2L

� 0L�L IL�L

� �H
un�mLþ1; (28)

where ui (i¼ 1, 2,…, L) is the ith column of the identity ma-

trix IL�L. Then the derivative of
PM�1

i¼1

PM
j¼iþ1 q½eijðnÞ� with

respect to ĥ�kðmÞ is deduced as

@

@ĥ
�
kðmÞ

XM�1

i¼1

XM

j¼iþ1

q½eijðnÞ�

¼ @

@ĥ
�
kðmÞ

Xk�1

i¼1

q½eikðnÞ�þ
XM

j¼kþ1

q½ekjðnÞ�

8<
:

9=
;

¼
Xk�1

i¼1

q0½eikðnÞ�
@e�ikðnÞ
@ĥ
�
kðmÞ

þ
XM

j¼kþ1

q0½ekjðnÞ�
@e�kjðnÞ
@ĥ
�
kðmÞ

¼
Xk�1

i¼1

q0½eikðnÞ�G10
L�2LD�xi

ðmÞF�H
2L�2L

� 0L�L IL�L

� �T
un�mLþ1�

XM
j¼kþ1

q0½ekjðnÞ�

�G10
L�2LD�xj

ðmÞF�H
2L�2L 0L�L IL�L

� �T
un�mLþ1

¼
XM

i¼1

q0½eikðnÞ�G10
L�2LD�xi

ðmÞF�H
2L�2L

� 0L�L IL�L

� �T
un�mLþ1

¼ 1

2L

XM

i¼1

q0½eikðnÞ�G10
L�2LD�xi

ðmÞF2L�2L

� 0L�L IL�L

� �T
un�mLþ1; (29)

where q0(�) is the first-order derivative of q(�),

G10
L�2L¼ G10

2L�L

� �H ¼ FL�L IL�L 0L�L

� �
F�1

2L�2L; (30)

and the fourth step follows from the fact�q0 [ekj(n)]¼ q0 [ejk(n)]

and q0 [ekk(n)]¼ 0.

Therefore the first-order gradient of J FMðmÞ with

respect to ĥ�kðmÞ is

rJ FMðmÞ ¼ 2
@J FMðmÞ
@ĥ
�
kðmÞ

¼ 2
XM�1

i¼1

XM

j¼iþ1

XmLþL�1

n¼mL

@q½eijðnÞ�
@ĥ
�
kðmÞ

¼ 1

L

XM

i¼1

XmLþL�1

n¼mL

G10
L�2LD�xi

ðmÞF2L�2L

� 0L�L IL�L

� �T
un�mLþ1q

0½eikðnÞ�

¼ 1

L

XM

i¼1

G10
L�2LD�xi

ðmÞF2L�2L 0L�L IL�L

� �T
� u½eikðmÞ�; (31)

where

u½eikðmÞ� ¼

q0½eikðmLÞ�
q0½eikðmLþ 1Þ�

..

.

q0½eikðmLþ L� 1Þ�

2
666664

3
777775: (32)

FIG. 2. Comparison between a typical M-estimator and a quadratic

function.
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The Hessian matrix is then derived as follows:

SkðmÞ ¼ 2
@

@ĥ
�
kðmÞ

½rJ FMðmÞ�H

¼ 2

L

@

@ĥ
�
kðmÞ

( XM

i¼1;i 6¼k

uH½eikðmÞ�

� 0L�L IL�L

� �
FH

2L�2LDxiðmÞG10
2L�L

)

¼ 2

L

XM

i¼1;i6¼k

@uH½eikðmÞ�
@ĥ
�
kðmÞ

0L�L IL�L

� �
� FH

2L�2LDxi
ðmÞG10

2L�L: (33)

Notice that

@uH½eikðmÞ�
@ĥ
�
kðmÞ

¼ q00½eikðmLÞ� @e�ikðmLÞ
@ĥ
�
kðmÞ

q00½eikðmLþ 1Þ�
"

