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Abstract 

This paper investigates the problem of single-channel noise reduction in the time domain. The objective is to find a lower dimensional 
filter that can yield a noise reduction performance as close as possible to or even better than that obtained by the full-rank solution. This 
is achieved in three steps. First, we transform the observation signal vector sequence, through a semi-orthogonal matrix, into a sequence of 
transformed signal vectors with a reduced dimension. Second, a reduced-rank filter is applied to get an estimate of the clean speech in the 
transformed domain. Third, the estimate of the clean speech in the time domain is obtained by an inverse semi-orthogonal transformation. The 
focus of this paper is on the derivation of semi-orthogonal transformations under certain estimation criteria in the first step and the design of 
the reduced-rank optimal filters that can be used in the second step. We show how noise reduction using the principle of rank reduction can be 
cast as an optimal filtering problem, and how different semi-orthogonal transformations affect the noise reduction performance. Simulations 
are performed under various conditions to validate the deduced filters for noise reduction. 
© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The problem of single-channel noise reduction is to recover
 clean speech signal of interest from its microphone observa-
ions ( Benesty and Chen, 2011; Benesty et al., 2009; Loizou,
007 ). Due to the importance and broad range of applications,
 great deal of efforts have been devoted to this problem over
he last decades and many algorithms have been developed
.g., Wiener (1949) , Boll (1979) , Berouti et al. (1979) , Lim
nd Oppenheim (1979) , Ephraim and Malah (1984) , Trees
nd Harry (2001) . However, these algorithms achieve noise
eduction generally by paying a price of adding speech dis-
ortion. One exceptional case is the reduced-rank or subspace
� This work was supported in part by the NSFC under Grant No. 
1425005 . 
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ethod, which has the potential to introduce less distortion if
he desired signal correlation matrix is rank deficient and this
ank is correctly estimated. This paper is, therefore, devoted
o the reduced-rank filtering methods. 

The idea of “reduced rank” was first developed in the field
f signal estimation ( Huffel, 1993; Moor, 1993; Scharf, 1991;
charf and Tufts, 1987; Tufts and Kumaresan, 1982a, 1982b ).
t was then applied to the noise reduction problem in the so-
alled subspace approach ( Dendrinos et al., 1991 ), where the
ingular value decomposition (SVD) of the noisy data ma-
rix was used to estimate and remove the noise subspace and
he estimate of the clean signal was then obtained from the
emaining subspace. This approach gained more popularity
hen Ephraim and Van Trees proposed to decompose the

ovariance matrix of the noisy observation vector ( Ephraim
nd Trees, 1995 ). The subspace method was found better
han the widely used spectral subtraction ( Boll, 1979 ) for
oise reduction in the sense that it has less speech distortion
ith little music residual noise. Today, the principle has been
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studied to deal with not only white ( Ephraim and Trees, 1995 )
but also colored noise ( Hu and Loizou, 2003; Huang and
Zhao, 1998; 2000; Mittal and Phamdo, 2000; Rezayee and
Gazor, 2001 ). Besides the SVD ( Moor, 1993; Scharf, 1991;
Scharf and Tufts, 1987; Tufts and Kumaresan, 1982a, 1982b )
and the eigenvalue decomposition (EVD) ( Ephraim and Trees,
1995; Hu and Loizou, 2003 ), truncated (Q)SVD ( Hansen and
Jensen, 1998; Jensen et al., 1995 ) and triangular decompo-
sitions ( Hansen and Jensen, 2007 ) were also investigated in
the subspace approach. More recent works on reduced-rank
filtering can be found in Hansen and Jensen (2013) , Nørholm
et al. (2014) , Zhang et al. (2014) . 

This paper is also concerned with the application of
reduced-rank principle to noise reduction. But unlike most ex-
isting work (e.g., Dendrinos et al., 1991; Ephraim and Trees,
1995; Goldstein et al., 1999; 1998; Scharf, 1991; Scharf and
Tufts, 1987 ), which exploits the structure of either the sig-
nal data or covariance matrix to find the signal and noise
subspaces, this paper develops a more flexible framework.
We choose a semi-orthogonal matrix to do data transforma-
tion instead of directly decomposing the subspaces. The semi-
orthogonal matrix is not unique, and it can be derived under
different criteria. The resulting semi-orthogonal matrices rep-
resent the characteristic of both the signal and noise, and thus
might be used in various conditions. Another contribution of
the paper is the derivation of the optimal filters under the
reduced-rank framework. 

