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The performance of differential microphone arrays (DMAs) depends on many factors such as the number
of sensors and the array geometry. This paper develops an approach that exploits nonuniform linear
geometries and the minimum-norm filter to improve the robustness of DMAs against white noise.
Unlike the conventional way that forms an Nth-order DMA by subtractively combining the outputs of
two DMAs of order N � 1, this approach works in the short-time Fourier transform (STFT) domain and
applies a complex weight to the output of each sensor and then sum the weighted outputs to form the
beamforming output in every STFT subband. The minimum-norm filter is obtained by maximizing the
white noise gain of the beamformer subject to the so-called fundamental constraints. The nonuniform
linear arrays are created by adjusting the interelement spacing according to some rule. We show that
the use of nonuniform linear geometries can significantly improve the robustness of DMAs, particularly
at low frequencies. We also show that the diagonal loading technique can help improve the robustness of
DMA beamformers, though the improvement is not significant.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction from a great drawback of white noise amplification, particularly
Differential microphone arrays (DMAs) refer to the arrays that
combine closely spaced sensors to respond to the spatial derivatives
of the acoustic pressure field. The basic idea of such arrays can be
dated back to the 1930s when the directional ribbon microphones
were invented [1,2]. Since then, DMAs have been used in solving
many important problems in voice communication such as noise
reduction and spatial sound recording. DMAs have many attractive
properties in comparison with those arrays that are responsive
directly to the acoustic pressure field. First, they can form
frequency-invariant beampatterns and, therefore, can be effective
in processing signals for both high and low frequencies. As a result,
DMAs are suitable for processing broadband signals such as speech.
Second, they have the potential to attain maximum directional
gains with a given number of sensors [3]. Moreover, DMAs are gen-
erally small in size and can be integrated into small communication
devices such as smartphones, tablet computers, bluetooth head-
phones, and hearing aids. With these advantages, the design of
DMAs has attracted a significant amount of interest [3–17].

However, the design and implementation of a DMA for
real-world systems is not a trivial task. First of all, DMAs suffer
at low frequencies. This requires either high-quality microphone
sensors with low self noise level or robust beamforming algorithms
that suffers less white noise amplification. Secondly, the response
of an Nth order DMA has an effect of high-pass filtering and, there-
fore, its frequency response has to be properly compensated to
process broadband signals. Although much effort has been devoted
to them in the literature [3–17], these issues have not been fully
addressed.

Recently, a new approach to the design and implementation of
uniform linear DMAs was developed [18,19]. Unlike the conven-
tional way that forms an Nth-order DMA by subtractively combin-
ing the outputs of two DMAs of order N � 1 [3–7], this method
works in the short-time Fourier transform (STFT) domain as illus-
trated in Fig. 1. With this approach, the M noisy signals received
at the microphones are partitioned into small overlapping frames
of a few milliseconds. Each frame is transformed into the STFT
domain. Then, a differential beamformer is designed and applied
to the multichannel signals in each STFT subband, thereby produc-
ing an estimate of the clean signal in the corresponding subband.
Finally, the time-domain clean speech estimate is constructed by
using either the overlap-add (or overlap-save) technique with the
inverse STFT. With this method, the DMA design problem is con-
verted to one of solving a linear system formed from some funda-
mental constraints in beampatterns in every STFT subband. This
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Fig. 1. A schematic diagram of a DMA system in the STFT domain.
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approach does not only make the DMA beamforming more flexible
as compared to the traditional one, but also makes it possible to
derive a minimum-norm filter that can maximize the white noise
gain (WNG) given the number of sensors.

This paper is a continuation of the work presented in [18,19].
Our main focus is on improving the white noise amplification
problem in DMAs. Based on the minimum-norm filter, we investi-
gate how to use nonuniform geometries and diagonal loading to
further improve the WNG.