� @e�ikðmLþ 1Þ
@ĥ
�
kðmÞ

� � � q00½eikðmLþ L� 1Þ�

� @e�ikðmLþ L� 1Þ
@ĥ
�
kðmÞ

#

¼
�
q00½eikðmLÞ�G10

L�2LD�xi
ðmÞ

� F�H
2L�2L 0L�L IL�L

� �T
u1 q00½eikðmLþ 1Þ�

� G10
L�2LD�xi

ðmÞF�H
2L�2L 0L�L IL�L

� �T
u2

� � � q00½eikðmLþ L� 1Þ�G10
L�2LD�xi

ðmÞF�H
2L�2L

� 0L�L IL�L

� �T
uL

�

¼ G10
L�2LD�xi

ðmÞF�H
2L�2L 0L�L IL�L

� �T
TikðmÞ;

(34)

where

TikðmÞ ¼ diag ½q00½eikðmLÞ� q00½eikðmLþ 1Þ�
	

� � � q00½eikðmLþ L� 1Þ��


; (35)

q00(�) is the second-order derivative of q(�), and so by substi-

tuting Eq. (34) into Eq. (33) the Hessian matrix is obtained as

SkðmÞ ¼
1

L
G10

L�2LPkðmÞG10
2L�L; (36)

where

PkðmÞ ¼2
XM

i¼1;i 6¼k

D�xi
ðmÞF�H

2L�2L 0L�L IL�L

� �T
� TikðmÞ 0L�L IL�L

� �
FH

2L�2LDxiðmÞ: (37)

Using Newton’s method, we can write the update equa-

tions of the channel estimates as

ĥ kðmþ 1Þ ¼ ĥkðmÞ � lS�1
k ðmÞrJ FMðmÞ;

k ¼ 1; 2;…;M; (38)

where l is the step size. Substitute Eqs. (31) and (36) into

Eq. (38) and pre-multiplying both sides by G10
2L�L, we then

obtain the RNMCFLMM algorithm

G10
2L�Lĥ kðmþ 1Þ

¼ G10
2L�Lĥk ðmÞ � lG10

2L�L G10
L�2LPkðmÞG10

2L�L

� ��1

� G10
L�2L

XM

i¼1

D�xi
ðmÞF2L�2L 0L�L IL�L½ �T

� u½eikðmÞ�; k ¼ 1;2;…;M:

(39)

Define the matrix

G10
2L�2L ¼ G10

2L�LG10
L�2L ¼ F2L�2L

IL�L 0L�L

0L�L 0L�L

� �
F�1

2L�2L;

(40)

and note that

G10
2L�L ¼ G10

2L�2LG10
2L�L; (41)

then

G10
2L�L G10

L�2LPkðmÞG10
2L�L

� ��1G10
L�2L ¼ G10

2L�2LP�1
k ðmÞ;

(42)

which can be verified by post-multiplying both sides of

Eq. (42) by PkðmÞG10
2L�L. Now, substituting Eq. (42) into Eq.

(39) produces the constrained (Haykin, 2002) RNMCFLMM

algorithm

ĥ
10

k
ðmþ 1Þ ¼ ĥ10

k ðmÞ�lG10
2L�2LP�1

k ðmÞ

�
XM

i¼1

D�xi
ðmÞu01½eikðmÞ�; k¼ 1;2;…;M;

(43)

where

ĥ10
k ðmÞ ¼ G10

2L�LĥkðmÞ; (44)

u01½eikðmÞ� ¼ F2L�2L 0L�L IL�L½ �Tu½eikðmÞ�: (45)

If L is large, G10
2L�2L 	 I2L�2L=2 (Buchner et al., 2005).

Using this approximation, we deduce the unconstrained
(Haykin, 2002) RNMCFLMM algorithm as

ĥ
10

k
ðmþ 1Þ ¼ ĥ10

k ðmÞ � lfP�1
k ðmÞ

XM

i¼1

D�xi
ðmÞ

� u01½eikðmÞ�; k ¼ 1; 2;…;M; (46)

where the new step size lf¼l/2. To reduce the computa-

tional complexity, let us simplify Eq. (35) as

TikðmÞ ¼ q00½eikðmÞ�max IL�L; (47)

where
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q00½eikðmÞ�max ¼ max
0�l�L�1

q00½eikðmLþ lÞ�
	 


: (48)