In this framework, noise reduction is achieved in three
steps. We first prefilter the full-length observed vector by
a semi-orthogonal matrix, resulting in a reduced-dimension
vector. In other words, we apply a linear transformation that
transforms the observed data vector to a new coordinate sys-
tem where the basis are defined by the columns of the semi-
orthogonal matrix. This is workable because the dimension
of the signal subspace is smaller than that of the observed
noisy signal space. The second step is to design an optimal
reduced-rank filter and apply this filter to get an estimate of
the clean speech in the transformed domain. Note that the
optimal filter is matrix-valued and the noisy signal is pro-
cessed by a vector-by-vector basis. The estimate of the clean
speech in the time domain is finally obtained by an inverse
semi-orthogonal transformation. We will discuss how to de-
rive different semi-orthogonal transformations under certain
estimation criteria and how to design different reduced-rank
optimal filters. We will also illustrate the flexibility of this
new framework in controlling the compromise between noise
reduction and speech distortion. 

The rest of the paper is organized as follows. In Section 2 ,
the signal model and problem formulation are presented. Sec-
tion 3 gives the definition of the semi-orthogonal transforma-
tion. Then in Section 4 , the principle of linear filtering with
a rectangular matrix is discussed. Section 5 presents some
performance measures for evaluation and analysis of noise
reduction. In Section 6 , different optimal filters are derived
under a given semi-orthogonal transformation. Different semi-
orthogonal transformations are discussed in Section 7 . Some
imulations are presented in Section 8 . Finally, conclusions
re drawn in Section 9 . 

. Signal model and problem formulation 

The noise reduction problem considered in this paper is
ne of recovering the desired speech signal x ( k ), k being the
iscrete-time index, of zero mean from the noisy observa-
ion (sensor signal) ( Benesty and Chen, 2011; Benesty et al.,
009 ): 

(k) = x(k) + v(k) , (1)

here v ( k ), assumed to be a zero-mean random process, is the
nwanted additive noise that can be either white or colored
ut is uncorrelated with x ( k ). All signals are considered to be
eal and broadband. 

The signal model given in (1) can be put into a vector
orm by considering L most recent successive time samples,
.e., 

(k) = x(k) + v(k) , (2)

here 

(k) 
� = 

[
y(k) y(k − 1) · · · y(k − L + 1) 

]T 
(3)

s a vector of length L , superscript T denotes transpose of a
ector or a matrix, and x ( k ) and v ( k ) are defined in a similar
ay to y ( k ). Since x ( k ) and v ( k ) are uncorrelated by assump-

ion, the correlation matrix (of size L × L ) of the noisy signal
an be written as 

 y 
� = E 

[
y(k) y 

T (k) 
] = R x + R v , (4)

here E [ ·] denotes mathematical expectation, and R x 
� =

 

[
x (k) x 

T (k) 
]

and R v 
� = E 

[
v (k) v 

T (k) 
]

are the correlation
atrices of x ( k ) and v ( k ), respectively. The noise correla-

ion matrix, R v , is assumed to be full rank, i.e., equal to
 . Then, the objective of noise reduction in this paper is to
nd a “good” estimate of the vector x ( k ) from the observa-

ion signal vector y ( k ) in the sense that the additive noise
s significantly reduced while the desired signal is not much
istorted. 

. Semi-orthogonal transformation 

We recall that x ( k ) is the desired signal vector that we
ant to estimate from the observation signal vector, y ( k ). 
Let 

 = 

[
t 0 t 1 · · · t P−1 

]
(5)

e a semi-orthogonal matrix of size L × P , i.e., T 

T T = I P ,
here I P is the P × P identity matrix and P ≤ L . We define

he transformed desired signal vector of length P as 

 

′ (k) 
� = T 

T x(k) (6)

= 

[
x ′ 0 (k) x ′ 1 (k) · · · x ′ P−1 (k) 

]T 
, 
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here x ′ p (k) = t T p x(k) . Now, instead of estimating the vector
 ( k ) of length L , we will estimate the shorter vector x 

′ ( k ) of
ength P . 

In (6) , x 

′ ( k ) is expressed as a function of x ( k ). It is also of
nterest to write x ( k ) as a function of x 

′ ( k ). For that, we can
ecompose x ( k ) into two uncorrelated components ( Benesty
nd Chen, 2011 ): 

(k) = R x T 

(
T 

T R x T 

)−1 
x 

′ (k) + x u (k) 

= Px(k) + ( I L − P ) x(k) 

= x c (k) + x u (k) , (7) 

here I L is the L × L identity matrix, x c ( k ) and x u ( k ) are
orrelated and uncorrelated with x 

′ ( k ), respectively, 

 

� = R x T 

(
T 

T R x T 

)−1 
T 

T (8) 

s a projection matrix of rank P , and 

 

[
x c (k) x 

T 
u (k) 

] = 0 L×L . (9) 

deally, we would like to have x u (k) = 0 L×1 in order to better
ecover the L desired signal samples from the estimation of
he P transformed samples only, but this is not possible in
eneral. The best we can do is to find the semi-orthogonal
ransformation, T , in such a way that the energy of x u ( k ) is
inimized. 
The correlation matrix of x u ( k ) is 

 x u = E 

[
x u (k) x 

T 
u (k) 

