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Circular differential microphone arrays (CDMAs) have been extensively studied in speech and

audio applications for their steering flexibility, potential to achieve frequency-invariant directivity

patterns, and high directivity factors (DFs). However, CDMAs suffer from both white noise ampli-

fication and deep nulls in the DF and in the white noise gain (WNG) due to spatial aliasing, which

considerably restricts their use in practical systems. The minimum-norm filter can improve the

WNG by using more microphones than required for a given differential array order; but this filter

increases the array aperture (radius), which exacerbates the spatial aliasing problem and worsens

the nulls problem in the DF. Through theoretical analysis, this research finds that the nulls of the

CDMAs are caused by the zeros in the denominators of the filters’ coefficients, i.e., the zeros of the

Bessel function. To deal with both the white noise amplification and deep nulls problems, this paper

develops an approach that combines different rings of microphones together with appropriate radii.

The resulting robust concentric circular differential microphone arrays (CCDMAs) can mitigate

both problems. Simulation results justify the superiority of the robust CCDMA approach over the

traditional CDMAs and robust CDMAs. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4983122]

[JFL] Pages: 3236–3249

I. INTRODUCTION

Microphone arrays, combined with proper signal proc-

essing algorithms, can be used to solve many important

acoustic problems such as extracting a signal of interest,

reducing the negative effects of noise, reverberation, and

interference on the speech signal of interest, and separating

different sound sources (Brandstein and Ward, 2001;

Benesty et al., 2008; Gannot et al., 1999; Huang et al., 2016;

Shahbazpanahi et al., 2003; Markovich et al., 2009; Benesty

et al., 2012; Elko, 1996; Wang et al., 2014). The design of

microphone arrays and the associated beamforming algo-

rithms have attracted a significant amount of research atten-

tion, and many beamformers such as the delay-and-sum

(DS), filter-and-sum, superdirective, and differential have

been developed over the past few decades (Capon, 1969;

Frost, 1972; Van Veen and Buckley, 1988; Cox et al., 1987;

Crocco and Trucco, 2011; Berkun et al., 2015; Li et al.,
2016; Doclo and Moonen, 2007; Quijano and Zurk, 2015).

Although it has been successfully used in narrowband

applications, beamforming with microphone arrays is less

successful because speech and audio signals are broadband in

nature with a frequency range from 20 Hz to approximately

20 kHz (Brandstein and Ward, 2001; Benesty et al., 2008;

Benesty and Chen, 2012). With such broadband signals, the

conventional beamformers’ beamwidth is inversely propor-

tional to the frequency (for instance, the conventional DS

beamformer’s beam is wider at low than at high frequencies)

and, as a result, those beamformers are not effective in deal-

ing with noise and interference at low frequencies. Moreover,

noise is not uniformly attenuated over its entire spectrum,

resulting in some disturbing artifacts in the array output

(Benesty and Chen, 2012). Therefore, how to design a broad-

band beamformer that can work consistently in such a large

frequency range is a very difficult and challenging issue.

Several techniques have been developed to achieve

broadband beamforming, such as nested arrays, mode based

beamforming (Rafaely, 2005; Poletti, 2000; Park and Rafaely,

2005; Rafaely et al., 2007; Teutsch and Kellermann, 2006;

Teutsch, 2007; Tiana-Roig et al., 2010; Sun et al., 2012; Yan,

2015; Koyama et al., 2016), and differential beamforming

(Balmages and Rafaely, 2007; Ihle, 2003; Benesty and Chen,

2012; Zhao et al., 2014). Among them, differential beam-

forming has attracted much interest since it has the potential

to achieve frequency-invariant beampatterns and high direc-

tivity factors (DFs) (Teutsch and Elko, 2001; Sena et al.,
2012; Elko, 2004; Olson, 1946; Abhayapala and Gupta, 2010;

Zhao et al., 2014). Conventional differential microphone

arrays (DMAs) are designed in a multistage manner, whicha)Electronic mail: jingdongchen@ieee.org.
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lack flexibility in forming different beampatterns and suffer

from significant white noise amplification. Recently, a new

approach was developed for the design and implementation of

linear differential microphone arrays (LDMAs) with some

null information from the desired beampatterns (Benesty and

Chen, 2012). This method is much more flexible to design dif-

ferent directivity patterns and offers significant advantages

over the conventional DMAs. More importantly, this

approach can deal with the white noise amplification problem

by increasing the number of microphones as compared to the

DMA order (Benesty and Chen, 2012). This idea was further

extended to the design of circular differential microphone

arrays (CDMAs) in Benesty et al. (2014). A great advantage

of CDMAs as compared to LDMAs is that their beam can be

electronically steered and is expected to have a similar direc-

tional gain in different directions (Benesty et al., 2014), which

can be useful when the signal of interest may come from other

directions than the endfires (Chan and Chen, 2007; Tiana-

Roig et al., 2011). Another important advantage of circular

arrays is that the processing can be greatly simplified due to

the inherent symmetry (Benesty et al., 2014).

Similarly, CDMAs suffer from white noise amplifica-

tion and the minimum-norm filter can be used to improve the

white noise gain (WNG). Besides white noise amplification,

CDMAs also suffer from deep nulls in the DF and in the

WNG due to spatial aliasing, implying serious degradation

in signal-to-noise ratio (SNR) gain at certain frequencies.

While it can improve the WNG, the minimum-norm filter

may worsen the SNR gain degradation caused by the nulls.