Then using

F�H
2L�2L 0L�L IL�L½ �TTikðmÞ 0L�L IL�L½ � FH

2L�2L

¼ q00½eikðmÞ�maxG01
2L�2L; (49)

where

G01
2L�2L ¼ F2L�2L

0L�L 0L�L

0L�L IL�L

� �
F�1

2L�2L; (50)

and G01
2L�2L 	 I2L�2L=2 (Buchner et al., 2005), we can sim-

plify Eq. (37) as

PkðmÞ ¼
XM

i¼1;i 6¼k

q00½eikðmÞ�maxD�xi
ðmÞDxi

ðmÞ: (51)

Note that the preceding simplifications may slightly affect

the convergence rate and robustness of the algorithm as it is

conservative to use only the maximum in Eq. (48). However,

it can be seen from Eq. (51) that PkðmÞ is simplified to a di-

agonal matrix, which largely reduces the computational load

of the inversion of PkðmÞ.
When there are large bursts present in the microphone

signals, the normalization by PkðmÞ in Eq. (51) greatly

diminishes the gradient by exploiting the maximum element

in {q00[eik(mL þ l)]}, which smoothes out the fluctuation due

to large bursts of the microphone signals. Furthermore,

unlike the NMCFLMS-type algorithms that are based on the

use of eik(m), the RNMCFLMM algorithm uses u½eikðmÞ�,
which can limit the adverse effect of large bursts on the

update equations when the error signal becomes very large.

To make the proposed algorithm immune to Gaussian

noise, we also introduce a similar spectral constraint (Haque

and Hasan, 2008; Haque et al., 2011) into the proposed algo-

rithm. So, the update equations of the final RNMCFLMM

algorithm are as follows:

ĥ
10

k
ðmþ1Þ¼ ĥ10

k ðmÞ�lfrJ 01
NFM;kðmÞþlfbðmÞ

�rJ 10
SC;kðmÞ; k¼1;2;…;M; (52)

where

rJ 01
NFM;kðmÞ ¼ P�1

k ðmÞ
XM

i¼1

D�xi
ðmÞu01½eikðmÞ�; (53)

rJ 10
SC;kðmÞ ¼ 2ĥ10

k ðmÞ� 12L�1 þ jĥ10
k ðmÞj

2
� �

(54)

b(m) is the Lagrange multiplier similar to that of the

RNMCFLMS algorithm, 12 L�1, a vector of length 2 L with

all the elements being 1, is introduced to circumvent the

mask of the logarithmic calculation [in the penalty function

(Haque and Hasan, 2008; Haque et al., 2011)] of some very

small elements in ĥ10
k ðmÞ to that of other elements.

In implementation, the power spectrum of the multiple

channel outputs can be obtained by the classical recursive

estimate

PkðmÞ ¼ kpPkðm� 1Þ þ ð1� kpÞ

�
XM

i¼1;i 6¼k

q00½eikðmÞ�maxD�xi
ðmÞDxi

ðmÞ; (55)

where kp is a forgetting factor. The recursion in Eq. (55) is

equivalent to employing a block-based recursive least M-

estimate criterion (Buchner et al., 2006) in Eq. (27). Note

that the regularization of PkðmÞ is needed in implementation

for numerical stability, and so Eq. (53) is rewritten as

rJ 01
NFM;kðmÞ ¼ ½PkðmÞ þ dI2L�2L��1

�
XM

i¼1

D�xi
ðmÞu01½eikðmÞ�; (56)

where d is a small positive number.

To avoid trivial estimates with all zero elements for the

impulse responses, the filter coefficient vectors are normal-

ized to have a unit norm at each update.

B. Choice of the M-estimator

Commonly used M-estimators include the Huber esti-

mator, the Fair estimator, the Geman–McClure estimator,

etc. (Zhang, 1997; Wu and Qiu, 2013). For simplicity, the

Huber estimator is selected, and then the corresponding esti-

mate function between the ith and jth channels is written as

q½eijðnÞ� ¼
e2

ijðnÞ=2; jeijðnÞj < nij

nij½jeijðnÞj � nij=2�; jeijðnÞj 
 nij:


(57)

If jeijðnÞj � nij, the cost function employs the MSE criterion.

However, if jeijðnÞj 
 nij, the cost function employs the

mean-absolute error (MAE) criterion to deemphasize the

effect of outliers, thereby ensuring the convergence of the

update equations.