] = ( I L − P ) R x , (10) 

o the energy of x u ( k ) is 

σ 2 
x u = tr ( R x ) − tr ( PR x ) , (11) 

here tr ( ·) denotes the trace of a square matrix. Therefore, the
inimization of (11) is equivalent to the maximization of the

econd term on the right-hand side of (11) . The term tr( PR x )
s maximized when the columns of T , i.e., t 0 , t 1 , . . . , t P−1 , are
he eigenvectors corresponding to the P largest eigenvalues,
0 , λ1 , . . . , λP−1 , of R x . As a result, (11) simplifies to 

σ 2 
x u = 

L−1 ∑ 

i= P 

λi , (12) 

here λP , λP+1 , . . . , λL−1 are the L − P smallest eigenvalues
f R x . In practice, though, some other semi-orthogonal ma-
rices can be used depending on what we want to achieve. 

. Linear filtering with a rectangular matrix 

In the general linear filtering approach, we estimate the
ransformed desired signal vector, x 

′ ( k ), by applying a linear
ransformation to y ( k ), i.e., 

 

′ (k) = H 

′ y(k) 

= H 

′ [ x(k) + v(k) ] 

= x 

′ 
fd (k) + v 

′ 
rn (k) , (13) 
here z ′ ( k ) is the estimate of x 

′ ( k ), H 

′ is a rectangular filtering
atrix of size P × L , 

 

′ 
fd (k) 

� = H 

′ x(k) (14) 

s the filtered desired signal, and 

 

′ 
rn (k) 

� = H 

′ v(k) (15) 

s the residual noise. Therefore, the estimate of x ( k ) is 

(k) = Tz ′ (k) 

= TH 

′ y(k) 

= Hy(k) , (16) 

here H = TH 

′ is a filtering matrix of size L × L . 
We find that the correlation matrix of z ′ ( k ) is 

 z ′ = H 

′ R y H 

′ T 

= H 

′ R x H 

′ T + H 

′ R v H 

′ T . (17) 

e deduce that tr ( R z ′ ) = tr ( R z ) , where R z = HR y H 

T is the
orrelation matrix of z ( k ). 

. Performance measures 

In this section, we define two categories of performance
easures. The first category evaluates the noise reduction per-

ormance while the second one evaluates the signal distor-
ion. We also discuss the very convenient mean-squared error
MSE) criterion and show how it is related to the performance
easures. 

.1. Noise reduction 

The most important measure in noise reduction is the
ignal-to-noise ratio (SNR). The input SNR is defined as 

SNR 

� = 

tr ( R x ) 

tr ( R v ) 
= 

σ 2 
x 

σ 2 
v 

, (18) 

here σ 2 
x 

� = E 

[
x 2 (k) 

]
and σ 2 

v 
� = E 

[
v 2 (k) 

]
are the variances

f x ( k ) and v ( k ), respectively. The output SNR, obtained from
17) , helps quantify the SNR after filtering. It is given by 

SNR 

(
H 

′ ) � = 

tr 
(
H 

′ R x H 

′ T )

tr 
(
H 

′ R v H 

′ T ) = oSNR ( H ) . (19) 

he objective of noise reduction is to find an appropriate
 

′ that will make the output SNR greater than the input
NR. Consequently, the quality of the noisy signal may be
nhanced. 

The noise reduction factor quantifies the amount of noise
eing rejected by H 

′ . This quantity is defined as the ratio of
he power of the noise at the sensor over the power of the
oise remaining after filtering, i.e., 

nr 
(
H 

′ ) � = 

tr ( R v ) 

tr 
(
H 

′ R v H 

′ T ) = ξnr ( H ) . (20) 

ny good choice of H 

′ should lead to ξ nr ( H 

′ ) ≥ 1. 



76 W. Zhang et al. / Speech Communication 78 (2016) 73–83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J  

U  

p

J

 

w

J

 

a

J

 

W

 

W  

m

6

 

m  

e

6

 

g

H  

w  

w  

e  

o

o  

a

0  

 

d

ς  
5.2. Speech distortion 

The transformed desired speech signal can be distorted by
the rectangular filtering matrix. Therefore, the speech reduc-
tion factor is defined as 

ξsr 
(
H 

′ ) � = 

tr ( R x ) 

tr 
(
H 

′ R x H 

′ T ) = ξsr ( H ) . (21)

We should have ξ sr ( H 

′ ) ≥ 1. 
A rectangular filtering matrix that does not affect the trans-

formed desired signal vector, x 

′ ( k ), requires the constraint: 

H 

′ R x T 

(
T 

T R x T 

)−1 = H 

′ PT = I P . (22)

By making the appropriate substitutions, one can derive
the relationship among the measures defined so far, i.e., 

oSNR 

(
H 

′ )
iSNR 

= 

ξnr 
(
H 

′ )
ξsr ( H 

′ ) 
. (23)

Another way to measure the distortion of the transformed
desired signal due to the filtering operation is via the speech
distortion index defined as 

υsd 
(
H 

′ ) = 

E 

{ [
x 

′ 
fd (k) − x 

′ (k) 
]T [

x 

′ 
fd (k) − x 

′ (k) 
]} 

tr ( R x ) 
(24)

= υsd ( H ) . 