The major underlying reason is that the minimum-norm filter

improves the WNG by using more microphones than

required for the order of the differential array, which gener-

ally leads to a larger array aperture. Consequently, more

nulls appear in the frequency band of interest and the nulls’

positions move to lower frequencies.

Through both theoretical analysis and experimental stud-

ies, we find in our study that the nulls of CDMAs are caused

by the zeros in the denominators of the filters’ coefficients,

i.e., the zeros of the Bessel function. To design an Nth-order

CDMA, any zero of the Bessel functions of any order will

cause a deep null in the SNR gains. To circumvent this issue,

this paper proposes a robust concentric circular differential

microphone arrays (CCDMA) approach, which can improve

the WNG without introducing any nulls. The reason is that a

uniform concentric circular array (UCCA) is a combination of

several rings together with appropriate radii; as a result, the

corresponding filter’s coefficients are also a combination of

different Bessel functions and, since the zeros of this function

are occurring at different frequencies, the combined function

does not have any nulls. Consequently, the robust CCDMA

can achieve consistent performance over the frequency band

of interest and performs better than CDMAs.

The organization of this paper is as follows. In Sec. II,

we explain the signal model and the problem of beamform-

ing. Section III presents some important performance mea-

sures. Section IV shows how the beampattern of a

beamformer with a UCCA is related to the definition of a

theoretical Nth-order DMA directivity pattern. Section V

presents algorithms of designing the robust CCDMA. In Sec.

VI, we present some simulations to validate the theoretical

analysis. Finally, some conclusions are drawn in Sec. VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a UCCA with P rings, placed on the x – y
plane, where the pth (p ¼ 1; 2;…;P) ring, with a radius of

rp, consists of Mp omnidirectional microphones. We assume

that the center of the UCCA coincides with the origin of the

two-dimensional Cartesian coordinate system, azimuthal

angles are measured anti-clockwise from the x axis, and sen-

sor 1 of the array is placed on the x axis (as shown in Fig. 1).

Then, the coordinates of the mth microphone at the pth ring

are written as

rp;m ¼ ðrp cos wp;m; rp sin wp;mÞ; (1)

where p ¼ 1; 2;…;P; m ¼ 1; 2;…;Mp, and

wp;m ¼
2p m� 1ð Þ

Mp
(2)

is the angular position of the mth array element on the pth

ring. We assume that a source signal (plane wave) located in

the farfield impinges on the UCCA from the direction (azi-

muth angle) hs, at the speed of sound in the air, e.g., c ¼ 340

m/s. Suppose that we want to steer the beam to the direction

h, the steering vector of length M, where M ¼
PP

p¼1 Mp is the

total number of microphones, is then defined as (Monzingo

and Miller, 1980)

dðx; hÞ¢ dT
1 ðx; hÞ dT

2 ðx; hÞ � � � dT
Pðx; hÞ

� �T
; (3)

where

dpðx; hÞ¢ e|-p cos ðh�wp;1Þ e|-p cos ðh�wp;2Þ½

� � � e|-p cos ðh�wp;Mp Þ�T (4)

FIG. 1. Illustration of a UCCA with P rings, where the pth (p ¼ 1; 2;…;P)

ring, with a radius of rp, consists of Mp omnidirectional microphones, with

wp;m being the angular position of the mth array element on the pth ring and

h being the source incidence angle.
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is the pth ring’s steering vector, the superscript T is the trans-

pose operator, | is the imaginary unit with |2 ¼ �1, and

-p¼�
xrp

c
; (5)

with x ¼ 2pf being the angular frequency and f> 0 being

the temporal frequency.

To simplify the exposition, we assume that the desired

signal comes from the direction hs ¼ h ¼ 0. Then, the

received frequency-domain signal by the mth microphone at

the pth ring is

Yp;mðxÞ ¼ e|-p cos ðwp;mÞXðxÞ þ Vp;mðxÞ; (6)

where XðxÞ is the desired signal and Vp;mðxÞ is the additive

noise. In a vector form for the pth ring, we have

ypðxÞ¢ Yp;1ðxÞ Yp;2ðxÞ � � � Yp;Mp
ðxÞ

� �T
¼ xpðxÞ þ vpðxÞ
¼ dpðxÞXðxÞ þ vpðxÞ; (7)

where xpðxÞ ¼ dpðxÞXðxÞ, dpðxÞ ¼ dpðx; 0Þ, and vpðxÞ is

defined similarly to ypðxÞ. It is more convenient to concate-

nate the P vectors ypðxÞ; p ¼ 1; 2;…;P, together as

yðxÞ¢ yT
1 ðxÞ yT

2 ðxÞ � � � yT
PðxÞ

� �T
¼ xðxÞ þ vðxÞ
¼ dðxÞXðxÞ þ vðxÞ; (8)

where xðxÞ ¼ dðxÞXðxÞ, dðxÞ ¼ dðx; 0Þ, and vðxÞ is

defined in a similar way to yðxÞ.
Beamforming consists of applying a complex weight,

H�p;mðxÞ, where the superscript � denotes complex conjuga-

tion, to the microphone’s output, Yp;mðxÞ, and then summing

all the weighted outputs together to get an estimate of the

desired signal (Benesty et al., 2008), i.e.,

ZðxÞ ¼
XP

p¼1

XMp

m¼1

H�p;mðxÞYp;mðxÞ

¼ hHðxÞyðxÞ
¼ hHðxÞdðxÞXðxÞ þ hHðxÞvðxÞ; (9)

where

hðxÞ¢ hT
1 ðxÞ hT

2 ðxÞ � � � hT
PðxÞ

� �T
(10)

is the global spatial filter of length M, the superscript H is the

conjugate-transpose operator, and

hpðxÞ¢ H1ðxÞ H2ðxÞ � � � HMp
ðxÞ

� �T
(11)

is the spatial filter of length Mp for the pth ring.