It is seen that the threshold parameter nij plays an im-

portant role on the performance of the proposed

RNMCFLMM algorithm. This parameter can be estimated

by employing the approach in Chan and Zou, (2004) as

nij¼ 2.576rij(m), where r2
ijðmÞ is the estimated variance of

the mth block of the error signal eij(n). A robust estimation

of r2
ijðmÞ is given as

r2
ijðmÞ ¼ krij

r2
ijðm� 1Þ þ ð1� krij

ÞcM

�med ½Aeij
ðmÞ�; (58)

where med[�] denotes the median operator, Aeij
ðmÞ¼ &

fe2
ij(mL þ L – Q), e2

ij(mL þ L – Q þ 1), …; e2
ij(mL þ L �1) g,

Q is the length of the estimation window, krij
is a forgetting

factor, and cM¼ 1.483 [1 þ 5/(Q � 1)] is a finite sample cor-

rection factor. As can be seen, a small Q causes a partial

reflection of med½Aeij
ðmÞ� on the recent multiple error blocks.

A large Q yields a wide reflection of med½Aeij
ðmÞ� on the

recent multiple error blocks; this results in a smoother

med½Aeij
ðmÞ�; but the use of a large Q increases the use of

memory space. Therefore a proper value of Q should be

selected in implementation.
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C. Convergence analysis of the RNMCFLMM
algorithm

In this subsection, we analyze the convergence condi-

tion of the RNMCFLMM algorithm. Let us concatenate the

M impulse response vectors into a stacked one; then we can

write the update equations in Eq. (52) as

ĥ
10ðmþ 1Þ ¼ ĥ

10ðmÞ�lf ½rJ 01
NFMðmÞ�bðmÞrJ 10

SCðmÞ�;
(59)

where

ĥ
10 ðmÞ ¼

h
ðĥ10

1 ðmÞÞ
T ðĥ10

2 ðmÞÞ
T � � � ðĥ10

M ðmÞÞ
T
iT

;

(60)

rJ 01
NFMðmÞ ¼P�1ðmÞ

XM

i¼1

D�xi
ðmÞu01½ei1ðmÞ�

" #T
2
4

XM

i¼1

D�xi
ðmÞu01½ei2ðmÞ�

" #T

� � �

XM

i¼1

D�xi
ðmÞu01½eiMðmÞ�

" #T
3
5

T

; (61)

PðmÞ ¼ diagf½diag ½P1ðmÞ��T ½diag ½P2ðmÞ��T

� � � ½diag ½PMðmÞ��Tg; (62)

rJ 10
SCðmÞ ¼½ðrJ 10

SC;1ðmÞÞ
T ðrJ 10

SC;2ðmÞÞ
T

� � � ðrJ 10
SC;MðmÞÞ

T �T : (63)

Now, if we denote h10 as the true filter in the frequency

domain, Eq. (59) can be written as

e10 ðmþ1Þ¼ e10ðmÞ�lf ½rJ 01
NFMðmÞ�bðmÞrJ 10

SCðmÞ�;
(64)

where e10ðmÞ ¼ ĥ
10ðmÞ � h10 is the misalignment vector in

the frequency domain.

The underlying idea of the RNMCFLMM algorithm is

to minimize the cost function from iteration m to iteration

mþ 1. In light of this idea, it is reasonable that we analyze

the convergence of the RNMCFLMM algorithm based on

the mean-square deviation, which is defined as

DðmÞ ¼ E ke10ðmÞk2
2

h i
; (65)

where E[�] denotes mathematical expectation. Taking the

squared ‘2 norms of both sides of Eq. (64), rearranging

terms, and then taking expectations, we obtain

Dðmþ1Þ�DðmÞ

¼l2
f E krJ 01

NFMðmÞ�bðmÞrJ 10
SCðmÞk

2
2

h i
�2lfE Re ðe10ðmÞÞH ðrJ 01

NFMðmÞ
hn

�bðmÞrJ 10
SCðmÞÞ

io
; (66)

where Re(�) stands for the real part of a complex number. It

is obvious that the RNMCFLMM algorithm is convergent in

the MSE sense only if Dðmþ 1Þ �DðmÞ is negative.

