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The widely studied subspace and linear filtering methods for noise reduction require the noise correlation
matrix to be invertible. In certain application scenarios, however, this matrix is either rank deficient or
very ill conditioned, so this requirement cannot be fulfilled. In this paper, we investigate possible solu-
tions to this important problem based on subspace techniques for single-channel time-domain noise
reduction. The eigenvalue decomposition is applied to both the speech and noise correlation matrices
to separate the null and nonnull subspaces. Then, a set of optimal and suboptimal filters are derived from
the nullspace of the noise signal. Through simulations, we observe that the proposed filters are able to
significantly reduce noise without introducing much distortion to the desired signal. In comparison with
the conventional Wiener approach, the developed filters perform significantly better in improving both
the signal-to-noise ratio (SNR) and the perceptual evaluation of speech quality (PESQ) score when the
noise correlation matrix is rank deficient.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Noise reduction, which is often also referred to as speech
enhancement, is a problem of recovering a clean speech signal of
interest from its microphone observations corrupted by additive
noise [1–3]. The goal of noise reduction may vary from one appli-
cation to another but, generally, it is to improve either the percep-
tual quality or the intelligibility or both of the noisy speech signal.
This has long been a challenge in many important real-world appli-
cations, such as mobile speech communication, hearing aids,
robotics, audio conferencing, and robust speech recognition, to
name a few. Extensive work has been done to address this problem
in the literature [1–7] and many different methods have been
developed, including optimal filtering [8,9], spectral subtraction
type of techniques [6,10–15], statistical approach [16–20], sub-
space methods [21–28], deep neural networks (DNNs) [29–32],
and multichannel filtering [5,3,33].
Every of the aforementioned methods has its own pros and
cons. For example, the optimal filtering and subspace methods
work in the time domain. They require the estimation of the noise
correlation matrix which has to be well conditioned so that its
inverse can be computed reliably. Furthermore, these methods
are relatively expensive in computation as matrix inversion is
involved. In comparison, spectral subtraction type of techniques
are computationally very efficient thanks to the use of the fast
Fourier transform (FFT). However, speech distortion with this
method is large, which can only be controlled by sacrificing the
amount of noise reduction. The statistical approach generally
assumes some a priori knowledge about the speech and noise dis-
tributions or even the knowledge of the joint probability distribu-
tion of the clean speech and noise signals, so that the conditional
expected value of the clean speech (or its spectrum) can be evalu-
ated given the noisy signal. If the assumed distribution does not
model well the noise in real applications, which happens often,
the method may suffer from dramatic performance degradation.
Unlike the statistical method, the DNNs based approach does not
assume any a priori knowledge about the statistics and distribu-
tions of the speech and noise signals; it learns all the needed infor-
mation from the training data. If the signal and noise
characteristics in real applications are similar to those in the train-
ing set, this method may work well but, otherwise, its performance
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can be problematic. Nevertheless, the aforementioned methods are
successful to a certain degree, but none of those can claim victory
in dealing with the complicated noise reduction problem. Further
effort in this area is indispensable.

This paper deals with the problem of single-channel noise
reduction in the time domain. We focus on the scenario where
the noise correlation matrix is rank deficient. This happens often
in many applications where there is narrowband or harmonic
interference or transit and bandlimited noise (such as door slam-
ming, keyboard typing, etc). Unlike white and colored noises that
have been intensively studied in the literature, there is not much
work so far to address the noise reduction problem with a rank-
deficient noise correlation matrix. The approach we take here is
based on the principles of both subspace decomposition and opti-
mal filtering. First, the eigenvalue decomposition is applied to the
desired speech and noise correlation matrices. The nullspace
(formed from the eigenvectors corresponding to the zero eigenval-
ues) of the noise correlation matrix is then used to design a set of
optimal linear noise reduction filters. Using the entire nullspace of
the noise signal, we can design a maximum signal-to-noise ratio
(SNR) filter, which gives a high output SNR but with large speech
distortion. Manipulating the dimension of this nullspace leads to
a set of tradeoff filters, which can make a compromise between
the output SNR and the amount of speech distortion for better per-
ceptual speech quality.

The rest of this paper is organized as follows. In Section 2, we
present the formulation of the noise reduction problem and some
basic background information about the eigenvalue decomposition
in the context of noise reduction. We then discuss how to design
different filters including the Wiener, maximum SNR, and tradeoff
filters in Section 3. Simulations in harmonic noise, keyboard typing
noise, and mixture of these noises with white Gaussian noise are
presented in Section 4 to demonstrate the properties of the devel-
oped filters. Finally, some conclusions are given in Section 5.

