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Abstract—Although many microphone-array beamforming
algorithms have been developed over the past few decades, most
such algorithms so far can only offer limited performance in
practical acoustic environments. The reason behind this has not
been fully understood and further research on this matter is
indispensable. In this paper, we treat a microphone array as a
multiple-input multiple-output (MIMO) system and study its
signal-enhancement performance. Our major contribution is
fourfold. First, we develop a general framework for analyzing
performance of beamforming algorithms based on the acoustic
MIMO channel impulse responses. Second, we study the bounds
for the length of the beamforming filter, which in turn shows the
performance bounds of beamforming in terms of speech dere-
verberation and interference suppression. Third, we address the
connection between beamforming and the multiple-input/output
inverse theorem (MINT). Finally, we discuss the intrinsic re-
lationships among different classical beamforming techniques
and explain, from the channel condition perspective, what the
prerequisites are for those techniques to work.

Index Terms—Beamforming, Frost, linearly constrained min-
imum variance (LCMV), microphone arrays, multiple-input/
output inverse theorem (MINT), minimum variance distortionless
response (MVDR).

I. INTRODUCTION

MICROPHONE arrays, which consist of sets of micro-
phone sensors that are spatially arranged in specific pat-

terns, have been studied for more than three decades. Such sys-
tems have already played, and will continue to play an important
role in applications like audio-bridging and teleconferencing
where distant or hands-free audio acquisition is required [1], [2].

One of the most important functionalities of microphone ar-
rays is to extract the speech of interest from its observations
corrupted by noise, reverberation, and competing sources. The
typical method for this is to form a beam and point it to a de-
sired direction. As a result, signals from this so-called look di-
rection is reinforced, while signals from all the other directions
are attenuated. Suppose that we have an array consisting of
microphones and denote the microphone outputs as

. Beamforming is achieved based on manipulating
the signals . Many algorithms have been developed over
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Fig. 1. Structure of a delay-and-sum beamformer.

the three decades. The simplest one is the delay-and-sum beam-
former as shown in Fig. 1, which was originally investigated
in the underwater acoustics and radar antenna areas [3]. The
basic idea is to delay (or advance) each microphone output by
a proper amount of time so that the signal components from the
desired source are synchronized across all sensors. These de-
layed (or advanced) signals are then weighted and summed to-
gether. Since they add up together coherently, the desired signal
components are reinforced. In contrast, the other sources and
noise are suppressed or even eliminated as they are added to-
gether destructively. The weighting coefficients can be either
fixed or adaptively determined. The latter leads to an adaptive
beamformer [4]–[9]. The advantage of adaptive beamforming
over nonadaptive beamforming can roughly be interpreted as
follows. From the configuration shown in Fig. 1, at a single fre-
quency, a total of nulls can be formed in the directivity
pattern. If we adjust adaptively by taking into account the
signal and noise characteristics, the nulls can be properly
designed and placed so that noise and interference can be better
rejected.

The above technique was developed for narrowband signals.
Although it serves as the basis for any array beamforming,
this technique is not very useful for acoustic applications
since speech is a typical broadband signal. Consequently, the
directivity pattern of the delay-and-sum beamformer would not
be the same across a broad frequency band. If we use such a
beamformer, then noise and interference signals coming from
a direction different from the beamformer’s look direction
will not be uniformly attenuated over its entire spectrum. This
“spectral tilt” results in a disturbing artifact in the array output
[10].

1558-7916/$25.00 © 2006 IEEE
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Fig. 2. Structure of a frequency-domain broadband beamformer by narrow-
band decomposition.