Therefore we obtain the upper bound of the step-size param-

eter lf as

2E Re ðe10ðmÞÞH ðrJ 01
NFMðmÞ � bðmÞrJ 10

SCðmÞÞ
h in o
E krJ 01

NFMðmÞ � bðmÞrJ 10
SCðmÞk

2
2

h i :

(67)

V. SIMULATIONS

This section investigates the robustness of the proposed

RNMCFLMM algorithm in Eq. (52) to both non-Gaussian

and Gaussian noises in acoustic environments. We also com-

pare the RNMCFLMM algorithm with the original

NMCFLMS and RNMCFLMS algorithms in different noisy

environments to demonstrate the superiority of the proposed

algorithm.

As to the aforementioned three algorithms, the initiali-

zation of the modeling filter coefficients is similar to Huang

and Benesty (2003), the step size lf is set to 0.5 unless other-

wise specified, kp ¼ [1 � 1/(3 L)]L, the regularization factor

d is initially set to one-fifth of the total power over all

channels at the first block. For the proposed RNMCFLMM

algorithm, krij
; i; j ¼ 1; 2;…;M, are set to 0.95, r2

ijð0Þ ¼ 0,

the length of the estimation window Q is set to 10 L unless

otherwise stated.

A. Experimental environment

The channel impulse responses used in this paper were

measured in the Varechoic chamber at Bell Labs (H€arm€a,

2001). The dimension of the chamber is 6.7 m� 6.1 m

� 2.9 m. For convenience, positions in the room are desig-

nated by (x, y, z) coordinates with reference to the northwest

corner of the chamber floor. An equispaced linear array that

consists of three omnidirectional microphones is employed

in the measurement, and the spacing between adjacent

microphones is 0.7 m. The three microphones of the array

are situated at (2.337, 0.500, 1.400), (3.037, 0.500, 1.400),

and (3.737, 0.500, 1.400), respectively. A sound source (a

loudspeaker) is placed at (0.337, 3.938, 1.600). The impulse

responses of the acoustic channels between the source and

microphones were measured at a 48 kHz sampling rate when

89% panels on the walls were open and the corresponding

reverberation time T60 of the chamber was about 280 ms

(H€arm€a, 2001). Then the obtained channel impulse responses

are downsampled to a 16 kHz sampling rate and truncated to

256 samples (the zeros shared by all the impulse responses

at the beginning are removed). The measured impulse

responses will be treated as the actual impulse responses in

the experiments.

The sound source signals are white Gaussian noise and a

speech signal (from a female English speaker) sampled at

16 kHz, respectively, which have the same sample length of

1.5015� 106. The multichannel system outputs are com-

puted by convolving the sound source signal with the corre-

sponding measured channel impulse responses and adding
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synthetic noise to the results at a given pseudo-SNR (PSNR)

[note that the variance of the noise does not exist when

a< 2; so we use the PSNR to measure the noise level for fi-

nite sample realizations (Tsakalides and Nikias, 1995)]. The

noise is modeled by the SaS distribution in Sec. III in which

the parameter a controls the amount of the sharp pulses in

the noise. We employ an effective method presented in

Nikias and Shao (1995) and Chambers et al. (1976) to simu-

late the non-Gaussian noise. This method involves a nonlin-

ear transformation of two independent uniform random

variables into one stable random variable. This stable ran-

dom variable is a continuous function of each of the uniform

random variables and of a and a modified skewness parame-

ter throughout their respective permissible ranges. Figure 3

depicts the non-Gaussian noises for different values of a.

B. Performance criterion

Different from non-blind channel identification meth-

ods, blind single-input/multiple-output identification algo-

rithms determine the channel impulse responses up to a

scale. As a result, the normalized projection misalignment

(NPM) (Morgan et al., 1998) is extensively used as a per-

formance measure for assessing a blind single-input/multi-

ple-output identification. So we also adopt the NPM as the

criterion to evaluate the performance improvement of blind

channel identification algorithms in this paper. The NPM at

block m is defined as

NPMðmÞ ¼ 20 log10

k�ðmÞk2

khk2

" #
dB; (68)

where

h ¼ ½hT
1 hT

2 � � � hT
M�

T
(69)

consists of the true impulse responses,

�ðmÞ ¼ h� hT ĥðmÞ
ĥ

TðmÞĥðmÞ
ĥðmÞ (70)

is the projection misalignment vector, ĥðmÞ is defined in a

similar way to Eq. (69); but it consists of the estimates of the

impulse responses. In the following experiments, all the plot-

ted results are obtained by averaging over 100 runs.