2. Noise reduction problem

The problem considered in this paper is one of recovering a
clean speech signal of interest from its noisy observation (sensor
signal) [8,3]:

yðkÞ ¼ xðkÞ þ vðkÞ; ð1Þ
where xðkÞ is the zero-mean desired speech signal, k is the discrete-
time index, vðkÞ is the unwanted zero-mean additive noise, which
can be narrowband but is assumed to be uncorrelated with xðkÞ.

With the signal model in (1), we define the input SNR as

iSNR , r2
x

r2
v
; ð2Þ

where r2
x , E½x2ðkÞ� and r2

v , E½v2ðkÞ� are the variances of xðkÞ and
vðkÞ, respectively.

The model given in (1) can be put into a vector form by consid-
ering the Lmost recent successive time samples of the noisy signal,
i.e.,

yðkÞ ¼ xðkÞ þ vðkÞ; ð3Þ
where

yðkÞ , yðkÞ yðk� 1Þ � � � yðk� Lþ 1Þ½ �T ð4Þ
is a vector of length L, the superscript T denotes transpose of a vec-
tor or a matrix, and xðkÞ and vðkÞ are defined in a similar way to yðkÞ
in (4). Since xðkÞ and vðkÞ are uncorrelated by assumption, the cor-
relation matrix (of size L� L) of the noisy signal can be written as

Ry , E yðkÞyTðkÞ� � ¼ Rx þ Rv; ð5Þ
where E½�� denotes mathematical expectation, and Rx , E xðkÞxTðkÞ� �
and Rv , E vðkÞvTðkÞ� �

are the correlation matrices of xðkÞ and vðkÞ,
respectively.

In the context of noise reduction, the desired signal correlation
matrix, Rx, is generally not full rank. Without loss of generality, we
assume in this paper that the rank of Rx is equal to P 6 L. In the lit-
erature, the noise correlation matrix, Rv , is generally assumed to be
full rank and well conditioned. However, in many applications, this
matrix can be rank deficient. Here, we deal with this particular
case. Let us assume that the rank of Rv is equal to Q < L. Then,
the objective of noise reduction (or speech enhancement) is to esti-
mate the desired signal sample, xðkÞ, from the observation signal
vector, yðkÞ. It should be noticed that neither the joint diagonaliza-
tion [22,25] nor the prewhitening approach can be applied to this
problem [34] since they require the noise correlation matrix to be
full rank.

Using the well-known eigenvalue decomposition [35], the noise
correlation matrix can be diagonalized as

UT
vRvUv ¼ Kv; ð6Þ

where

Uv ¼ uv;1 uv;2 � � � uv;L½ � ð7Þ

is an orthogonal matrix, i.e., UT
vUv ¼ UvU

T
v ¼ IL, with IL being the

L� L identity matrix, and

Kv ¼ diagðkv;1; kv;2; . . . ; kv;LÞ ð8Þ
is a diagonal matrix. The orthonormal vectors uv;1;uv;2; . . . ;uv;L are
the eigenvectors corresponding, respectively, to the eigenvalues
kv;1; kv;2; . . . ; kv;L of the matrix Rv , where
kv;1 P kv;2 P � � � P kv;Q > kv;Qþ1 ¼ kv;Qþ2 ¼ � � � ¼ kv;L ¼ 0.

In the same way, the desired speech correlation matrix can be
diagonalized as

UT
xRxUx ¼ Kx; ð9Þ

where the orthogonal and diagonal matrices Ux and Kx are defined
in a similar way to Uv and Kv , respectively, with
kx;1 P kx;2 P � � � P kx;P > kx;Pþ1 ¼ kx;Pþ2 ¼ � � � ¼ kx;L ¼ 0. The above
two decompositions will be used in the rest of this paper for the
purpose of deriving new optimal linear filters.

3. Filter design

3.1. Linear filter model

The most straightforward and practical way to perform noise
reduction in the time domain is to apply a linear filter to the obser-
vation signal vector, yðkÞ, i.e.,

zðkÞ ¼ hTyðkÞ
¼ hT xðkÞ þ vðkÞ½ �
¼ xfdðkÞ þ vrnðkÞ;

ð10Þ

where zðkÞ is the estimate of xðkÞ,
h ¼ h1 h2 � � � hL½ �T ð11Þ
is a real-valued linear filter of length L,

xfdðkÞ , hTxðkÞ ð12Þ
is the filtered desired signal, and

vrnðkÞ , hTvðkÞ ð13Þ
is the residual noise.