One way to overcome this problem is to use harmonically
nested subarrays [11], [12]. Every subarray is designed for op-
erating at a single frequency. However, such a solution requires
a large array with a great number of microphones, and the array
geometry is unusual. Another way to circumvent this problem
is to perform narrowband decomposition and design narrow-
band beamformers independently at each frequency, as shown
in Fig. 2. With a simple inspection of Fig. 2, we see that this
broadband beamformer is equivalent to applying a finite-dura-
tion impulse response (FIR) filter to each microphone output
and then summing the filtered signals together as illustrated in
Fig. 3. This filter-and-sum algorithm was originally proposed
by Frost [13] in the early 1970s and has been intensively studied
since then [1], [14]–[32]. In addition to producing a broadband
directivity pattern, the effectiveness of this beamformer can also
be explained in the following way. As mentioned earlier, the
delay-and-sum structure can only produce nulls at a
single frequency. By applying FIR filters of length to chan-
nels, we can now produce nulls at different fre-
quencies. Therefore, this technique offers more flexibility in re-
jecting noise and interference than the delay-and-sum beam-
former. Similar to the delay-and-sum case, the filters’ coeffi-
cients in Fig. 3 can also be determined either in a nonadap-
tive way or adaptively [14]–[32]. With adaptive algorithms, the
nulls can be properly designed and placed at directions and fre-
quencies for better interference and noise attenuation. However,
adaptive beamformers may not be as robust as their nonadaptive
counterparts and often lead to signal self cancellation, which is
undesirable.

Although so many efforts have been devoted to microphone
array processing, the performance of most microphone array
beamformers in practical acoustic environments still cannot
meet expectation. Apparently, the potential of microphone
arrays has not been fully realized as expected. The reasons
behind this are very sophisticated and have not been fully
understood thus far. Therefore, further research in this area is
indispensable.

This paper deals with the signal enhancement problem
using microphone arrays. We treat a microphone array as a
multiple-input multiple-output (MIMO) system. A general

Fig. 3. Structure of a time-domain filter-and-sum beamformer.

framework based on the MIMO channel impulse responses
is then developed for analyzing beamforming performance.
Under this framework, we study the bounds for the length
of beamforming filter, which in turn show the performance
bounds of beamforming in terms of speech dereverberation and
interference suppression. We address the connection between
beamforming and the multiple-input/output inverse theorem
(MINT) [33], which was originally developed to achieve the
exact inverse filtering of the room acoustics. We also discuss the
intrinsic relationships among different classical beamforming
techniques and explain, from the channel condition point of
view, what the necessary conditions are for those techniques to
work.

The rest of this paper is organized as follows. In Section II,
we briefly describe the signal model used in this paper. We then
formulate a MIMO framework and discuss the signal estimation
problem for an -element microphone array with sources

in Section III. We will see that the proposed MIMO
framework has more degrees of freedom than the existing ap-
proaches. As a result, good performances from a theoretical
point of view are possible. In Section IV, we present some ex-
perimental results. Finally, some conclusions will be provided
in Section V.

II. PROBLEM DESCRIPTION

The problem considered in this paper is illustrated in Fig. 4,
where we have sources in the sound field and we use mi-
crophones to collect signals. We assume that the number of mi-
crophones used is greater than, or at least equal to the number of
sound sources, i.e., . The output of the th microphone
is given by

(1)

where denotes convolution, is the th source signal,
is the acoustic channel impulse response from the source
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Fig. 4. Illustration of a microphone array system.

to microphone , and is the noise observed at the th
microphone. In vector/matrix form, this signal model can be
rewritten as

(2)

where

...

where is the length of the longest channel impulse response,
and denotes the transpose of a vector or a matrix. Given this
signal model, the array processing is to estimate some of the
source signals.

III. SIGNAL ESTIMATION BASED ON A MIMO FRAMEWORK

In this section, we discuss how to estimate the desired source
signals from the microphone observations. For ease of analysis,

let us neglect the noise terms in (2). In this situation, the
output of the th microphone at time is written as

(3)

Suppose that among the sources there are desired
signals that we want to estimate. Without loss of generality, we
assume that the first signals, i.e., , , are
the desired sources while the other source signals ,

, are the interferers, where .
So the objective of the array processing is to extract the sig-
nals , from the given observation signals

, . This would involve two processing op-
erations: dereverberation and interference suppression. Suppose
that we can achieve an estimate of by applying filters
to the microphone outputs, i.e.,

(4)

where

are filters of length and

A legitimate question then arises: is it possible to find in
such a way that (where is a delay
constant)? In other words, is it possible to perfectly recover

(up to a constant delay)? We will answer this question
in Sections III-A–D.