In our context, the array gain in the look direction is

expected to be 1, i.e., we should have

hHðxÞdðxÞ ¼ 1: (12)

III. PERFORMANCE MEASURES

The performance of a beamformer is generally evalu-

ated through the signal-to-noise ratio (SNR) gain. Without

loss of generality, we consider the first microphone on the

first ring as the reference. The input SNR is then defined as

iSNR xð Þ¢ /X xð Þ
/V xð Þ (13)

where /XðxÞ¢E½jXðxÞj2� and /VðxÞ¢E½jV1;1ðxÞj2� are the

variances of XðxÞ and V1;1ðxÞ, respectively, with E½�� denot-

ing mathematical expectation. The output SNR, according to

(9), is given by

oSNR h xð Þ½ � ¼ /X xð ÞjhH xð Þd xð Þj2

hH xð ÞUv xð Þh xð Þ

¼ /X xð Þ
/V xð Þ �

jhH xð Þd xð Þj2

hH xð ÞCv xð Þh xð Þ
; (14)

where UvðxÞ¢E½vðxÞvHðxÞ� and CvðxÞ¢UvðxÞ=/VðxÞ
are the correlation and pseudo-coherence matrices (Benesty

and G€ansler, 2002) of vðxÞ, respectively. It follows from

(13) and (14) immediately that the SNR gain is

G h xð Þ½ �¢ oSNR h xð Þ½ �
iSNR xð Þ

¼ jhH xð Þd xð Þj2

hH xð ÞCv xð Þh xð Þ
: (15)

In our discussion, we consider two important scenarios.

• The temporally and spatially white noise with the same

variance at all microphones.1 In this case, CvðxÞ ¼ IM,

where IM is the M �M identity matrix. Therefore, the

SNR gain is

W h xð Þ½ � ¼ jh
H xð Þd xð Þj2

hH xð Þh xð Þ
; (16)

which is called the white noise gain (WNG) (Brandstein

and Ward, 2001).
• The diffuse noise (this situation corresponds to the spheri-

cally isotropic noise field). In this case, the coherence

between the noise at any two points is a function of the

distance between the sensors, where the (i, j)th element of

the noise pseudo-coherence matrix is

Cv xð Þ
� �

ij
¼ Cdn xð Þ½ �ij ¼ sinc

xdij

c

� �
; (17)

with

dij¢jjri � rjjj2 (18)

being the distance between microphones i and j, jj� jj2 being

the Euclidean norm, and ri;rj2fr1;1;r1;2;…;rp;Mp
;…;rP;MP

g
are coordinates of the microphones as defined in (1). Now,

the SNR gain is

3238 J. Acoust. Soc. Am. 141 (5), May 2017 Huang et al.



D h xð Þ½ � ¼ jhH xð Þd xð Þj2

hH xð ÞCdn xð Þh xð Þ
; (19)

which is called the directivity factor (DF) (Elko and

Meyer, 2008).

The beampattern or directivity pattern describes the sen-

sitivity of the beamformer to a plane wave impinging on the

array from the direction h. Mathematically, the beampattern

with a UCCA is defined as

B hðxÞ; h½ �¢hHðxÞdðx; hÞ

¼
XP

p¼1

hH
p ðxÞdpðx; hÞ

¼
XP

p¼1

XMp

m¼1

H�p;mðxÞe|-p cos ðh�wp;mÞ: (20)

IV. RELATIONSHIP BETWEEN THE BEAMPATTERN OF
THE BEAMFORMER AND THE THEORETICAL DMA
DIRECTIVITY PATTERN

In this section, we show how the beampattern of the

beamformer with a UCCA is related to the theoretical Nth-

order DMA directivity pattern.

A. Theoretical Nth-order DMA directivity pattern

The frequency-independent Nth-order DMA directivity

pattern is (Benesty and Chen, 2012; Benesty et al., 2014)

BNðhÞ ¼
XN

n¼0

bN;n cosðnhÞ; (21)

where bN;n; n ¼ 0; 1;…;N are real coefficients and the dif-

ferent values of these coefficients determine the different

directivity patterns of the Nth-order DMA. In the direction

of the desired signal, i.e., for h¼ 0, the beampattern should

be equal to 1, i.e., BNð0Þ ¼ 1. Therefore, we have

XN

n¼0

bN;n ¼ 1: (22)

From (21), it is seen that a differential beamformer must

have a symmetric beampattern, i.e., BNð�hÞ ¼ BNðhÞ. In

order to be able to design a CCDMA beamformer, its beam-

pattern must be an even function (Benesty et al., 2014), i.e.,

we must have

B hðxÞ; h½ � ¼ B hðxÞ;�h½ �: (23)

We recall that we use a UCCA with P rings. This configura-

tion is effective and practical since it has the flexibility of

adjusting the number of rings and microphones. From (2),

we have the following relations (Benesty et al., 2014):

cos ðhþ wp;mþ1Þ ¼ cos ðh� wp;Mp�mþ1Þ; (24)

where p ¼ 1; 2;…;P; m ¼ 1; 2;…;Mp. Substituting (24)

into the beampattern of the beamformer given in (20), we

find that (23) is true if and only if the following relations

hold (Benesty et al., 2014):

Hp;mþ1ðxÞ ¼ Hp;Mp�mþ1ðxÞ; (25)

where p ¼ 1; 2;…;P; m ¼ 1; 2;…;Mp (Mp ¼ bMp=2c þ 1,

where b�c stands for the integer part). We observe that in the

filter hpðxÞ of length Mp, only its first Mp coefficients need

to be optimized, and the rest will be determined according to

the symmetry property in (25).