From (10), we find that the output SNR is
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oSNRðhÞ , hTRxh

hTRvh
: ð14Þ

Following the study in [9], we also define the speech distortion
index:

tsdðhÞ ,
E xfdðkÞ � xðkÞ½ �2
n o

r2
x

¼
E hTxðkÞ � xðkÞ

h i2� �
r2

x
:

ð15Þ

The output SNR and speech distortion index will be used in this
study to evaluate the performance of the noise reduction
algorithms.

Now, we define the error signal between the estimated and
desired signals as

eðkÞ , zðkÞ � xðkÞ
¼ hTyðkÞ � xðkÞ
¼ h� i1ð ÞTxðkÞ þ hTvðkÞ
¼ edsðkÞ þ ernðkÞ;

ð16Þ

where i1 is the first column of the L� L identity matrix IL,

edsðkÞ , h� i1ð ÞTxðkÞ ð17Þ
is the signal distortion due to the linear filter, and

ernðkÞ , hTvðkÞ ð18Þ
represents the residual noise. The mean-squared error (MSE) is then
written as

JðhÞ , E e2ðkÞ� �
¼ r2

x � 2hTRxi1 þ hTRyh:
ð19Þ

Using the fact that E edsðkÞernðkÞ½ � ¼ 0; JðhÞ can also be expressed as
the sum of two MSEs, i.e.,

JðhÞ , E e2dsðkÞ
� �þ E e2rnðkÞ

� �
¼ JdsðhÞ þ JrnðhÞ;

ð20Þ

where

JdsðhÞ , E h� i1ð ÞTxðkÞ
h i2� �

¼ ðh� i1ÞTRxðh� i1Þ
ð21Þ

is the MSE of the signal distortion and

JrnðhÞ , E hTvðkÞ
h i2� �

¼ hTRvh
ð22Þ

is the MSE of the residual noise. We will show how these MSEs are
used in the next subsections.

3.2. Wiener

Minimizing JðhÞ in (19) with respect to h yields

Ryh ¼ Rxi1: ð23Þ
When Ry is full rank, then we get the classical Wiener filter, i.e.,

hW ¼ R�1
y Rxi1. A necessary condition for this filter to exist is that

P þ Q P L. Note that even if this condition is fulfilled, Ry may be
highly ill conditioned in practice. In this case, this matrix should
be properly regularized in order to have a reliable estimate of the
desired signal.
3.3. Maximum SNR

The maximum SNR filter has been widely studied in the litera-
ture when the noise correlation matrix is full rank. In this scenario,
the maximum SNR filter is simply the eigenvector corresponding to
the maximum eigenvalue of the matrix R�1

v Rx [36]. However, this
traditional filter does not exist if Rv is rank deficient. In this sec-
tion, we show how to exploit the nullspace of the noise correlation
matrix to derive a noise reduction filter that can maximize the out-
put SNR.

Let

Tv;Q , uv;Qþ1 uv;Qþ2 � � � uv;L½ � ð24Þ
be the matrix of size L� ðL� QÞ composed by the eigenvectors cor-
responding to the null eigenvalues of Rv . We are interested in the
linear filters of the form:

h ¼ Tv;Qa; ð25Þ
where

a ¼ a1 a2 � � � aL�Q½ �T – 0 ð26Þ
is a vector of length L� Q . Since RvTv;Q ¼ 0 and assuming that
RxTv;Q – 0, which is reasonable since Rx and Rv cannot be diagonal-
ized by the same orthogonal matrix unless one of them is white, we
have

oSNRðhÞ ¼ oSNRðTv;QaÞ ¼ 1: ð27Þ
As a consequence, the estimate of xðkÞ is

zðkÞ ¼ hTyðkÞ
¼ aTTT

v;QxðkÞ þ aTTT
v;QvðkÞ

¼ aTTT
v;QxðkÞ:

ð28Þ

We observe from the previous expression that this approach is able
to completely cancel the noise. The noise reduction problem then
boils down to finding the optimal vector a. The best way to find it
is by minimizing the distortion of the estimated desired signal.

From the distortion based MSE in (21), we have

JdsðaÞ ¼ ðTv;Qa� i1ÞTRxðTv;Qa� i1Þ: ð29Þ
The optimal value of a is found by minimizing JdsðaÞ. The solution
can be divided into three cases: P > L� Q ; P ¼ L� Q , and P < L� Q .