The remainder of this paper is organized as follows. In Section 2,
we briefly describe the signal model and the problem of DMA
beamforming. We then list some important measures in Section 3
that can be used to evaluate the performance of DMAs. Section 4
discusses the design of DMA patterns with the minimum-norm
method. Then, in Section 5, we present a nonuniform linear array
geometry that can be used with the minimum-norm filter to
improve the WNG. Section 6 presents some design examples to
demonstrate the property of DMAs with a nonuniform linear geom-
etry. Section 7 briefly discusses the diagonal loading technique.
Finally, some conclusions are given in Section 8.

2. Signal model and problem formulation

The basic model considered in this work is a nonuniform linear
array (NULA) with M omnidirectional microphones as illustrated in
Fig. 2. With the assumption that the source is in the far field, the
signal received at the mth (m ¼ 1;2; . . . ;M) microphone and at
time k can be written as

ym kð Þ ¼ x k� sm;1 cos hð Þ þ vm kð Þ; ð1Þ

where xðkÞ is the source signal, vmðkÞ is the additive noise at micro-
phone m; sm;1 ¼ dm;1=c is the relative delay between the mth and
the 1st microphones at the angle h ¼ 0�, dm;1 is the spacing between
the mth and the 1st microphones, h is the source incidence angle,
and c ¼ 340 m=s is the speed of sound in the air. In the rest, the first
microphone is considered as the reference.
Fig. 2. Illustration of a NULA system.
In the STFT domain, (1) can be expressed as

Ym xð Þ ¼ X xð Þe�|xsm;1 cos h þ VmðxÞ; ð2Þ

where Ym xð Þ; X xð Þ, and Vm xð Þ are the frequency-domain repre-
sentations of ymðkÞ; xðkÞ, and vmðkÞ, respectively, x ¼ 2pf is the
angular frequency, and | is the imaginary unit with |2 ¼ �1.
Putting all these signals in a vector form, we get

y xð Þ , Y1 xð Þ Y2 xð Þ � � � YM xð Þ½ �T ¼ d x; cos hð ÞX xð Þ þ v xð Þ;
ð3Þ

where the superscript T denotes the transpose operator, the noise
signal vector, v xð Þ, is defined similarly to y xð Þ, and

d x; cos hð Þ , 1 e�|xs2;1 cos h � � � e�|xsM;1 cos h
� �T ð4Þ

is the phase-delay vector of length M (which is the same as the
steering vector used in the literature of traditional beamforming).

In order to recover the desired signal, X xð Þ, from y xð Þ, a com-
plex weight H�mðxÞ is designed and applied to the output of each
microphone, where the superscript � denotes complex conjugation.
All the weighted outputs are then summed together to produce an
estimate of the clean signal as illustrated in Fig. 1. Mathematically,
the beamformer’s output is

Z xð Þ ¼
XM

m¼1

H�m xð ÞYm xð Þ ¼ hH xð Þy xð Þ

¼ hH xð Þd x; cos hð ÞX xð Þ þ hH xð Þv xð Þ; ð5Þ

where Z xð Þ is supposed to be an estimate of X xð Þ, the superscript H

is the conjugate–transpose operator, and

h xð Þ , H1 xð Þ H2 xð Þ � � � HM xð Þ½ �T : ð6Þ

With this signal model, the critical issue in DMA beamforming is the
design of an optimal filter, h xð Þ, which has been addressed in
[18,19]. In this paper, we adopt the minimum-norm method, and
explore the use of nonuniform geometries and the diagonal loading
technique to further improve the WNG.

To ensure that the designed microphone array is a DMA, the fol-
lowing assumptions are made as in the DMA literature.

� The spacing between any two neighboring sensors is much
smaller than the acoustic wavelength. This assumption is
required so that the true acoustic pressure differentials can be
approximated by finite differences of the microphones’ outputs.
� In linear DMAs, the mainlobe of the beampattern is at the angle

h ¼ 0� (endfire direction) and the desired signal propagates
from the same angle.

3. Performance measures

Usually, three important performance measures are used for the
evaluation of beamformers. They are the beampattern, the WNG,
and the directivity index (DI).