The speech distortion index is always greater than or equal to
0; the higher is the value of υsd 

(
H 

′ ), the more the transformed
desired signal is distorted. 

Besides the above performance measures, the perceptual
evaluation of speech quality (PESQ) ( ITU ) is also used in
our simulations and experiments. 

5.3. MSE criterion 

The transformed desired signal is a vector of length P ,
and so is the error signal. We define the error signal vector
between the estimated and desired signals as 

e ′ (k) 
� = z ′ (k) − x 

′ (k) (25)

= H 

′ y(k) − x 

′ (k) , 

which can also be expressed as the sum of two orthogonal
error signal vectors: 

e ′ (k) = e ′ ds (k) + e ′ rs (k) , (26)

where 

e ′ ds (k) 
� = x 

′ 
fd (k) − x 

′ (k) 

= 

(
H 

′ − T 

T 
)
x(k) (27)

is the signal distortion due to the rectangular filtering matrix
and 

e ′ rs (k) 
� = v 

′ 
rn (k) = H 

′ v(k) (28)

represents the residual noise. Therefore, the MSE criterion
is 
 

(
H 

′ ) � = tr 
{
E 

[
e ′ (k) e ′ T (k) 

]}
(29)

= tr 
(
T 

T R x T 

) + tr 
(
H 

′ R y H 

′ T ) − 2 tr 
(
H 

′ R x T 

)
. 

sing the fact that E 

[
e ′ ds (k) e ′ T rs (k) 

] = 0 P×P , J ( H 

′ ) can be ex-
ressed as the sum of two other MSEs, i.e., 

 

(
H 

′ ) = tr 
{
E 

[
e ′ ds (k) e ′ T ds (k) 

]} + tr 
{
E 

[
e ′ rs (k) e ′ T rs (k) 

]}

= J ds 
(
H 

′ ) + J rs 
(
H 

′ ), (30)

here 

 ds 
(
H 

′ ) � = tr 
[ (

H 

′ − T 

T 
)
R x 

(
H 

′ − T 

T 
)T 

] 

= tr ( R x ) υsd 
(
H 

′ ) (31)

nd 

 rs 
(
H 

′ ) � = tr 
(
H 

′ R v H 

′ T )

= 

tr ( R v ) 

ξnr ( H 

′ ) 
. (32)

e deduce that 

J ds 
(
H 

′ )
J rs ( H 

′ ) 
= iSNR × ξnr 

(
H 

′ ) × υsd 
(
H 

′ )

= oSNR 

(
H 

′ ) × ξsr 
(
H 

′ ) × υsd 
(
H 

′ ). (33)

e observe how the MSEs are related to the performance
easures. 

. Optimal rectangular filtering matrices 

In this section, we briefly discuss the most important opti-
al rectangular filtering matrices for noise reduction, which

xplicitly depend on the semi-orthogonal matrix T . 

.1. Maximum SNR 

It can be shown that the maximum SNR filtering matrix is
iven by Benesty and Chen (2011) 

 

′ 
max = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ς 0 b 

T 
max 

ς 1 b 

T 
max 
. . . 

ς P−1 b 

T 
max 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (34)

here ς p , p = 0, 1 , . . . , P − 1 are arbitrary real numbers
ith at least one of them different from 0 and b max is the

igenvector corresponding to the maximum eigenvalue, λmax ,
f the matrix R 

−1 
v R x . Furthermore, we have 

SNR 

(
H 

′ 
max 

) = λmax ≥ iSNR (35)

nd 

 ≤ oSNR 

(
H 

′ ) ≤ oSNR 

(
H 

′ 
max 

)
, ∀ H 

′ . (36)

The ς p ’s are found in such a way that distortion of the
esired signal is minimized. We obtain 

 p = 

b 

T 
max R x t p 
λmax 

, p = 0, 1 , . . . , P − 1 . (37)
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ubstituting these optimal values into (34) , we obtain the opti-
al maximum SNR filtering matrix with minimum distortion

o the transformed desired signal: 

 

′ 
max = T 

T R x 
b max b 

T 
max 

λmax 
. (38) 

e also deduce that the maximum SNR filtering matrix for
he estimation of x ( k ) is 

 max = TT 

T R x 
b max b 

T 
max 

λmax 
. (39) 

.2. Wiener 

If we differentiate the MSE criterion, J ( H 

′ ), with respect
o H 

′ and equate the result to zero, we find the Wiener rect-
ngular filtering matrix: 