First, let us consider the case where P P L� Q . In this situation,
we find that

ao ¼ ðTT
v;QRxTv;Q Þ�1

TT
v;QRxi1

¼ ðTT
v;QUx;PKx;PU

T
x;PTv;Q Þ

�1
TT
v;QUx;PKx;PU

T
x;Pi1;

ð30Þ

where

Ux;P ¼ ux;1 ux;2 � � � ux;P½ � ð31Þ
is the matrix of size L� P containing the eigenvectors correspond-
ing to the nonnull eigenvalues of Rx and

Kx;P ¼ diag kx;1; kx;2; . . . ; kx;Pð Þ: ð32Þ
Substituting (30) into (25), we finally find the maximum SNR filter
with minimum distortion:

hmax ¼Tv;Q TT
v;QUx;PKx;PU

T
x;PTv;Q

� ��1

� TT
v;QUx;PKx;PU

T
x;Pi1:

ð33Þ

It is worth noticing that the larger is the dimension of the nullspace
of Rv , the larger is the dimension of a to minimize distortion. Con-
sequently, there will be less distortion added into the desired signal.
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The worst case is when Q ¼ L� 1. In this situation, a degenerates to
a scalar, which can still significantly increase the SNR but with no
control on speech distortion.

Next, we consider the case: P ¼ L� Q . In this scenario, we can
always express the estimate of xðkÞ as
zðkÞ ¼ aT

oT
T
v;QxðkÞ

¼ aT
oT

T
v;QUx;PU

T
x;PxðkÞ:

ð34Þ

Inspecting (34), we see that, in order to recover the desired signal,
xðkÞ, we must have

aT
oT

T
v;QUx;P ¼ iT1Ux;P ; ð35Þ

or, equivalently,

UT
x;PTv;Qao ¼ UT

x;Pi1: ð36Þ

Since UT
x;PTv;Q is a square invertible matrix, we have a unique solu-

tion for (36), which is

ao;1 ¼ ðUT
x;PTv;Q Þ

�1
UT

x;Pi1: ð37Þ
We deduce that the optimal filter for this particular case is

hmax;1 ¼ Tv;Q ðUT
x;PTv;Q Þ

�1
UT

x;Pi1: ð38Þ
This filter perfectly recovers the desired signal (i.e., it completely
cancels the noise without any distortion). Indeed, it can be verified
that

zðkÞ ¼ hT
max;1yðkÞ

¼ iT1Ux;PðUT
x;PTv;Q Þ

�T
TT
v;Q xðkÞ þ vðkÞ½ �

¼ xðkÞ:
ð39Þ

This result can also be found directly from hmax in (33) by taking
P ¼ L� Q . Therefore, (33) gives the maximum SNR filter with min-
imum distortion for cases with P P L� Q .

If P < L� Q , one reasonable approach is to take the minimum-
norm solution of (36), i.e.,

ao;2 ¼ TT
v;QUx;PðUT

x;PTv;QT
T
v;QUx;PÞ�1

UT
x;Pi1: ð40Þ

Therefore, we get another maximum SNR filter for this particular
case:

hmax;2 ¼ Tv;QT
T
v;QUx;PðUT

x;PTv;QT
T
v;QUx;PÞ�1

UT
x;Pi1: ð41Þ

This filter is able to reduce noise but some distortion of the desired
signal is expected.

3.4. Tradeoff

In practice, too much noise reduction is not necessary, since it is
often achieved at the expense of high speech distortion. The most
straightforward way to compromise between the amount of noise
reduction and the degree of signal distortion is by considering the
L� Q 0 (0 6 Q 0 6 Q) smallest eigenvalues of Rv . In this way, we
increase the dimension of a for less distortion at the cost of less
noise reduction. The eigenvector matrix [of size L� ðL� Q 0Þ] corre-
sponding to these smallest eigenvalues is

Tv;Q 0 ¼ ½uv;Q 0þ1 uv;Q 0þ2 . . . uv;L�: ð42Þ
Following a similar derivation as in the previous subsection, we
deduce the following tradeoff filter:

hT;Q 0 ¼Tv;Q 0 ðTT
v;Q 0Ux;PKx;PU

T
x;PTv;Q 0 Þ�1

� TT
v;Q 0Ux;PKx;PU

T
x;Pi1:

ð43Þ
This filter exists only if P P L� Q 0. For Q 0 ¼ 0 (in this case, Pmust be
equal to L), the tradeoff filter degenerates to the identity filter, i.e.,

hT;0 ¼ i1; ð44Þ
for which there is neither noise reduction nor desired signal
distortion.