3.1. Beampatterns

The beampattern (or directivity pattern) describes the sensitiv-
ity of the beamformer to a plane wave (source signal) impinging on
the array from the direction h. Mathematically, it is written as

B h xð Þ; cos h½ � , dH x; cos hð Þh xð Þ ¼
XM

m¼1

Hm xð Þe|xsm;1 cos h: ð7Þ

It is well known that the frequency-independent beampattern of an
Nth-order DMA is [4]



Fig. 3. Some well-known directivity patterns: first-, second-, and third-orders.
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BN hð Þ ¼
XN

n¼0

aN;n cosn h; ð8Þ

where aN;n; n ¼ 0;1; . . . ;N are real coefficients. The different values
of these coefficients determine the different directivity patterns of
the Nth-order DMA. Therefore, the design of an Nth-order DMA
boils down to design a beamformer that has a frequency-invariant
beampattern similar to (8). This design can be achieved by solving
a linear system in the STFT domain with some fundamental con-
straints as long as the interelement spacing is small.

In the direction of the desired signal, i.e., for h ¼ 0�, the directiv-
ity pattern must be equal to 1, i.e., BN 0�ð Þ ¼ 1. Therefore, we should
have

XN

n¼0

aN;n ¼ 1: ð9Þ

As a result, we always choose the first coefficient as

aN;0 ¼ 1�
XN

n¼1

aN;n: ð10Þ

The coefficients of some well-known DMA beampatterns are
listed in Table 1 and these patterns are plotted in Fig. 3. We can
observe that all interesting patterns have at least one null in some
direction.

3.2. White noise gain

We compare the input and output signal-to-noise ratios (SNRs)
to check whether the beamformer’s output is less noisy than its
input. According to the signal model given in (2), the input SNR
is defined as

iSNRðxÞ , /XðxÞ
/V1
ðxÞ ; ð11Þ

where /XðxÞ , E j XðxÞj2
h i

and /V1
ðxÞ , E j V1ðxÞj2

h i
are the vari-

ances of XðxÞ and V1ðxÞ, respectively, with E½�� denoting mathemat-
ical expectation.

The output SNR, according to (5), is defined as

oSNR½hðxÞ� ¼ /XðxÞ
jhHðxÞdðx; cos 0�Þj2

hHðxÞUvðxÞhðxÞ

¼ /XðxÞ
/V1
ðxÞ �

jhHðxÞdðx; cos 0�Þj2

hHðxÞCvðxÞhðxÞ

¼ iSNRðxÞ � jh
HðxÞdðx; cos 0�Þj2

hHðxÞCvðxÞhðxÞ
; ð12Þ
Table 1
Coefficients and DI of some well-known directivity patterns.

Pattern N Coefficients aN;n D

Dipole 1 ½0;1� 3
2 ½0;0;1� 4.3
3 ½0;0;0;1� 5.1

Cardioid 1 ½12 ; 1
2� 4.3

2 ½0; 1
2 ;

1
2� 6.6

3 ½0;0; 1
2 ;

1
2� 7.6

Hypercardioid 1 ½13 ; 2
3� 4.8

2 ½� 1
5 ;

2
5 ;

4
5� 7.0

3 ½� 1
7 ;� 4

7 ;
4
7 ;

8
7� 8.4

Supercardioid 1 ½0:414;0:586� 4.6
2 ½0:103;0:484;0:413� 6.3
3 ½0:022;0:217;0:475;0:286� 7.2
where

UvðxÞ , E vðxÞvHðxÞ
� �

ð13Þ

and

CvðxÞ ,
UvðxÞ
/V1
ðxÞ ð14Þ

are the correlation and pseudo-coherence matrices of vðxÞ,
respectively.