C. Experimental results

Figure 4 plots the convergence performance of the

NMCFLMS, RNMCFLMS, and proposed RNMCFLMM

algorithms for the identification of a three-channel acoustic

system (which is excited by a white Gaussian noise) in SaS

noise where L¼ 256, PSNR¼ 15 dB, and a¼ 1.2. It is

observed that the NMCFLMS and RNMCFLMS algorithms

diverge due to the SOS-based cost function, while the pro-

posed RNMCFLMM algorithm converge because the M-

estimator can deal with outliers in microphone signals. It is

clear that the proposed algorithm is robust to non-Gaussian

noise.

Figure 5 plots the convergence performance of the

NMCFLMS, RNMCFLMS, and RNMCFLMM algorithms

for the identification of a three-channel acoustic system in

white Gaussian noise where L¼ 256, PSNR¼ 15 dB, and

a¼ 2.0. The system is again excited by a white Gaussian

noise. It is seen that the NMCFLMS algorithm is not robust

to Gaussian noise. The RNMCFLMS algorithm outperforms

the NMCFLMS algorithm in the Gaussian noise environ-

ment because a spectral energy constraint is introduced by

the former to ensure spectral flatness of the estimated chan-

nel coefficients (Haque and Hasan, 2008; Haque et al.,
2007). The proposed RNMCFLMM algorithm outperforms

the other two, achieving a good compromise between con-

vergence rate and low estimation variance. Due to the

dynamic change of the threshold nij of the M-estimator, it is

possible that the error signal jeijðnÞj 
 nij even under

Gaussian noise conditions. So, the M-estimator alternately

employs the MAE and MSE criteria as shown in Fig. 6, such

that the proposed RNMCFLMM algorithm obtains the

smaller steady-state error but at the cost of a slower

FIG. 3. Non-Gaussian noises for different values of a.

FIG. 4. Convergence of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms for the identification of a three-channel acoustic

system in SaS noise where L¼ 256, PSNR¼ 15 dB, and a¼ 1.2. The system

is excited by a white Gaussian noise.
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convergence rate. Note that in the implementation, the esti-

mate of q[eij(n)] is smoother than eij(n) in RNMCFLMS

because several blocks of data are used to estimate nij in the

M-estimator. This can also reduce the steady-state error of

the proposed RNMCFLMM algorithm as shown in Fig. 7.

In this experiment, we compare the NMCFLMS,

RNMCFLMS, and RNMCFLMM algorithms for their per-

formance in different PSNR conditions. Again, we consider

the same three-channel acoustic system studied in the previ-

ous experiments. The system is excited by a white Gaussian

noise. Figure 8 depicts the NPM of the three studied algo-

rithms as a function of PSNR in different types of noise envi-

ronments. It can be seen from Fig. 8 that the NMCFLMS

algorithm is sensitive to both non-Gaussian and Gaussian

noises. Although the RNMCFLMS algorithm is more robust

to Gaussian noise than the NMCFLMS method, this algo-

rithm is seen sensitive to non-Gaussian noise. The proposed

RNMCFLMM algorithm is robust to both non-Gaussian and

Gaussian noises in all the different PSNR conditions.

In the fourth experiment, we investigate the scenario

where the system is excited by speech. The experimental

configuration is the same as the previous experiments except

that now the excitation is a speech signal instead of a white

Gaussian noise. The PSNR is 15 dB. Figures 9 and 10 plot

the convergence performance of the NMCFLMS,

RNMCFLMS, and RNMCFLMM algorithms in both SaS

(a¼ 1.2) and Gaussian (a¼ 2.0) noises, respectively. It is

observed that the non-stationarity of speech degrades the

performance of all the algorithms as compared to the case

with white noise excitation. It is seen that the proposed

RNMCFLMM algorithm exhibits the best performance

regardless of whether the noise is Gaussian or non-Gaussian,

which, again, demonstrates the good performance of this

new algorithm.