In general, we should have

iSNR ¼ oSNRðhT;0Þ 6 oSNRðhT;1Þ 6 � � � 6 oSNRðhT;Q Þ
¼ 1 ð45Þ

and

0 ¼ tdsðhT;0Þ 6 tdsðhT;1Þ 6 � � � 6 tdsðhT;Q Þ � 1: ð46Þ
The tradeoff filter can obviously be used when Rv is full rank. We
have two particular cases: P ¼ L� Q 0 and P < L� Q 0. For the former,
we get

hT;1;Q 0 ¼ Tv;Q 0 ðUT
x;PTv;Q 0 Þ�1

UT
x;Pi1; ð47Þ

which is a distortionless filter but some residual noise remains. For
the latter case, we have

hT;2;Q 0 ¼ Tv;Q 0TT
v;Q 0Ux;PðUT

x;PTv;Q 0TT
v;Q 0Ux;PÞ�1

UT
x;Pi1; ð48Þ

which allows us to make a compromise between the amount of
noise reduction and the amount of signal distortion.

4. Simulations

Having derived different optimal noise reduction filters, we
study their performance via simulations in this section. We mainly
use the output SNR defined in (14), the speech distortion index
defined in (15), and the perceptual evaluation of speech quality
(PESQ) score [37,38] as the performance measures. However, Per
the reviewers’ suggestion, the short-time objective intelligibility
(STOI) score [39] and the log-spectral distortion (LSD) [40] are also
adopted in some simulations as the performance metrics for
comparison.

We consider two types of narrowband noises: synthetic har-
monic signals and recorded keyboard typing noise. Moreover, in
order to see the performance of the designed filters dealing with
both narrowband and broadband noises, we also consider the case
where the noise is a mixture of white Gaussian noise and the two
types of narrowband noises.

The clean speech signals used are taken from the TIMIT data-
base [41]. They consist of 200 sentences from 10 male and 10
female speakers. Note that we focus on the applications of narrow-
band voice communication, so the signals are downsampled from
the original sampling rate of 16 kHz to 8 kHz.

In order to implement the filters derived in the previous sec-
tions, we need to know the correlation matrices Ry and Rv . The
Ry matrix can be directly computed from the noisy signal yðtÞ.
However, a noise estimator is needed to estimate the Rv matrix.
A number of algorithms have been developed in the literature to
estimate the noise or its spectra, such as the voice activity detec-
tion (VAD) based method, the minimum statistics based algorithm
[11], the improved-minima-controlled-recursive-averaging
(IMCRA) method [15], etc. Those methods work reasonably well
if the noise is relatively stationary. However, if the noise is highly
nonstationary like the keyboard typing noise that is going to be
dealt with in this work, none of those algorithms can produce reli-
able estimates. Currently, we are investigating a deep neural net-
work (DNN) based noise estimation method, which seems
promising in dealing with highly nonstationary noises and the
results will be reported in a separate work. In the rest part of this
section, however, we set aside the noise estimation problem and



Fig. 2. A segment of the observation noisy signal, yðkÞ, the clean speech signal, xðkÞ,
and the enhanced signal, zðkÞ.
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focus on illustrating the performance of the developed filters. So,
we compute the Ry and Rv matrices using the following recursions
[3]:

bRyðtÞ ¼ ay
bRyðt � 1Þ þ ð1� ayÞyðtÞyTðtÞ; ð49ÞbRvðtÞ ¼ av bRvðt � 1Þ þ ð1� avÞvðtÞvTðtÞ; ð50Þ

where ay 2 ð0;1Þ and av 2 ð0;1Þ are two forgetting factors, which
control the influence of the previous data samples on the current
estimate (the initial estimate is obtained from the first 1600 signal

samples with a long-time average). After obtaining bRyðtÞ and bRvðtÞ,
the clean speech signal correlation matrix is computed asbRxðtÞ ¼ bRyðtÞ � bRvðtÞ. To ensure that the bRxðtÞ matrix is positive
semidefinite, we apply the eigenvalue decomposition and force all
the negative eigenvalues to zero. These estimated correlation matri-
ces are substituted into (6) and (9) to compute the eigenvalue
decomposition for the optimal noise reduction filters.