The definition of the gain in SNR is then

G½hðxÞ� , oSNR½hðxÞ�
iSNR½hðxÞ� ¼

jhHðxÞdðx; cos 0�Þj2

hHðxÞCvðxÞhðxÞ
: ð15Þ

Now, let us assume that the matrix Cv xð Þ is nonsingular. In this
case, using the Cauchy–Schwarz inequality [20], we have

hH xð Þd x;cos0�ð Þ
��� ���2 ¼ hH xð ÞC

1
2
v xð ÞC�

1
2

v xð Þd x;cos0�ð Þ
��� ���2

6 hH xð ÞC
1
2
v xð Þ C

1
2
v xð Þ

h iH
h xð Þ

� �

� dH x;cos0�ð Þ C
�1

2
v xð Þ

h iH
C
�1

2
v xð Þd x;cos0�ð Þ

� �

¼ hH xð ÞCv xð Þh xð Þ
h i

� dH x;cos0�ð ÞC�1
v xð Þd x;cos0�ð Þ

h i
;

ð16Þ

with equally if and only if h xð Þ / C�1
v xð Þd x; cos 0�ð Þ. Using the

inequality (16) in (15), we deduce an upper bound for the gain:

G h xð Þ½ � 6 dH x; cos 0�ð ÞC�1
v xð Þd x; cos 0�ð Þ

6 tr C�1
v xð Þ

� �
tr d x; cos 0�ð ÞdH x; cos 0�ð Þ
h i

6 Mtr C�1
v xð Þ

� �
; ð17Þ

where tr½�� is the trace of a square matrix. We observe how the gain
is upper bounded [as long as Cv xð Þ is nonsingular] and depends on
the number of microphones as well as on the nature of the noise.
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If the noise is temporally and spatially white with the same
variance at all microphones, we have CvðxÞ ¼ IM , where IM is the
M �M identity matrix. In this case, the gain in SNR is called
WNG, which is

Gwn½hðxÞ� ¼
jhHðxÞdðx; cos 0�Þj2

hHðxÞhðxÞ
¼ 1

hHðxÞhðxÞ
; ð18Þ

where we have used the premise that BN 0�ð Þ ¼ 1, i.e., the distortion-

less constraint hHðxÞdðx; cos 0�Þ ¼ 1. The WNG generally tells us
how robust a DMA beamformer is with respect to sensor self noise.

3.3. Directivity index

In diffuse (spherically isotropic) noise, we have

½CvðxÞ�ij ¼ ½CdnðxÞ�ij ¼
sinðxsi;jÞ

xsi;j
¼ sincðxsi;jÞ; ð19Þ

where si;j ¼ di;j=c. Substituting (19) into (15), we obtain the SNR
gain in diffuse noise, which is also called the directivity factor:

Gdn½hðxÞ� ¼
jhHðxÞdðx; cos 0�Þj2

hHðxÞCdnðxÞhðxÞ
: ð20Þ

With the premise that BN 0�ð Þ ¼ 1, we have

Gdn½hðxÞ� ¼
1

hHðxÞCdnðxÞhðxÞ
: ð21Þ

The DI is simply defined as [3,4]

D½hðxÞ� ¼ 10 log10Gdn½hðxÞ�: ð22Þ

The DI values of some well-known directivity patterns are listed in
Table 1. With the same pattern, the DI value increases with the
order of the DMA.

4. The minimum-norm filter

Suppose that we have M microphones with M P N þ 1 and we
want to design an Nth-order DMA. The objective is then to find a
filter so that its corresponding pattern as given in (7) approaches
the ideal Nth-order DMA pattern in (8). It is shown in [18] that
the DMA filter with a uniform linear array (ULA) can be obtained
by solving the following linear systems of N þ 1 equations:

D x;að Þh xð Þ ¼ b; ð23Þ

where

D x;að Þ ¼

dH x;1ð Þ
dH x;aN;1ð Þ

..

.

dH x;aN;Nð Þ

2
666664

3
777775

ð24Þ

is the constraint matrix of size ðN þ 1Þ �M; d x;aN;nð Þ is the
phase-delay vector of length M as defined in (4), h xð Þ is a filter of
length M defined in (6), and

a ¼ 1 aN;1 � � � aN;N½ �T ; ð25Þ

b ¼ 1 bN;1 � � � bN;N

� �T
; ð26Þ

are vectors of length N þ 1 containing the design coefficients of the
desired pattern. The value of a equals cos h, where h is the desired
null direction, and b is the corresponding value of that direction
in the ideal beampattern.