 

′ 
W 

= T 

T R x R 

−1 
y 

= T 

T 
(
I L − R v R 

−1 
y 

)
. (40) 

e deduce that the Wiener square filtering matrix for the
stimation of the vector x ( k ) is 

 W 

= TH 

′ 
W 

= TT 

T 
(
I L − R v R 

−1 
y 

)
, (41) 

hich does not correspond, in general, to the classical Wiener
ltering matrix ( Benesty et al., 2009 ). But for P = L, (41)
ecomes the well-known Wiener filter: 

 W 

= I L − R v R 

−1 
y . (42) 

Obviously, we have 

SNR 

(
H 

′ 
W 

) ≤ oSNR 

(
H 

′ 
max 

)
(43) 

nd 

sd 
(
H 

′ 
W 

) ≤ υsd 
(
H 

′ 
max 

)
. (44) 

.3. Minimum variance distortionless response 

It is possible to derive the minimum variance distortion-
ess response (MVDR) filter [distortionless in the sense that
 

′ ( k ) is left intact in the filtering process] by minimizing the
SE of the residual noise, J rs ( H 

′ ), with the constraint that
he transformed desired signal, x 

′ ( k ), is not distorted, see (22) .
athematically, this is equivalent to 

in 

H 

′ 
tr 
(
H 

′ R v H 

′ T ) subject to H 

′ PT = I P . (45) 

he solution to the above optimization problem is 

 

′ 
MVDR 

= 

(
T 

T P 

T R 

−1 
v PT 

)−1 
T 

T P 

T R 

−1 
v . (46) 

e deduce that the MVDR for the estimation of x ( k ) is 

 MVDR 

= T 

(
T 

T P 

T R 

−1 
v PT 

)−1 
T 

T P 

T R 

−1 
v . (47) 

f course, for P = L, the MVDR filtering matrix degenerates
o the identity matrix, i.e., H MVDR 

= I L . 
We should have 

SNR 

(
H 

′ 
MVDR 

) ≤ oSNR 

(
H 

′ 
W 

)
(48) 

nd 

sd 
(
H 

′ 
MVDR 

) ≤ υsd 
(
H 

′ 
W 

)
. (49) 

Another possible MVDR filtering matrix for the estimation
f x ( k ) can be derived through 

in 

H 

′ 
tr 
(
H 

′ R y H 

′ T ) subject to H 

′ PT = I P , (50) 

nd the corresponding solution is 

 MVDR , 2 = T 

(
T 

T P 

T R 

−1 
y PT 

)−1 
T 

T P 

T R 

−1 
y . (51) 

.4. Tradeoff 

In the tradeoff approach, we minimize the speech distortion
ndex with the constraint that the noise reduction factor is
qual to a positive value that is greater than 1. Mathematically,
his is equivalent to 

in 

H 

′ 
J ds 

(
H 

′ ) subject to J rs 
(
H 

′ ) = βtr ( R v ) , (52) 

here 0 < β < 1 to insure that we get some noise reduc-
ion. By using a Lagrange multiplier, μ > 0, to adjoin the
onstraint to the cost function, we easily deduce the tradeoff
ltering matrix: 

 

′ 
T,μ = T 

T R x ( R x + μR v ) 
−1 , (53) 

hich can be rewritten, for the estimation of x ( k ), as 

 T,μ = TT 

T R x ( R x + μR v ) 
−1 . (54) 

or P = L, (54) degenerates to the classical tradeoff filter: 

 T,μ = R x ( R x + μR v ) 
−1 . (55) 

Usually, μ is chosen in a heuristic way, so that for 

• μ = 1 , we have H 

′ 
T, 1 = H 

′ 
W 

, which is the Wiener filtering
matrix; 

• μ > 1, we obtain a filtering matrix with low residual noise
at the expense of high transformed desired signal distortion
(as compared to Wiener), and 

• μ < 1, we obtain a filtering matrix with high residual noise
and low transformed desired signal distortion (as compared
to Wiener). 

. Examples of semi-orthogonal matrices 

In Section 3 , we gave an example for the choice of T .
n this section, we show some other important possibilities
epending on what we want to achieve. 
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7.1. Minimum MSE 

Let us take the Wiener filtering matrix [ Eq. (40) ]. The
minimum MSE (MMSE) is 

J 
(
H 

′ 
W 

) = tr 
(
T 

T R x T 

) − tr 
(
T 

T R x R 

−1 
y R x T 

)
. (56)

This MMSE, of course, depends on T . It is easy to check that
the smallest value for (56) is obtained when the columns of T
are the eigenvectors corresponding to the P largest eigenvalues
of R 1 = R x R 

−1 
y R x . We denote this semi-orthogonal matrix

by T 1 . In this case, we obtain the well-known reduced-rank
Wiener filtering matrix ( Goldstein and Reed, 1997; Scharf,
1991; Scharf and Tufts, 1987 ): 