B. Relationship between the beampattern of the
beamformer with a UCCA and the theoretical DMA
directivity pattern

Substituting (24) into (20) and using the symmetry prop-

erty in (25), we can rewrite the beampattern as

B hðxÞ; h½ � ¼
XP

p¼1

XMp

m¼1

H�p;mðxÞe|-p cos ðh�wp;mÞ

¼
XP

p¼1

XMp

m¼1

H0
�
p;mðxÞ

� e|-p cos ðh�wp;mÞ þ e|-p cos ðhþwp;mÞ
� �

; (26)

where

H0p;m xð Þ ¼
1

2
Hp;m; m ¼ 1

Hp;m; m ¼ 2;…;Mp � 1;

8><
>:

H0p;Mp
xð Þ ¼

Hp;Mp
if Mp oddð Þ

1

2
Hp;Mp

if Mp evenð Þ:

8><
>: (27)

To establish the relationship between the beampattern of the

beamformer with a UCCA and the theoretical Nth-order

DMA directivity pattern, we use the Jacobi-Anger expansion

(Benesty et al., 2014; Abramowitz and Stegun, 1972; Zhao

et al., 2016):

e|-p cos ðh6wp;mÞ ¼ J0ð-pÞ

þ
X1
n¼1

2|nJnð-pÞ cos nðh6wp;mÞ
� �

; (28)

where Jnð-pÞ is the nth-order Bessel function of the first

kind. Assuming that -p (or rp) is small, it can be approxi-

mated up to its Nth order, i.e.,

e|-p cos ðh6wp;mÞ � J0ð-pÞþ
XN

n¼1

2|nJnð-pÞcos nðh6wp;mÞ
� �

¼
XN

n¼0

J0nð-pÞcos nðh6wp;mÞ
� �

; (29)

where

J. Acoust. Soc. Am. 141 (5), May 2017 Huang et al. 3239



J0nð-pÞ ¼
Jnð-pÞ; n ¼ 0

2|nJnð-pÞ; n ¼ 1; 2;…;N:

�
(30)

From above, it is not difficult to verify that

e|-p cos ðh�wp;mÞ þ e|-p cos ðhþwp;mÞ

�
XN

n¼0

J0nð-pÞfcos nðh�wp;mÞ
� �

þ cos nðhþwp;mÞ
� �

g

¼
XN

n¼0

2J0nð-pÞcosðnhÞcosðnwp;mÞ: (31)

Substituting (31) into (26), we obtain an approximation of

the beampattern:

BN hðxÞ;h½ �

¼
XP

p¼1

XMp

m¼1

H0
�
p;mðxÞ

XN

n¼0

2J0nð-pÞ cosðnhÞcosðnwp;mÞ

¼
XP

p¼1

XMp

m¼1

H0p;mðxÞ
XN

n¼0

2J0
�
nð-pÞ cosðnhÞcosðnwp;mÞ

¼
XN

n¼0

cos ðnhÞ 2
XP

p¼1

J0
�
nð-pÞ

XMp

m¼1

cos ðnwp;mÞH0p;mðxÞ

2
4

3
5

¼
XN

n¼0

bN;n cosðnhÞ; (32)

where

bN;n ¼ 2
XP

p¼1

J0
�
nð-pÞ

XMp

m¼1

cos ðnwp;mÞH0p;mðxÞ: (33)

This clearly shows the desired relation.

We observe from (29) that as long as e|-p cosðh6wp;mÞ can

be approximated by a Jacobi-Anger expansion of order N,

we can build any Nth-order DMA with UCCAs. To better

illustrate this, we give the truncation error of e|-p cos ðh6wp;mÞ

introduced by the Jacobi-Anger expansion. For simplicity,

we consider wp;m ¼ 0 and define the truncation error as

�Nð-pÞ¢
����e|-p cos h �

XN

n¼0

J0nð-pÞ cos ðnhÞ
����: (34)

Figure 2 displays this error as a function of the order N, for

different frequencies (f¼ 500 Hz and 1000 Hz), with

r¼ 2.6 cm and h¼ 0. It is seen that for N � 2, the truncation

error is below �50 dB.

V. DESIGN OF CDMA, ROBUST CDMA, AND ROBUST
CCDMAS

We observe from (33) that the filter coefficients

H0p;mðxÞ, can be determined given the coefficients bN;n. In

this section, we show how to design robust CCDMAs based

on this relationship. But before continuing on, we first briefly

review the design of the conventional and robust CDMAs,

which also serves as the motivation why CCDMAs are

needed in practical applications.