The choice of the coefficients aN;n and bN;n, n ¼ 1;2; . . . ;N is crit-
ical for the proper design of a desired DMA beamformer. The rules
of thumb are as follows.
� The N coefficients aN;n should be chosen in such a way that
D x;að Þ is full row rank, i.e., its rank is equal to N þ 1.
� The N pairs of coefficients ðaN;n; bN;nÞ should take values from a

desired ideal DMA pattern. In general, they should correspond
to the nulls of the desired DMA pattern; but they can take other
values as well.

If they satisfy the above two conditions, the constraints are called
fundamental constraints.

Now, if M ¼ N þ 1;D x;að Þ is a square matrix. The beamforming
filter is then obtained as

h xð Þ ¼ D�1 x;að Þb; ð27Þ

If M > N þ 1, the beamforming filter can be determined by the
minimum-norm approach, i.e.,

hMN xð Þ ¼ DH x;að Þ D x;að ÞDH x;að Þ
h i�1

b: ð28Þ

It has been shown that this minimum-norm filter maximizes the
WNG. As a matter of fact, considering both (18) and (23), one can
check that the beamforming filter that maximizes the WNG is the
solution of the following optimization problem:

hMaxWNG xð Þ ¼ arg max
hðxÞ

1

hHðxÞhðxÞ
ð29Þ

subject to Dðx;aÞhðxÞ ¼ b;

which is equivalent to

hMaxWNG xð Þ ¼ arg min
hðxÞ

hHðxÞhðxÞ ð30Þ

subject to Dðx;aÞhðxÞ ¼ b:

It can be checked that the solution of (29) or (30) is (28), i.e.,
hMN xð Þ ¼ hMaxWNG xð Þ. So, the minimum-norm filter maximizes
the WNG.

It can be observed from (17) that the WNG should approach M
with a large number of microphones. If the value of M is much lar-
ger than N þ 1, the order of the DMA may not be equal to N any-
more but the Nth order DMA fundamental constraints will
always be fulfilled. As a result, the resulting shape of the directivity
pattern may be slightly different from the one obtained with
M ¼ N þ 1. This approach is the best we can do to solve the con-
flicting requirement of a high-order DMA that does not amplify
much the white noise. Meanwhile, it has to pay some cost, which
includes (1) the increased number of sensors and A/D channels,
and (2) the beampattern may vary slightly from the specified pat-
tern particularly at high frequencies. However, slight dependency
of the beampattern on frequency can be avoided by posting more
constraints. Since it maximizes the WNG, this method is more
robust than its traditional counterpart. With this approach, we
can easily design DMAs of different orders.

5. Nonuniform linear arrays

ULAs are most often studied and used in the design of DMAs
while nonuniform linear ones have not been investigated for
DMAs. In this section, we investigate nonuniform linear DMAs. It
is shown in the next section that the nonuniform geometry, if
properly designed, can significantly improve the WNG, particularly
at low frequencies.

In this paper, we focus only on a particular nonuniform linear
geometry based on the ULA by adding an arithmetic sequence of
distance with a common difference r to the basic spacing d. In this
case, we have

di;i�1 ¼ dþ ði� 1Þr; i ¼ 2;3; . . . ;M ð31Þ



Fig. 4. Patterns, WNG, and DI of a first-order DMA (cardioid) with a NULA: (a), (b)
patterns ( : 1 kHz, : 3 kHz, : 5 kHz), (c) WNG, and (d) DI. d ¼ 1 cm and
r ¼ 0:1 cm.