H W 

= T 1 T 

T 
1 R x R 

−1 
y . (57)

We also deduce the other reduced-rank optimal filtering ma-
trices: 

H max = T 1 T 

T 
1 R x 

b max b 

T 
max 

λmax 
, (58)

H MVDR 

= T 1 
(
T 

T 
1 P 

T R 

−1 
v PT 1 

)−1 
T 

T 
1 P 

T R 

−1 
v , (59)

and 

H T,μ = T 1 T 

T 
1 R x ( R x + μR v ) 

−1 . (60)

7.2. Minimum distortion 

The distortion-based MSE with Wiener is 

J ds 
(
H 

′ 
W 

) = tr 
(
T 

T R x T 

) − tr 
(
T 

T R 2 T 

)
, (61)

where 

R 2 = 2R 1 − R x R 

−1 
y R 1 . (62)

One can verify that the smallest value for (61) is obtained
when the columns of T are the eigenvectors correspond-
ing to the P largest eigenvalues of R 2 . Let us denote by
T 2 this semi-orthogonal matrix. By simply replacing T 2 

by T 1 in (57) –(60) , we obtain the new optimal filtering
matrices. 

7.3. Minimum residual noise 

Let us consider, again, the Wiener filtering ma-
trix. The residual noise corresponding to this optimal
matrix is 

J rs 
(
H 

′ 
W 

) = tr 
(
T 

T R 3 T 

)
, (63)

where 

R 3 = R x R 

−1 
y R v R 

−1 
y R x . (64)

The smallest value for (63) is found when the columns of T
are the eigenvectors corresponding to the P smallest eigenval-
ues of R 3 . If we denote by T 3 this semi-orthogonal matrix and
replacing T 3 by T 1 in (57) –(60) , we obtain the new optimal
filtering matrices. This approach may lead to large distortions.
. Simulations and experiments 

In this section, we study, using simulations and exper-
ments, the impact of some important parameters on the
oise reduction performance of the optimal filters derived in
ection 6 . 

.1. Clean speech signal and noise 

The clean speech signal used in most of our simulations is
ecorded from a female speaker in a quiet office room. It is
ampled at 8 kHz. The overall length of the signal is approx-
mately 30-s long. The noisy signal is generated by adding
oise to the desired signal, where noise signal is properly
caled to control the input SNR. We study three different
ypes of noise, i.e., white Gaussian, car, and babble noise,
hich are representative noise samples from white and sta-

ionary to highly nonstationary. The car noise is recorded from
 sedan car running at 50 miles/hour on a highway with all
he windows closed; this noise is still close to stationary, but it
s colored. The babble noise is recorded in a New York Stock
xchange (NYSE) room; it consists of sounds from various
ources such as speakers, telephone rings, electric fans, etc.
nd is highly nonstationary. 

We also present a set of experiments with real recorded
ignals where a pre-recorded speech signal is played back
hrough a loudspeaker in a noisy but light reverberant
oom and we use a microphone to record the noisy
ignal. 

.2. Estimation of the signal statistics 

The implementation of all the noise reduction filters de-
ived in the previous sections requires the estimation of the
orrelation matrices R y , R x , and R v . In most of our simula-
ions, we compute the R y and R v matrices using the most re-
ent 320 samples (40-ms long) of the noisy and noise signals,
espectively, with a short-time average at every time instant
 . An estimate of the R x matrix is then obtained by subtract-
ng R v from R y . To ensure that the R x estimate is positive
emi-definite, we replace all the negative eigenvalues of this
stimated matrix with a very small threshold. 

.3. Noise estimation 

In some of our simulations, we assume that the noise
ignal is accessible and its correlation matrix is com-
uted with a short time average. This provides a fair
ay to compare the performance of different noise re-
uction filters. In reality, however, the noise is not ac-
essible and has to be estimated from the noisy signal.
o, in some simulations and experiments, we also adopt

he improved minima controlled recursive averaging (IM-
RA) approach ( Cohen, 2003 ), which has been proved to
e a robust noise estimator in a broad range of noise
nvironments. 
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Fig. 1. Performance of the maximum SNR, Wiener, MVDR, and the tradeoff 
filters as a function of the filter length, L , in white Gaussian noise: (a) output 
SNR, (b) speech distortion index, and (c) PESQ score. Simulation conditions: 
iSNR = 10˜ dB and P = 10. 
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filters as a function of the rank parameter, P , in white Gaussian noise: (a) 
output SNR, (b) speech distortion index, and (c) PESQ score. Simulation 
conditions: iSNR = 10 dB and L = 30. 
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.4. Performance of optimal rectangular filtering matrices 

In this section, we present the evaluation of the noise re-
uction filters with three performance measures: the output
NR defined in (19) , the speech distortion index defined in
24) , and the PESQ ( ITU ). The semi-orthogonal matrix T
sed here is obtained by minimizing the energy of the sig-
al that is uncorrelated with the transformed signal, and its
olumns consists of the eigenvectors corresponding to the P
argest eigenvalues of R x . 