A. Conventional CDMA

Conventional CDMAs are designed with a single ring,

i.e., P¼ 1, then (33) becomes

bN;n ¼ 2J0
�
nð-Þ

XM
m¼1

cos ðnwmÞH0mðxÞ: (35)

Note that the underline and subscripts are dropped from

variables in this particular case as we only deal with one

ring.

To design an Nth-order CDMA with the conventional

approach, the number of microphones should satisfy

M¼ N þ 1. From (35), we observe that the filter coeffi-

cients can be derived with the following equation (Benesty

et al., 2014):

WMðxÞh0ðxÞ ¼ bNþ1; (36)

where

WMðxÞ¢

J0�0ð-Þ J0�0ð-Þ � � � J0�0ð-Þ
J0�1ð-Þ J0�1ð-Þ cos w2 � � � J0�1ð-Þ cos wM

..

. ..
.

� � � ..
.

J0�Nð-Þ J0�Nð-Þ cosðNw2Þ � � � J0�Nð-Þ cosðNwMÞ

2
666664

3
777775 (37)

is a matrix of size ðN þ 1Þ �M,

FIG. 2. (Color online) Illustration of the truncation error as a function of N,

for different frequencies (f¼ 500 Hz and 1000 Hz), with r¼ 2.6 cm and

h¼ 0.
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h0ðxÞ¢ H01ðxÞ H02ðxÞ � � � H0MðxÞ
� �T

(38)

is a vector of lengthM, and

bNþ1¢
1

2
bN;0 bN;1 � � � bN;N

� �T
(39)

is a vector of length Nþ 1. It is easy to see WMðxÞ is a full-

rank square matrix and the solution to (36) is

h0ðxÞ ¼ W�1
MðxÞbNþ1: (40)

Given the filter h0ðxÞ, the global filter hðxÞ is easily con-

structed according to (27).

The conventional CDMA beamforming filter given by

(40) suffers from two major problems, which prevent it from

being used in practical systems: white noise amplification

and significant SNR gain degradation at some frequencies.

Some examples of these problems will be given in Sec. VI,

e.g., Figs. 5 and 9 in Sec. VI. In Sec. V B and V C, we will

discuss two approaches that can deal with these problems:

one is to increase the number of microphone sensors in the

design of an Nth-order CDMA, i.e., using more than Nþ 1

sensors, and the other is to consider the use of a CCDMA.

B. Robust CDMA

It is well known that the conventional CDMA suffers

from white noise amplification and the amount of white noise

amplification is inversely proportional to the frequency. In

other words, the white-noise-amplification problem becomes

more serious at low frequencies (Benesty and Chen, 2012).

To improve the robustness of CDMA with respect to

spatially white noise, a robust version of CDMA design

approach is developed, which improves the robustness by

increasing the number of microphones, i.e., M > N þ 1, in

which the beamformer is derived by maximizing the WNG

(Benesty et al., 2014). This is equivalent to minimizing

h0HðxÞh0ðxÞ subject to the constraint in (36), i.e.,

min
h0ðxÞ

h0HðxÞh0ðxÞ s: t: WðxÞh0ðxÞ ¼ bNþ1: (41)

Solving the above optimization problem (Benesty and

Chen, 2012), we obtain the minimum-norm CDMA beam-

forming filter:

h0ðxÞ ¼ WH
MðxÞ WMðxÞWH

MðxÞ
� ��1

bNþ1: (42)

Again, with the filter h0ðxÞ, the global filter hðxÞ is con-

structed according to (27).

As shown in Benesty et al. (2014) as well as in this

minimum-norm filter is able to increase the WNG. For a

specified order of CDMA, the more the microphones are

used, the higher is the WNG.

C. Robust CCDMA

Besides the white-noise-amplification problem, the con-

ventional CDMA may also suffer from significant degradation

in SNR gains at some frequencies, i.e., deep nulls in the SNR

gains at some frequencies as shown in Sec. VI. This is due to

spatial aliasing and those nulls are introduced by the zeros in

the denominators of the filter coefficients, i.e., the zeros of the

Bessel function, Jnð-Þ. In the design of an Nth-order CDMA,

a zero of any order Bessel function causes a null and make

the CDMA suffer from serious performance degradation. The

minimum-norm filter improves the WNG by fully exploiting

the fact that we have more microphones than required for a

given CDMA order. However, more microphones often

means a larger array aperture (radius), which introduces more

nulls and make the nulls move toward lower frequencies.

To solve the nulls problem, we propose a robust

approach with CCDMA. Considering a UCCA with P rings,

we get the following equation:

WðxÞh0ðxÞ ¼ bNþ1; (43)

where

WðxÞ¢ W1ðxÞ W2ðxÞ � � � WPðxÞ
� �

(44)

is a matrix of size ðN þ 1Þ �M (whereM¼
PP

p¼1Mp),

Wp¢

J0�0ð-pÞcT
p;0

J0�1ð-pÞcT
p;1

..

.

J0�Nð-pÞcT
p;N

2
6666664

3
7777775

(45)

is a matrix of size ðN þ 1Þ �Mp, with

cp;n¢ 1 cosðnwp;2Þ � � � cosðnwp;Mp
Þ

h iT
;

n ¼ 0; 1; 2;…;N; p ¼ 1; 2;…;P (46)

and

h0ðxÞ¢ h0
T
1 ðxÞ h0

T
2 ðxÞ � � � h0

T
PðxÞ

h iT
(47)

is a vector of lengthM, with

h0pðxÞ¢ H0p;1ðxÞ H0p;2ðxÞ � � � H0p;Mp
ðxÞ

� �T
(48)

being a vector of lengthMp.