4.1. Harmonic and white noise

In the first set of simulations, we consider the case with narrow-
band harmonic noise and broadband white noise. The harmonic
noise is generated using the following model [42]:

vðkÞ ¼
XM
m¼1

Am cosð2pmkf0=f s þ /mÞ; ð51Þ

where M denotes the model order, Am > 0 and /m 2 ½0;2pÞ are the
amplitude and phase of the m-th harmonic, f 0 2 ½0; f s=ð2MÞ� is the
fundamental frequency, and f s is the sampling frequency. The rank
of the noise signal correlation matrix, Rv , is then Q ¼ 2M. In our
simulations, we choose M ¼ 7;Am ¼ 1;/m ¼ 0, and f 0 ¼ 160Hz for
all m ¼ 1;2; . . . ;M. The noisy speech is obtained by adding the gen-
erated harmonic noise to the clean speech at a specified SNR level.

In the first simulation, we consider the case with only harmonic
noise. The input SNR is 10 dB. To visualize the maximum SNR filter,
we take a segment of speech with only 800 samples. Based on this
segment, we computed the correlation matrices of the noise and
noisy signals using a short-time average. The maximum SNR filter
with a length of 110 is computed according to (38). Fig. 1 plots the
spectrum of the synthetic noise and also the frequency response of
the resulting maximum SNR filter. It is seen that the maximum
SNR filter in the given harmonic noise is akin to a comb filter. It
has rather small gains at harmonic frequencies where the noise
consists of much energy while large gains at frequencies with
not much noise energy. The noisy, clean, and enhanced speech sig-
nals of this segment are plotted in Fig. 2. It is seen that the
enhanced signal is close to the desired clean signal.

Now, we use the recursive method in (49) and (50) to estimate
the noisy and noise correlation matrices, based on which we com-
Fig. 1. Spectrum of the synthetic noise vector and the corresponding filter.
pute the noise reduction filters of length 30. Fig. 3 plots the perfor-
mance results of the tradeoff filter with three different values of Q 0

as a function of the forgetting factors (here we assume ay ¼ av for
simplicity). It is seen that the output SNR decreases monotonically
with the forgetting factor for all the three values of Q 0. For Q 0 ¼ 1,
the speech distortion index decreases with the forgetting factor.
But the value of this index first decreases and then increases for
the two cases of Q 0 ¼ 3 and Q 0 ¼ 5. The PESQ score also monoton-
Fig. 3. Performance of the tradeoff filter as a function of the forgetting factor,
ayð¼ av Þ, in the synthetic harmonic noise. (a) Output SNR, (b) speech distortion
index, and (c) PESQ score. Simulation conditions: L ¼ 30; iSNR ¼ 10dB;Q 0 ¼ 1;3;5,
and the PESQ score of the noisy signal is 2.4813.
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ically decreases with the forgetting factor with Q 0 ¼ 1. But for
Q 0 ¼ 3 and Q 0 ¼ 5, it first increases and then decreases. The maxi-
mum PESQ score is achieved when ay and av are approximately
equal to 0:8. So in the following simulations, the value of the two
forgetting factors is set to 0:8.

In the second simulation, we investigate the performance of the
tradeoff filter with different values of Q 0 (0 6 Q 0 6 Q). The noise is
the same as in the previous simulation. The filter length, L, is again
set to 30 and both ay and av are set to 0:8 according to the previous
simulation. Fig. 4 plots the results as a function of Q 0 in three dif-
ferent input SNR conditions, i.e., iSNR ¼ 0;5;10 dB. One can see
clearly that the output SNR and the speech distortion index
increase monotonically with Q 0 in all the three input SNR condi-
tions, i.e., the larger the value of Q 0, the more is the noise reduction
and so is the speech distortion. This is consistent with the theoret-
ical analysis in SubSection 3.4. The PESQ score first increases with
Q 0, then decreases (because the speech distortion is increasing),
indicating that the value of Q 0 should be properly chosen for opti-
mal perceptual quality.

In practical situations, noise generally contains both narrow-
band and broadband components. In this simulation, we consider
the noise, which is a mixture of a harmonic signal (same as in
Fig. 4. Performance of the tradeoff filter as a function of Q 0 in the synthetic
harmonic noise. (a) Output SNR, (b) speech distortion index, and (c) PESQ score.
Simulation conditions: L ¼ 30;ay ¼ av ¼ 0:8; iSNR ¼ 0;5;10dB, and the PESQ scores
of the noisy signals in these three iSNR conditions are, respectively, 2.0393, 2.2267,
and 2.4813.
the previous simulations) and white Gaussian noise. The ratio
between the harmonic and white noise is 10 dB. This mixed noise
is then added to the clean speech with a 10-dB input SNR to obtain
the noisy signal. The results as a function of the filter length for
three different values of Q 0 are plotted in Fig. 5. It is seen that for
a given value of Q 0, the output SNR increases with the filter length.
The speech distortion index first decreases. But if the filter length is
larger than 30, the speech distortion index does not longer vary
much. In contrast, the PESQ score first increases. If the filter length
is larger than 30, the PESQ score varies only slightly, which is
almost negligible. It is seen that with our simulation setup, the
value of L between 20 and 30 is sufficient to achieve good
performance.
4.2. Keyboard typing noise