Fig. 1 plots the simulation results of the noise reduction
lters as a function of the filter length, L . The background
oise is white Gaussian, the input SNR is 10 dB, P is set
o 10, and the noise statistics are computed directly from
he noise signal. It is seen that all filters can improve the
NR with a similar degree of speech distortion except the
or maximum SNR filter. The output SNR and the speech
istortion index both increase with the filter length, L . The
aximum SNR filter expectedly has overwhelming superior-

ty in output SNR, as its name indicates; but it also intro-
uces tremendous speech distortion. The tradeoff filter with
= 2 achieves higher output SNR and speech distortion than
he Wiener filter, while that with μ = 0. 5 behaves the oppo-
ite, which is in good agreement with what was analyzed in
ection 6 . The SNR improvement of the MVDR filter is the

east among all the studied filters, but the value of its speech
istortion index is also the smallest. It is also seen that the
nfluence of the filter length on the speech distortion index
s dramatic when it is small, but less remarkable as the filter
ength is large. Finally, the PESQ results indicate that: (1) the
est performance generally appears when the filter length is
lightly larger than the signal dimension P ; (2) all the noise
eduction filters except for the maximum SNR one improve
he quality. The PESQ score of the maximum SNR filter is
ven worse than the original noisy speech. These results cor-
oborate with what was observed in the literature of noise
eduction ( Benesty et al., 2009 ). 

Fig. 2 plots the performance of different noise reduction
lters as a function of the rank parameter, P , in white Gaus-
ian noise. The input SNR is 10 dB and the filter length is
et to 30 based on the previous simulation. Again, the noise
tatistics are computed directly from the noise signal. It is
een that the output SNR decreases as P increases in the
tudied range of P (note that the smallest value of P is set
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Fig. 3. Performance of the maximum SNR, Wiener, MVDR, and tradeoff 
filters as a function of input SNR in white Gaussian noise: (a) output SNR, 
(b) speech distortion index, and (c) PESQ score. Simulation conditions: L = 

30 and P = 20. 

Table 1 
Mean Opinion Score (MOS) Standard. 

MOS Quality Impairment 

5 Excellent Imperceptible 
4 Good Perceptible but not annoying 
3 Fair Slightly annoying 
2 Poor Annoying 
1 Bad Very annoying 
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d  
to 10 in our simulations since we found that the level of
speech distortion is acceptable with P ≥ 10), and so is the
speech distortion index. The PESQ scores, however, do not
change much with P for all the filters except for the MVDR
one. Note that as the value of P approaches the value of
L , the reduced-rank filters approaches the full-rank solutions.
So, the results in this simulation show that the reduced-rank
noise reduction filters can yield a similar PESQ performance
as their full-rank counterparts as long as the rank parame-
ter, P , is in a reasonable range; but the reduced-rank solution
provides an extra degree of freedom to compromise between
noise reduction and speech distortion. For the MVDR filter,
more constraint is applied to ensure no speech distortion as
the value of P increases and, as a result, there is less noise
reduction. When P = L, the MVDR filter degenerates to the
identity matrix, so there is neither noise reduction nor speech
distortion. This is validated by the results in Fig. 2 . 

Simulations were also conducted to evaluate the perfor-
mance of the noise reduction filters in different input SNR
conditions. Again, the background noise is white Gaussian
and the noise statistics are computed directly from the noise
signal. The filter length L = 30 and the rank parameter P =
20. The results are plotted in Fig. 3 . In all studied input SNR
conditions, the Wiener, tradeoff, and MVDR filters can im-
prove both the SNR and the PESQ score. However, the max-
imum SNR filter achieves the highest output SNR and its
speech distortion index does not change much with the input
SNR. Taking into account the previous simulations, we can
conclude that the maximum SNR filter should be regarded as
the filter setting an upper bound on the output SNR rather
than a practical solution in real applications. 