Fig. 5. WNG of a first-order DMA (cardioid) with a NULA as a function of f for
various values of r. d ¼ 1 cm and M ¼ 3.
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and

si;i�1 ¼ s0 þ ði� 1Þs; i ¼ 2;3; . . . ;M; ð32Þ

where s0 ¼ d=c and s ¼ r=c. The time delay between the mth
microphone and the reference one becomes

sm;1 ¼ ðm� 1Þs0 þ
ðm� 1Þm

2
s; i ¼ 2;3; . . . ;M: ð33Þ

When r is 0, the array degenerates to a ULA.
Note that the interelement spacing should be limited according

to the assumption made in Section 2. For a DMA with a given order
and a given number of microphones, if we assume that the DMA
works in the frequency band ranging from 500 Hz to
8 kHz ¼ f max, the maximum value of di;i�1 should be smaller than
c=f max (i.e., 4.25 cm).

6. Design examples and performance of nonuniform linear
DMAs

Any pattern can be designed with the minimum-norm filter. In
this section, we show how to design three types of patterns with
ULAs and NULAs: the first-order cardioid, the second-order car-
dioid, and a third-order pattern.

6.1. First-order cardioid

For the first-order cardioid, there is a one at 0� and a null at
180�. So, the fundamental constraints with this patten can be writ-
ten as

a ¼ 1 �1½ �T ; ð34aÞ
b ¼ 1 0½ �T : ð34bÞ

Let us set d ¼ 1 cm and r ¼ 0:1 cm to form the nonuniform linear
DMA. With a given number of microphones and substituting the
fundamental constraints (34) into (28), we easily obtain the
minimum-norm filter.

We compare the performance of the minimum-norm filter
(M > N þ 1) with that of the traditional method with M ¼ N þ 1
in Fig. 4, where the case with M ¼ 2 corresponds to the traditional
DMA (M ¼ N þ 1) and the M ¼ 6 case shows the results of the
minimum-norm filter DMA.

Fig. 4(a) and (b) plot the patterns of the traditional method and
the minimum-norm filter for three different frequencies, i.e., 1 kHz,
3 kHz, and 5 kHz. It is seen that the designed patterns for M ¼ 2 are
almost the same as the desired one. With 6 microphones, the
designed pattern at 3 kHz is more directional than the ideal one,
while at 5 kHz, it tends to become the second-order cardioid.

Fig. 4(c) plots the WNG of the designed pattern as a function of
frequency for both the ULA and NULA for M ¼ 2 and M ¼ 6, where
‘‘u’’ and ‘‘n’’ stand for uniform and nonuniform, respectively. It can
be seen that the WNG of the minimum-norm filter is higher than
that of the traditional method for both arrays, which validates that
the minimum-norm filter is more robust than its traditional coun-
terpart. When M ¼ 2 and with the ULA, the WNG is less than 0 dB
for f < 4:25 kHz, indicating that the white noise is amplified for
frequencies less than 4:25 kHz. But with the NULA, white noise
amplification only happens for f < 3:91 Hz. When the number of
microphones increases to 6, white noise amplification happens
for frequencies below 0:67 kHz with the ULA while that happens
for frequencies below 0:52 kHz with the NULA.

To further visualize the influence of r on the performance of the
DMAs, we plot in Fig. 5 the WNG of the designed pattern with
d ¼ 1 cm and M ¼ 3 as a function of f for various values of r. It is
again clearly seen that the nonuniform geometry can help deal
with the white noise amplification problem in DMA beamforming.
Table 2 lists the frequencies above which the WNG of the designed
pattern is greater than 0 dB for different values of M.

Fig. 4(d) plots the DI of the designed pattern as a function of fre-
quency for both the ULA and NULA for M ¼ 3 and M ¼ 6. It is seen
that the DI of the NULA with 6 microphones is slightly lower than



Table 2
Frequencies below which the WNG of a first-order DMA (cardioid) with a ULA is less
than 0.

f ðkHzÞ M

2 3 4 5 6 7 8

N ¼ 1 4.25 2.06 1.28 0.89 0.67 0.53 0.43

Fig. 7. Patterns, WNG, and DI of a second-order DMA (cardioid) with a NULA: (a),
(b) patterns ( : 1 kHz, : 3 kHz, : 5 kHz), (c) WNG, and (d) DI. d ¼ 1 cm and
r ¼ 0:1 cm.
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that of the ULA in frequencies below 2:59 kHz, but slightly higher
at high frequencies. In the 3-microphone case, the DI for the ULA
and NULA does not differ much.