A. Least-Squares and MINT Approaches

The microphone signals can be rewritten in the following
form:

(5)

where (see the equation at the bottom of the page) is a Sylvester
matrix of size , with , and

...
...

...
...

...
...

...
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Plugging (5) into (4), we find that

(6)
From the previous expression, we see that in order to perfectly
recover , the following conditions have to be satisfied:

(7)

(8)

where

is a vector of length , whose th component is equal to 1. In
matrix/vector form, the previous conditions are

(9)

where we have the following equations shown at the bottom of
the page. The channel matrix is of size . De-
pending on the values of and , we have two cases, namely

and .
1) Case 1: .
In this case, . Since ,

we have . This means that the number of rows of
is always larger than its number of columns. Now let’s as-

sume that the matrix has full column rank. In this situation,
the best estimator that we can derive from (9) is the least-squares
(LS) solution, i.e.,

(10)

However, this solution may not be good enough in practice for
several reasons. First, we do not know how to determine .
Second, the whole impulse response matrix must be known
to find the optimal filter in the LS sense, and thus there is very
little flexibility with this method. In addition, it does not seem
easy to quantify the amount of dereverberation and interference
suppression separately.

2) Case 2: .
With more microphones than sources, is it possible to find a

better solution than the LS one? Let , . In
fact, requiring to have a number of rows that is equal to or
larger than its number of columns, we find this time an upper
bound for

(11)

If we take

(12)

and if is an integer, is now a square matrix. Therefore

(13)

This expression is exactly the MINT method [33], [34], which
can perfectly recover the signal of interest if is known
or can be accurately estimated. Of course, we supposed that
is of full rank, which is equivalent to saying that the polynomials
formed from , , share no
common zeroes.

It is very interesting to see that, if we have more microphones
than sources, we have more flexibility in estimation of the sig-
nals of interest and have a better idea for the choice of .

B. Frost Algorithm

Following (5), if we concatenate the observation vectors
together, we get

where

The covariance matrix corresponding to is

(14)

with . We assume that is in-
vertible, which is equivalent to stating that the matrix is of

...
...

. . .
...
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full rank and matrix has full column rank. We are now ready
to study two interesting cases.

1) Case 1: Partial Knowledge of the Impulse Response
Matrix:

In this case, we wish to extract source with only the
knowledge of , i.e., the impulse responses from that source
to the microphones. With this information, the linearly
constrained minimum variance (LCMV) filter is obtained by
solving the following problem:

subject to (15)

Hence

(16)

We refer to this approach as the LCMV1, where a necessary con-
dition for to be nonsingular is to have ,
which implies that

(17)

An important thing to observe is that the minimum length re-
quired for the filters , , decreases as
the number of microphones increases. As a consequence, the
Frost filter has the potential to significantly reduce the effect of
the interferers with a large number of microphones.

If we take the minimum required length for , i.e.,
and assume that is an integer, turns

to be a square matrix and (16) becomes

(18)

which is the MINT method [33], [34]. We assumed in (18) that
has full rank, which is equivalent to saying that the

polynomials formed from share no common
zeros. Mathematically, this condition is expressed as follows:

(19)

where denotes the greatest common divisor of the poly-
nomials involved and, and are the -transforms
of and , respectively.