In our daily life, there are various kinds of noise that have rank-
deficient correlation matrices, such as door slamming noise, key-
board typing noise, etc. In this section, we recorded some keyboard
typing noise with a sampling frequency of 8 kHz. We examine the
performance of the optimal filters derived in Section 3 with this
noise.
Fig. 5. Performance of the tradeoff filter as a function of the filter length, L, in the
synthetic harmonic plus white Gaussian noise (at a ratio of 10 dB). (a) Output SNR,
(b) speech distortion index, and (c) PESQ scores. Simulation conditions:
ay ¼ av ¼ 0:8; iSNR ¼ 10dB;Q 0 ¼ 7;9;11, and the PESQ score of the noisy signal is
2.4634.



Fig. 6. Performance of the tradeoff filter as a function of the forgetting factor,
ayð¼ av Þ, in the keyboard typing noise. (a) Output SNR, (b) speech distortion index,
and (c) PESQ score. Simulation conditions: L ¼ 30; iSNR ¼ 10dB;Q 0 ¼ 3;4;5, and the
PESQ score of the noisy signal is 2.0311.

Fig. 7. Performance of the tradeoff filter as a function of Q 0 in the keyboard typing
noise. (a) Output SNR, (b) speech distortion index, and (c) PESQ score. Simulation
conditions: L ¼ 30;ay ¼ av ¼ 0:8; iSNR ¼ 0;5;10 dB, and the PESQ scores of the
noisy signals in the three iSNR conditions are, respectively, 1.1959, 1.5992, and
2.0311.

32 N. Pan et al. / Applied Acoustics 126 (2017) 26–35
Fig. 6 plots the performance of the tradeoff filters with three dif-
ferent values of Q 0 as a function of the forgetting factors (again, it is
assumed that ay ¼ av ). It is seen that significant improvement in
terms of SNR and PESQ score is achieved. The trend of the perfor-
mance as a function of the forgetting factor is similar to that in
Fig. 3. Again, the optimal performance is achieved when the value
of the forgetting factor is around 0.8.

The performance of the tradeoff filter as a function of the value
of Q 0 is shown in Fig. 7. It is observed that, in all three iSNR condi-
tions, the output SNR and the speech distortion index increase
monotonically with the value of Q 0. This is reasonable since as
the value of Q 0 is getting larger, the tradeoff filter approaches the
maximum SNR filter, which maximizes the output SNR, but the
speech distortion with this filter is very large too. As for the PESQ
score, it first increases then decreases when the value of Q 0

increases in the range between 5 and 19. It decreases due to the
increasing speech distortion. It is worth mentioning that the trade-
off filter achieves a large gain in the PESQ score, which is greater
than 0.9 in all three iSNR conditions. This shows that the designed
filter can increase the speech quality significantly.

The results of STOI and LSD for different values of Q 0 is shown in
Table 1. As seen, the developed filter achieves an improvement of
the STOI score by more than 0:1, indicating that this filter is able
to improve the speech intelligibility as well. Comparing the STOI
results with the PESQ scores in Fig. 7(c), one can see that the
change of STOI with respect to the value of Q 0 has a similar trend
as PESQ. Similarly, LSD increases when the value of Q 0, which is
similar to the case of the speech distortion index shown in Fig. 7
(b). The LSD results corroborate that the developed filter is capable
of making a compromise between noise reduction and speech
distortion.

Now, we consider the case where the noise is a mixture of the
keyboard typing noise and the white noise. The ratio between
the former and the latter is 10 dB. The results are shown in
Fig. 8. It is obvious that good performance is achieved when the
value of the filter length, L, is in the range between 20 and 30. With
Q 0 ¼ 8, the tradeoff filter improves the PESQ score from 2.0 to 2.9,
indicating that the developed filter works well even when both
narrowband and broadband noises coexist.

In this simulation, we evaluate the performance versus the
input SNR in the presence of both keyboard typing and white Gaus-
sion noise. The results are shown in Fig. 9. As seen, both the output
SNR and the PESQ score increase while the speech distortion index
decreases with the input SNR. The improvement in PESQ decreases
as the input SNR increases. This is reasonable as there is less noise



Table 1
STOI score and LSD (in dB) of the tradeoff filter as a function of Q 0 in the keyboard typing noise. Simulation conditions: L ¼ 30;ay ¼ av ¼ 0:8; iSNR ¼ 10 dB. The STOI score and LSD
of the noisy signal is 0.8388 and 21.5132 dB respectively.