Fig. 6 plots the DI of the designed pattern with d ¼ 1 cm and
M ¼ 3 as a function of f for various values of r. It is observed that
the DI does not change much with r below 5 kHz, but it may vary
slightly for frequencies larger than 5 kHz in the studied case.

6.2. Second-order cardioid

The second-order cardioid pattern has a one at 0� and two nulls
at 90� and 180�. The fundamental constraints with this patten can
be written as

a ¼ 1 0 �1½ �T ; ð35aÞ
b ¼ 1 0 0½ �T : ð35bÞ

Again, we choose d ¼ 1 cm and r ¼ 0:1 cm to form the NULA. Given
the number of microphones and substituting the fundamental con-
straints (35) into (28), we easily obtain the minimum-norm filter.

Fig. 7(a) and (b) plot the patterns of the minimum-norm filter
with M ¼ 4 and M ¼ 7, respectively, for three different frequencies,
i.e., 1 kHz, 3 kHz, and 5 kHz. It is seen that all the patterns are close
to the desired one.

It can be seen from Fig. 7(c) that the WNG increases with M for
both arrays. This validates the property of the minimum-norm
method, which takes advantage of multiple microphones to
improve the WNG. Furthermore, the nonuniform geometry helps
improve the WNG. As for the DI, there is not much difference
between the two arrays with 4 microphones; but for 7 micro-
phones, the DI is smaller below 4.39 kHz while larger above
4.39 kHz with the NULA.

6.3. A third-order pattern

Now, let us consider a third-order pattern that has a one at 0�

and three distinct nulls at 90�; 120�, and 180�. We have

a ¼ 1 0 �0:5 �1½ �T ; ð36aÞ
b ¼ 1 0 0 0½ �T : ð36bÞ
Fig. 6. DI of a first-order DMA (cardioid) with a NULA as a function of f for various
values of r. d ¼ 1 cm and M ¼ 3.
Similar to the previous simulations, we set d ¼ 1 cm and
r ¼ 0:1 cm to form the NULA. Substituting the fundamental con-
straints (36) into (28), we obtain the minimum-norm filter.

Fig. 8 plots the patterns, WNG, and DI of the minimum-norm fil-
ter for M ¼ 5 and M ¼ 8. It is observed that all the designed pat-
terns are close to the ideal one. The WNG of this third-order
DMA increases with M for both the ULA and NULA. Also, the
nonuniform geometry helps improve the WNG.

To clearly see the improvement in WNG of a NULA as compared
to a ULA, we define DGwn ¼ GNULAwn � GULAwn and plot it in Fig. 9 as a
function of f for the third-order DMA (with different values of M)
and different order DMAs (with M ¼ 4). It is seen that
non-uniform microphone distributions can improve the WNG of
a DMA, especially at low frequencies. The value of DGwn is above
0 for frequencies from 0 Hz to 8 kHz for most of the cases plotted
in the figure, in other words, the WNG of a NULA is higher than that
of a ULA at these frequencies. Furthermore, the improvement in
WNG increases with M for DMAs of the same order at low frequen-
cies. However, the differences in WNG between NULAs and ULAs
are small at high frequencies. It can also be seen that once M is
given, the higher the order of the DMA, the larger the improvement
in WNG. These results validate the fact that non-uniform DMAs can
reduce the white noise amplification at low frequencies.



Fig. 8. Patterns, WNG, and DI of a third-order DMA with a NULA: (a), (b) patterns
( : 1 kHz, : 3 kHz, : 5 kHz), (c) WNG, and (d) DI. d ¼ 1 cm and r ¼ 0:1 cm.

(a)

(b)

Fig. 9. The improvement in WNG of a NULA as compared to a ULA with d ¼ 1 cm,
r ¼ 0:1 cm: (a) third-order DMA with different values of M and (b) first-, second-,
and third-order DMA with M ¼ 4.