In the fifth experiment, we compare the NMCFLMS,

RNMCFLMS, and RNMCFLMM algorithms for their per-

formance in different PSNR conditions when the system is

excited by a speech signal. Figure 11 depicts the NPM of the

three algorithms as a function of the PSNR in four different

types of noise. Similar to what was observed in Fig. 8, one

can see that the RNMCFLMS method is more robust to

white Gaussian noise than the original NMCFLMS

FIG. 6. The alternative operation of the M-estimator corresponding to chan-

nels 1 and 2 between the MSE and MAE criteria when considering a seg-

ment of adaptive iteration for once implementation [(a): n from 500 to 800,

(b): n from 3000 to 3300], where the amplitude of 1 denotes that the MSE

criterion works while the amplitude of �1 implies that the MAE criterion

does. The parameters are: L¼ 256, PSNR¼ 15 dB, and a¼ 2.0. The system

is excited by a white Gaussian noise.

FIG. 5. Convergence of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms for the identification of a three-channel acoustic

system in white Gaussian noise where L¼ 256, PSNR¼ 15 dB, and a¼ 2.0.

The system is excited by a white Gaussian noise.

FIG. 7. Effect of the M-estimator on the performance of the proposed

RNMCFLMM algorithm for the acoustic channel identification of a three-

channel acoustic system in white Gaussian noise where L¼ 256,

PSNR¼ 15 dB, and a¼ 2.0. The system is excited by a white Gaussian

noise.
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FIG. 8. NPM of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms versus PSNR for the identification of a three-

channel acoustic system (L¼ 256) in four different types of noises where

a¼ 0.8, 1.2, 1.6, 2.0. The system is excited by a white Gaussian noise.

FIG. 9. Convergence of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms for the identification of a three-channel acoustic

system in SaS noise where L¼ 256, PSNR¼ 15 dB, and a¼ 1.2. The system

is excited by speech.

FIG. 10. Convergence of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms for the identification of a three-channel acoustic

system in white Gaussian noise where L¼ 256, PSNR¼ 15 dB, and a¼ 2.0.

The system is excited by speech.

FIG. 11. NPM of the NMCFLMS, RNMCFLMS, and proposed

RNMCFLMM algorithms versus PSNR for the identification of a three-

channel acoustic system (L¼ 256) in SaS and Gaussian noise conditions

where a¼ 0.8, 1.2, 1.6, 2.0. The system is excited by speech.
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algorithm. But these two algorithms have similar perform-

ance when the noise is not Gaussian. In comparison, the pro-

posed RNMCFLMM algorithm yields the best performance

in both Gaussian and non-Gaussian noises.

The previous experiments investigate the performance

of the unconstrained RNMCFLMM algorithm as a result of

Eq. (46). In this experiment, we compare the constrained

with unconstrained versions (Haykin, 2002) of the proposed

RNMCFLMM algorithm where the system is excited by

white noise with the PSNR of 15 dB. Figures 12 and 13 illus-

trate the convergence performance of the two versions of the

RNMCFLMM algorithm in both Gaussian (a¼ 2.0) and

non-Gaussian (a¼ 1.2) noises, respectively. It is seen

from Fig. 12 that in the Gaussian noise environment, the

constrained version has faster convergence rate than the

unconstrained one, and the latter needs about twice more

iterations than the former to achieve the same NPM, which

is consistent with the classical frequency-domain adaptive

filter theory (Haykin, 2002; Lee and Un, 1989). Comparing

Figs. 12 and 13, one can see that the difference between the

convergence rates of the constrained and unconstrained

versions of the RNMCFLMM algorithm is similar in the

non-Gaussian and Gaussian noises. Please note that in the

non-Gaussian noise case, the step size lf is set to 1.2 to con-

verge fast.

VI. CONCLUSIONS

In this paper, an adaptive RNMCFLMM algorithm is

developed to blindly identify the impulse responses of a sin-

gle-input/multiple-output acoustic system, which is inter-

fered by SaS non-Gaussian and Gaussian noises. The

RNMCFLMM algorithm employs an M-estimator to con-

struct the cost function of the multichannel frequency-

domain adaptive filter. The ability of the M-estimator to

discriminate outliers of ouput signals help improve the

robustness of the RNMCFLMM algorithm to non-Gaussian

noise. Experiments were performed to identity a single-

input/multiple-output acoustic system in different noise envi-

ronments. The results demonstrated that the proposed

RNMCFLMM algorithm is robust to noise in different

PSNR conditions regardless of whether the noise is Gaussian

and non-Gaussian.
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