Q 0 1 3 5 7 9
STOI 0.9140 0.9353 0.9411 0.9427 0.9429
LSD 12.3995 13.5356 13.9911 14.1867 14.2895

Q 0 11 13 15 17 19
STOI 0.9423 0.9413 0.9394 0.9361 0.9299
LSD 14.3783 14.4789 14.6303 14.8129 15.0880

Q 0 21 23 25 27 29
STOI 0.9190 0.8984 0.8608 0.7926 0.6604
LSD 15.4541 16.0362 17.0759 19.1762 23.7667

Fig. 8. Performance of the tradeoff filter as a function of the filter length in the
keyboard typing plus white Gaussian noise (at a ratio of 10 dB). (a) Output SNR, (b)
speech distortion index, and (c) PESQ score. Simulation conditions:
ay ¼ av ¼ 0:8; iSNR ¼ 10 dB;Q 0 ¼ 4;6;8, and the PESQ score of the noisy signal is
2.0599.

Fig. 9. Performance of the tradeoff filter andWiener filter as a function of input SNR
in the keyboard typing plus white Gaussian noise (at a ratio of 10 dB). (a) Output
SNR, (b) speech distortion index, and (c) PESQ score. Simulation conditions:
ay ¼ av ¼ 0:8 and 0.5 for tradeoff filter and Wiener filter respectively, L ¼ 30, and
Q 0 ¼ 10.
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to be reduced as the input SNR increases. When the input SNR is
low, the gain in PESQ with the tradeoff filter is close to or even
more than 1, which is significant. This, again, proves the effective-
ness of the tradeoff filter. We also compared the tradeoff filter with
the Wiener filter in (23). The results in Fig. 9 show that the tradeoff
filter outperforms the Wiener filter in oSNR, speech distortion and
PESQ score when all the parameters of the tradeoff filter are prop-
erly chosen.
To visualize the performance, we plot in Fig. 10 the spectro-
grams of a segment of the clean speech signal, the noisy speech sig-
nal, and the enhanced signals with the tradeoff filter and two
different values of Q 0 (Q 0 ¼ 1 and Q 0 ¼ 10). It is clearly seen that
both the white noise and the keyboard typing noise are attenuated
significantly with the trade filter [as shown in the black boxes in
Fig. 10(b), (c), and (d)]. Comparing the spectrograms, one can see
that the tradeoff filter with Q 0 ¼ 10 clearly achieves more noise
reduction than the filter with Q 0 ¼ 1. Most of the keyboard typing



Fig. 10. Spectrograms of a segment of the clean speech, noisy speech signal, and enhanced signals with the tradeoff filter and two different values of Q 0 . (a) Clean speech
signal, (b) noisy speech signal, (c) enhanced signal with Q 0 ¼ 1, and (d) enhanced signal with Q 0 ¼ 10. Simulation conditions: the input SNR is 10 dB, ay ¼ av ¼ 0:8; L ¼ 30, and
the noise is a mixture of the keyboard typing noise and white Gaussian noise at a ratio of 10 dB.
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noise is reduced with Q 0 ¼ 10 while there is still a good amount of
residual keyboard typing noise with Q 0 ¼ 1 as shown in the black
boxes in Fig. 10(c) and (d). This coincides very well with the theo-
retical study in Section 3.4 that the output SNR should monotoni-
cally increase with the value of Q 0.
5. Conclusions

Noise reduction is a challenging problem in acoustic signal pro-
cessing and voice communications. Various noise reduction algo-
rithms have been developed over the past several decades.
However, most of those cannot deal with the case where the noise
correlation matrix is rank deficient. In this paper, we presented an
approach that combines the principles of the linear filtering and
subspace methods to deal with this problem. Specifically, eigen-
value decomposition is applied to the speech and noise correlation
matrices. Then, the nullspace of the noise signal is used to design
the noise reduction filters. In particular, we discussed the design
of the maximum SNR and tradeoff filters. Simulations were carried
out to examine the performance of the deduced filters in synthetic
harmonic noise, harmonic plus white noise, keyboard typing noise,
and keyboard typing noise plus white noise. Significant improve-
ment in both SNR and PESQ was observed, which justifies the effec-
tiveness of the developed approach.
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