In a similar way, we obtain the minimum-norm filter:

h0ðxÞ ¼ WHðxÞ WðxÞWHðxÞ
� ��1

bNþ1: (49)

After h0ðxÞ; hpðxÞ; p ¼ 1; 2;…;P are computed according

to (27), The global filter hðxÞ is then formed according to

(10). We call this beamformer the robust CCDMA. It can be

checked that this filter degenerates to the conventional CDMA

in (40) if P¼ 1 andM1¼Nþ1. For P¼1 andM1>Nþ1, it

degenerates to the robust CDMA given in (42).

D. Design example

To better illustrate the performance improvement with

the robust CCDMA, we give an example of the design of the

first-order CCDMA, i.e., N¼ 1.
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From (44)–(46), it is not difficult to verify that

WðxÞWHðxÞ ¼
v11ðxÞ v12ðxÞ
v�12ðxÞ v22ðxÞ

" #
; (50)

where

v11ðxÞ¢
XP

p¼1

MpjJ00ð-pÞj2;

v12ðxÞ¢
XP

p¼1

J00ð-pÞJ0�1ð-pÞ
XMp

m¼1

cos wp;m;

v22ðxÞ¢
XP

p¼1

jJ01ð-pÞj2
XMp

m¼1

cos2wp;m: (51)

In this example, we assume that Mp is an even number, then

Mp ¼ bMp=2c þ 1 ¼ Mp=2þ 1, so Mp ¼ 2ðMp � 1Þ, and

wp;m ¼
2p m� 1ð Þ

Mp
¼ p m� 1ð Þ
Mp � 1

: (52)

It follows then that

XMp

m¼1

cos wp;m ¼ 0;

XMp

m¼1

cos2wp;m ¼
Mp þ 1ð Þ

2
: (53)

Substituting (53) into (51), we get

v12 xð Þ ¼ 0;

v22 xð Þ ¼ 1

2

XP

p¼1

Mp þ 1ð ÞjJ01 -pð Þj2: (54)

Consequently, we have

W xð ÞWH xð Þ
� ��1 ¼

1XP

p¼1

MpjJ00 -pð Þj2
0

0
2XP

p¼1

Mp þ 1ð ÞjJ01 -pð Þj2

2
66666666664

3
77777777775
: (55)

Substituting (55) and (30) into (49), we obtain

H0p;m xð Þ ¼
b1;0J0 -pð Þ

2
XP

p¼1

MpJ2
0 -pð Þ

þ |
b1;1J1 -pð Þcos wp;mXP

p¼1

Mp þ 1ð ÞJ2
1 -pð Þ

;

m ¼ 1; 2;…;Mp; p ¼ 1; 2;…;P: (56)

We see that the denominators of the filter coefficients in (56)

are a function of combined squared Bessel functions, i.e.,P
pMpJ2

0ð-pÞ and
P

pðMp þ 1Þ J2
1ð-pÞ. For P¼ 1, it is

clearly seen that the zeros of the Bessel function in the

denominator of the filter coefficients leads to nulls. In fact, it

is easy to see that the zeros’ positions in Jnð-pÞ are deter-

mined by -p ¼ xrp=c, which is a function of x and the

radius rp. For a specified frequency x, the larger the array

aperture (radius), the more serious is the nulls problem.

From the above analysis, one can conclude that increas-

ing the number of microphones may worsen the nulls prob-

lem since more microphones often means a larger array

aperture (radius). Clearly, one way to avoid the nulls

problem is by decreasing the value of the radius. However,

in practice, the smallest value of radius depends on the total

number of sensors and the physical size of microphone sen-

sors and it cannot be too small. Moreover, decreasing the

radius means a smaller interelement spacing, which leads to

more severe white noise amplification.

The robust CCDMA can improve the performance. The

fundamental reason is that a UCCA combines different rings

together with appropriate radii and the denominators in the

filter coefficients are also a combination of different Bessel

functions. Since the zeros of the Bessel functions (with dif-

ferent radii) are occurring at different positions (frequen-

cies), the combined function generally does not have zeros.

Consequently, the performance degradation caused by the

nulls can be improved significantly.

Figure 3 shows the normalized value (with respect to

the maximum value) of the combined squared zero- and

first-order Bessel functions with a UCCA. As one can see,

when only one ring is used (P¼ 1, M¼ 8, r¼ 3.7 cm), there

are three zeros in the frequency range from 0 Hz to 8 kHz.

When two (P¼ 2, M1 ¼ 6; r1 ¼ 2:0 cm, M2 ¼ 8; r2 ¼ 3:7
cm) or three (P¼ 3, M1 ¼ 4; r1 ¼ 1:5 cm, M2 ¼ 6; r2 ¼ 2:0
cm, M3 ¼ 8; r3 ¼ 3:7 cm) rings are used, the zeros vanish.

A more detailed study on this will be shown with a set of

simulations in Sec. V E.
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E. Criterion to determine the radii of different rings

Besides beamforming, another important problem in

designing a CCDMA is to determine the values of the radii

of the different rings so that the nulls in the DF or WNG

would not happen. Let us consider a first-order CCDMA

with two rings and the radii of the first and second rings are

denoted as r1 and r2, respectively. For the first ring, let us

assume that the first three zeros (the other zeros occur at

higher frequencies, which are out of the frequency band of

interest) of J0ð-Þ are, respectively,

-1;0;1 ¼x0;1r1=c; -1;0;2 ¼x0;2r1=c; -1;0;3 ¼x0;3r1=c;

(57)

where the three digits in the subscript denotes, respectively,

the ring number, the Bessel function order, and the zero

number, respectively.