In this simulation, we study the performance of different
filters with the use of the IMCRA method ( Cohen, 2003 )
for noise estimation. The filter length L is set to 30, the
noise is white Gaussian and the input SNR is 10 dB. The
corresponding performance of different noise reduction filters
as a function of the rank parameter, P , is plotted in Fig. 4 .
Comparing Figs. 4 and 2 , one can see that the performance
with noise being estimated and that with a priori assumed
known noise are similar. Fig. 5 plots the noisy speech, en-
hanced speech, and their spectrograms of the Wiener filter
with L = 30 and P = 14. It can be clearly seen that the
reduced-rank Wiener filter with the IMCRA noise estima-
tion method achieves tremendous noise reduction, as seen
from both the waveforms and spectrograms. To further vali-
date the noise reduction performance, subjective evaluation is
performed where 18 listeners are asked to rate speech qual-
ity according to the mean opinion score (MOS) standard in
Table 1 . The 18 listeners are graduate students and profes-
sors at Northwestern Polytechnical University. Nine of those
listeners are familiar with speech quality and speech process-
ing while the rest are not familiar with speech evaluation and
they were just taught how to rate MOS scores. The results
are as follows. The MOS score of the noisy speech is 2.44.
With the Wiener filter ( L = 30 and P = 14), the MOS score
of the enhanced speech is 3.11. The MOS improvement is
approximately 0.7, which is significant. 
In this experiment, we study the noise reduction per-
ormance with real recorded speech. Since neither noise
or clean speech is accessible in this situation, we use the
MCRA method to estimate the noise statistics and subjective
valuation to assess the quality. The outputs of the Wiener
lter with L = 30 and P = 14 for this experiment are plotted

n Fig. 6 . It can be seen that much noise has been reduced.
sing the MOS test with 18 listeners, the MOS of the noisy

peech is 2.38, and that for the enhanced speech is 2.72. One
ay notice that the improvement in MOS for real recorded

peech is less than that for the simulated speech. The under-
ying reasons are as follows: (1) the noise statistics are more
ifficult to estimate and (2) the playback-recording system
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Fig. 4. Performance of the maximum SNR, Wiener, MVDR, and tradeoff 
filters as a function of the rank parameter, P , with noise estimation using 
IMCRA: (a) output SNR, (b) speech distortion index, and (c) PESQ score. 
Simulation conditions: white noise, iSNR = 10˜ dB , and L = 30. 
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Fig. 5. Outputs of the Wiener filter in white Gaussian noise with noise es- 
timation using IMCRA: (a) waveform of the noisy signal,(b) spectrogram 

of the noisy signal, (c) waveform of the filtered signal, and (d) spectro- 
gram of the filtered signal. Simulation conditions: L = 30, P = 14, and 
iSNR = 10 dB . 
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Fig. 6. Outputs of the Wiener filter for real recorded signal with noise esti- 
mation using IMCRA: (a) waveform of the noisy signal, (b) spectrogram of 
the noisy signal, (c) waveform of the filtered signal, and (d) spectrogram of 
the filtered signal. Simulation conditions: L = 30 and P = 14. 
lso introduces some distortion, which is not additive and
annot be efficiently dealt with noise reduction techniques. 

.5. Impact of semi-orthogonal transformations on noise 
eduction performance 

Section 7 presented three important semi-orthogonal trans-
ormations. They were derived from three different criteria,
.e., minimum correlation, minimum MSE (reduced-rank), and
inimum distortion. In this section, we study the performance

f the Wiener filter with different semi-orthogonal transforma-
ions and compare it to that of the Wiener filter in Section 6 .
hree noise environments (white Gaussian, car, and NYSE)
re investigated and the rank parameter, P , is set to 10. The
ESQ results as a function of the filter length, L , are plotted

n Fig. 7 . Note that the performance of the transformation
erived from the minimum-residual-noise criterion was found
uch worse than that of the other two transformations. The

nderlying reason is that this criterion does not apply any
onstraint to speech distortion, so the results of this transfor-
ation are not plotted in Fig. 7 . 
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a

b

c

Fig. 7. PESQ scores of the Wiener filter as a function of the filter length, 
L , in different noise conditions: (a) white Gaussian noise, (b) car noise, and 
(c) babble noise. Simulation conditions: P = 10 and iSNR = 10˜ dB . The 
minimum correlation refers to the method in Section 6 , where the semi- 
orthogonal transformation is constructed using the eigenvectors corresponding 
to the P largest eigenvalues of R x . 
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It is seen from Fig. 7 that the PESQ results of the Wiener
filter with the two transformations derived from the minimum
MSE and minimum distortion are similar, which is slightly
worse than that of the transformation used in Section 6 when
L is large. 

9. Conclusion 

This paper investigated the use of the reduced-rank prin-
ciple to the problem of single-channel noise reduction in
the framework of semi-orthogonal transformations. Under this
framework, we derived the maximum SNR, the Wiener, the
MVDR, and the tradeoff filters. Simulation results showed
that these reduced-rank optimal filters can yield better output
SNR and similar PESQ performance as compared to their
full-rank counterparts if the rank parameter is properly cho-
sen. Furthermore, these reduced-rank filter are more flexible
in controlling the compromise between the amount of noise
reduction and the degree of speech distortion than their full-
rank counterparts. We also discussed how to derive differ-
ent semi-orthogonal transformations though these transforma-
tions may not affect much the noise reduction performance in
terms of PESQ score if the rank parameter is properly cho-
sen, but they affect the amount of noise reduction and speech
distortion. 
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