(a)

(b)

Fig. 10. WNG and DI for a second-order cardioid with M ¼ 4 with and without
diagonal loading at f ¼ 500 Hz: (a) WNG and (b) DI.
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7. Diagonal loading technique

The diagonal loading method is a simple yet effective approach
to improve the robustness of many beamformers. In this section,
we briefly discuss the possibility of using this technique to improve
the WNG of DMA beamformers. Unlike most beamformers that add
a scaled identity matrix to the correlation matrix, we consider here
to add diagonal loading to the product matrix Dðx;aÞDHðx;aÞ
before computing its inverse, which can reduce the norm of the fil-
ter and consequently increase the WNG at low frequencies.

The modified minimum-norm filter can then be written as

hlðxÞ ¼ DHðx;aÞ½Dðx;aÞDHðx;aÞ þ lI��1
b; ð37Þ

where I is the identity matrix of size ðN þ 1Þ � ðN þ 1Þ and l is a
positive parameter controlling the diagonal loading level.

The matrix !ðxÞ ¼ Dðx;aÞDHðx;aÞ can be decomposed as

!ðxÞ ¼ Dðx;aÞDHðx;aÞ ¼ Q ðxÞKðxÞQ HðxÞ; ð38Þ

where KðxÞ ¼ diag k1ðxÞ; k2ðxÞ; . . . ; kNþ1ðxÞ½ � is a diagonal
matrix consisting of all the eigenvalues of !ðxÞ and
Q ðxÞ ¼ ½q1ðxÞq2ðxÞ � � �qNþ1ðxÞ� is the eigenvector matrix. It
follows immediately that
hH
lðxÞhlðxÞ ¼ bHðxÞ½KðxÞ þ lI��1KðxÞ½KðxÞ þ lI��1bðxÞ

¼
XNþ1

i¼1

kiðxÞ
½kiðxÞ þ l�2

biðxÞj j2; ð39Þ

where bðxÞ ¼ Q HðxÞb and biðxÞ; i ¼ 1;2; . . . ;N þ 1, is the ith ele-
ment of bðxÞ. It is clearly seen from (39) that the norm of the filter
hl decreases as the parameter l increases.

The critical issue with the diagonal loading is to determine the
value of l. This parameter should satisfy 0 < l	 M and also
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should be much smaller than the average of the diagonal elements
of the product matrix Dðx;aÞDHðx;aÞ. While the upper bound is
given, the proper value of the loading parameter has to be deter-
mined through simulations.

To examine whether the diagonal loading can help improve the
WNG, we designed a second-order cardioid pattern using a NULA
with 4 microphones. Fig. 10 plots the WNG and DI of the designed
pattern as a function of r for f ¼ 500 Hz and l ¼ 0; 0:2, and 0.5. It
is seen that diagonal loading can help improve the WNG, and the
larger the loading parameter, the larger the WNG. However, diag-
onal loading also causes significant degradation of the DI. In other
words, diagonal loading improves WNG by paying a price of sacri-
ficing the DI of the array, leading to less suppression of directional
noise.

8. Conclusions

Differential microphone arrays (DMAs) have the great potential
to be used in devices such as smartphones, tablets, hearing aids,
and smart televisions for reducing noise and interference, thereby
enhancing the voice signal of interest. However, the white noise
amplification problem, which is inherent to DMA beamforming,
particularly at low frequencies, has to be addressed before the
potentiality of DMAs can be fully exploited. This paper was
devoted to the white noise amplification problem in DMAs. Three
approaches were investigated: the minimum-norm filter, nonuni-
form linear arrays, and the diagonal loading. They can be used
either separately or in a combined manner. Several design exam-
ples were provided. The results showed that each method can help
improve the white noise gain (WNG) if used separately, and greater
WNG was achieved by combining those methods. It should be
noted, however, that diagonal loading improves the WNG at the
cost of worsening the directivity index (DI) of the array.
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