Similarly, we assume that the first three zeros of the

J0ð-Þ for the second ring are

-2;0;1 ¼x0;1r2=c; -2;0;2 ¼x0;2r2=c; -2;0;3 ¼x0;3r2=c:

(58)

As discussed in Sec. V D, the denominators in the CCDMA

filter coefficients are a combination of different Bessel func-

tions. To ensure that the sum of the Bessel functions does

not have zeros, the zeros of the Bessel functions with differ-

ent radii must occur at different positions (frequencies).

Therefore, we should have

-2;0;1 6¼ -1;0;2; -2;0;1 6¼ -1;0;3; -2;0;2 6¼ -1;0;3; (59)

which means that

r2 6¼
x0;2

x0;1
r1; r2 6¼

x0;3

x0;1
r1; r2 6¼

x0;3

x0;2
r1: (60)

In a similar manner and with J1ð-Þ, one can find that

r2 6¼
x1;2

x1;1
r1; r2 6¼

x1;3

x1;1
r1; r2 6¼

x1;3

x1;2
r1: (61)

Putting (59) and (60), we find the condition for the first-

order CCDMA not having any zero in DF or WNG:

r2

r1

62
x0;2

x0;1
;

x0;3

x0;1
;

x0;3

x0;2
;

x1;2

x1;1
;

x1;3

x1;1
;

x1;3

x1;2

� 	
:

(62)

The above analysis can be easily generalized to a first-order

CCDMA with any number of rings. Theoretically, at least

two rings are needed in order to avoid nulls in the DF. The

above criteria can also be generalized to analyze higher

order CCDMAs (N � 2), which is more complicated and

will not be presented here.

VI. PERFORMANCE EVALUATION

In this section, we briefly study through simulations the

performance of the conventional, robust CDMA, and robust

CCDMA. To make the paper concise, we only focus on the

design of the supercardioid.

A. Performance study

We first study the performance of the conventional and

robust CDMAs, and the robust CCDMA to design

the second-order supercardioid. The parameters of the

FIG. 3. (Color online) Normalized value of the combined squared zero- and

first-order Bessel functions with a UCCA: (a) P¼ 1, (b) P¼ 2, and (c)

P¼ 3.

TABLE I. Parameters of the second-order supercardioid and design

parameters.

Second-Order Supercardioid

Directivity Pattern: B2ðhÞ ¼ 0:309þ 0:484 cos hþ 0:207 cosð2hÞ

Conventional CDMA M¼ 4, r¼ 2 cm

Robust CDMA M¼ 8, r¼ 3.7 cm

Robust CCDMA M1¼4, r1¼2 cm

M2¼8, r2¼3.7 cm
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second-order supercardioid as well as of those for the

design of the CDMA and the CCDMA are listed in Table I.

Performance is evaluated with respect to beampattern, DF,

and WNG.

Figures 4 and 5 show the beampattern, DF, and WNG of

the conventional CDMA with four microphones. As we can

see, the conventional CDMA has almost frequency-invariant

beampatterns at low but not at high frequencies. When

f¼ 6500 Hz, the beampattern is considerably changed, because

of spatial aliasing. Figure 5 shows that the beamformer has a

very low WNG at low frequencies, indicating that this beam-

former significantly amplifies white noise at low frequencies.

As the frequency increases, the WNG improves; however,

both the DF and WNG suffer from significant performance

degradation near the null’s position, i.e., at f¼ 6500 Hz. In

other words, the conventional CDMA suffers from both white

noise amplification and spatial aliasing even with a small array

radius, which limit the potential of this beamformer in

practice.

We then study the performance of the robust CDMA

with eight microphones. The corresponding beampattern,

DF, and WNG are plotted in Figs. 6 and 7. As can be seen,

the robust CDMA greatly improves the WNG, especially at

low frequencies, as compared to the conventional CDMA.

However, this beamformer uses more microphones; as a

result, the increase of the radius leads to more nulls in the

frequency band of interest and makes the nulls’ positions

FIG. 4. Beampatterns of the conven-

tional CDMA: (a) f¼ 500 Hz, (b)

f¼ 1000 Hz, (c) f¼ 2000 Hz, and (d)

f¼ 6500 Hz. Conditions of simulation:

M¼ 4, r¼ 2.0 cm, and the desired

beampattern is the second-order

supercardioid.

FIG. 5. (Color online) SNR gains of the conventional CDMA: (a) DF and

(b) WNG. Conditions of simulation: M¼ 4, r¼ 2.0 cm, and the desired

beampattern is the second-order supercardioid.
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move to lower frequencies. Indeed, Fig. 6 shows that the

beampattern has already suffered tremendous change at

f¼ 3520 Hz and Fig. 7 shows that there are three nulls in the

frequency band of interest.

Figures 8 and 9 shows the performance of the robust

CCDMA with two rings. Figure 8 shows that the robust

CCDMA has almost frequency-invariant beampatterns at all

frequencies. Figure 9 shows that both the DF and the WNG

have reasonable performance in the frequency band of inter-

est. This illustrates that the robust CCDMA not only greatly

improves the WNG but also mitigates the nulls problem.

As shown by Benesty et al. (2014), CDMAs can per-

fectly steer at least in M different directions (i.e., at the posi-

tions of the microphones) due to the symmetrical property of

the geometry, and the filters corresponding to those direc-

tions are easily obtained by simply permuting the coeffi-

cients of the filter designed for hs ¼ 0. Similarly, to ensure

that the robust CCDMA can perfectly steer to these direc-

tions, the symmetry property in those directions is needed.

So, it is better to make the geometry of the UCCA satisfy

M2¼ kM1, where k ¼ 1; 2; 3;…. In this way, the robust

CCDMA can perfectly steer in M1 different directions

(where microphones in the two rings are aligned), i.e.,

2pðm� 1Þ=M1. Figure 10 plots the beampatterns of the

robust CCDMA with hs 2 f0	; 90	; 180	; 270	g. As can be

seen, the robust CCDMA has the same beampattern in the

aforementioned directions.

FIG. 6. (Color online) Beampatterns of

the robust CDMA: (a) f¼ 500 Hz, (b)

f¼ 1000 Hz, (c) f¼ 2000 Hz, and (d)

f¼ 3520 Hz. Conditions of simulation:

M¼ 8, r¼ 3.7 cm, and the desired beam-

pattern is the second-order supercardioid.

FIG. 7. (Color online) SNR gains of the robust CDMA: (a) DF and (b)

WNG. Conditions of simulation: M¼ 8, r¼ 3.7 cm, and the desired beam-

pattern is the second-order supercardioid.
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B. Performance comparison

To better demonstrate the performance improvement

with the robust CCDMA, we compare the following:

(1) The conventional CDMA;

(2) The robust CDMA which has the same interelement

spacing as the conventional CDMA (we call it the robust

CDMA-I);

(3) The robust CCDMA (with two rings), in which the first

ring has the same geometry as the conventional CDMA

while the second one has the same geometry as the

robust CDMA-I; and

(4) The robust CDMA which has the same number of micro-

phones as the robust CCDMA while the radius remains

the same as the robust CDMA-I (we call it the robust

CDMA-II), to design the second-order supercardioid.

The parameters for the design of the conventional

CDMA, robust CDMA-I, and robust CCDMA are listed

in Table I. The robust CDMA-II is designed with M¼ 12

and r¼ 3.7 cm.

The results (DF, WNG, and zoomed plot of the WNG at

low frequencies) are plotted in Fig. 11. It is clearly seen, besides

the white-noise-amplification problem, the conventional CDMA

FIG. 8. (Color online) Beampatterns of

the robust CCDMA: (a) f¼ 500 Hz, (b)

f¼ 1000 Hz, (c) f¼ 2000 Hz, (d)

f¼ 3520 Hz, (e) f¼ 5000 Hz, and (f)

f¼ 6500 Hz. Conditions of simulation:

M1 ¼ 4; M2 ¼ 8; r1 ¼ 2 cm, r2 ¼ 3:7
cm, and the desired beampattern is the

second-order supercardioid.
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also suffers from serious degradation in SNR gain due to the

nulls problem as discussed in Sec. V. While the robust

CDMA approach can improve the WNG, the increase of the

array aperture (radius) leads to more nulls in the frequency

range of interest. Moreover, it is seen that both the robust

CDMA-I and CDMA-II have almost the same performance

in SNR gain, which means that increasing the number of

microphones and keeping the same value of the radius may

not improve the WNG. In comparison, the robust CCDMA

achieves a significant better performance. It improves the

WNG and does not have any null, where the DF and the

WNG remain approximately constant in the frequency band

of interest. This demonstrates the advantages of the robust

CCDMA.

VII. CONCLUSIONS

This paper studied the design of CDMAs and CCDMAs

and the associated beamforming problem. While they have

the potential to form frequency-invariant directivity patterns

and have good steering flexibility, the traditional CDMAs

suffer from both white noise amplification and serious nulls

problem in SNR gain due to spatial aliasing. The so-called

robust CDMAs can help improve WNG by using more sen-

sors than required for the order of the differential array; how-

ever, this robust method does not improve and may even

worsen the SNR gain nulls problem. In this paper, we

FIG. 9. (Color online) SNR gains of the robust CCDMA: (a) DF and (b)

WNG. Conditions of simulation: M1 ¼ 4; M2 ¼ 8; r1 ¼ 2 cm, r2 ¼ 3:7 cm,

and the desired beampattern is the second-order supercardioid.

FIG. 10. (Color online) Beampatterns of

the robust CCDMA: (a) hs ¼ 0	, (b)

hs ¼ 90	, (c) hs ¼ 180	, and (d)

hs ¼ 270	. Conditions of simulation:

M1 ¼ 4; M2 ¼ 8; r1 ¼ 2 cm, r2 ¼ 3:7
cm, f¼ 1000 Hz, and the desired beam-

pattern is the second-order supercardioid.
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performed some theoretical analysis of the nulls problem

and found that the nulls of the CDMAs are caused by the

zeros of the Bessel function in the denominators of the fil-

ters’ coefficients. We then developed a robust CCDMA

approach, which combines different rings of microphones

together with appropriate radii. Simulation results demon-

strated the superiority of the robust CCDMA approach over

the traditional and robust CDMAs: it can mitigate both the

problem of white noise amplification and the nulls problem

with CDMAs.
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