From (14), we can deduce that a necessary condition for
to be invertible is to have . When , i.e.,
the number of sources is equal to the number of microphones,
this condition is always true, which means that there is no upper
bound for . When , assume that , ,
this condition becomes

(20)

Combining (20) and (17), we see how is bounded, i.e.,

(21)

2) Case 2: Full Knowledge of the Impulse Response Matrix
and : Here, we wish to extract source with the
full knowledge of the impulse response matrix , with

, . Taking all this information into account in our
optimization problem

subject to (22)

we find the solution

(23)

We refer to this approach as the LCMV2, where we assume
that both and are nonsingular and their in-
verse matrices exist. From the previous analysis, we know that
in order for to be invertible the condition in (20) has to be
true. Also, a necessary condition for to be nonsin-
gular is to have , which implies that

(24)

Therefore, the only condition for (23) to exist is that

(25)

and this value needs to be an integer. In this case, is a square
matrix and (23) becomes

(26)

which is also the MINT solution [33], [34]. Indeed, it was shown
in [35] how to convert an MIMO system (with )
into interference-free SIMO systems. The MINT method is
then applied in each one of these SIMO systems to remove the
channel effect. So this two-step approach is equivalent to the
LCMV2.

It’s quite remarkable that the MINT method is a particular
case of the Frost algorithm. Although never shown before, this
result should not come as a surprise since the motivation behind
the two approaches is similar.

C. Generalized Sidelobe Canceller Structure

The generalized sidelobe canceller (GSC) transforms the
LCMV algorithm from a constrained problem into an uncon-
strained form. Therefore, the GSC and LCMV beamformers are
essentially the same while the former has some implementation
advantages [14], [15], [23], [24]. Given the channel impulse
responses, the GSC method can be formulated by dividing the
filter vector into two components operating on orthogonal
subspaces, as illustrated in Fig. 5. Consider the linearly con-
strained optimization problem given in (15). If we assume that

so that the nullspace of not to be
equal to zero (this indicates that the GSC structure makes sense
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Fig. 5. The structure of a generalized sidelobe canceller.

only for the LCMV1 filter), the GSC method can be formulated
as [14], [23], [24]

(27)

where

(28)

is the minimum-norm solution of and is the
blocking matrix that spans the nullspace of , i.e.,

. The size of is , where is the
dimension of the nullspace of . Therefore, is a vector of
length , which is obtained
from the following unconstrained optimization problem:

(29)

and the solution is

(30)

Equation (29) is equivalent to finding a weighting vector that
minimizes , where

(31)

is the error signal between the outputs of the two filters and
. In [25], it is shown that

(32)

so the LCMV and GSC algorithms are equivalent.
Expressions (27) and (32) have a very nice physical interpre-

tation [compared to (16)]. The LCMV filter is the sum
of two orthogonal vectors and , which serve for
different purposes. The objective of the first vector, , is to per-
form dereverberation on the signal , while the objective of
the second vector is to reduce the effect of the inter-
ference. Increasing the length of the filters from its
minimum value will not change anything on
the dereverberation part. However, increasing will augment
the dimension of the nullspace of , and hence the length of

. As a result, better interference suppression is expected.

It is obvious, from a theoretical point of view, that perfect dere-
verberation is possible (if is known or can be accurately
estimated) but perfect interference suppression is not. In prac-
tice, if all the impulse responses can be
estimated, we can expect good dereverberation but interference
suppression may be limited for the simple reason that it will
be very hard to make much larger than (the length of
the impulse responses ). In other words, as reverberation of
the room increases, interference suppression decreases. This re-
sult was shown experimentally in [26] and [27]. One possible
way for improvement is to process the observation signals in
two steps: the LCMV filter for dereverberation (first step) fol-
lowed by a Wiener filter for noise reduction (second step); see,
for example, the methods used in [28]–[30]. This method may
be very effective from a noise reduction point of view but it will
distort the desired signal .

To find the bounds for the length of , we consider two
situations. The first one is when the number of microphones is
equal to the number of sources1 . In this case, we
know from the previous subsection that there is no upper bound
for . This implies that can be taken as large as we wish.
As a result, we can expect better interference suppression as
is increased. By increasing the number of microphones (with

), the minimum length required for will decrease
compared to , which is a very good thing, because in practice
acoustic impulse responses can be very long.

Our second situation is when we have more microphones than
sources. Assume that , . Using (21) and the
fact that , we can easily deduce the
bounds for the length of

(33)

This means that there is a limit to interference suppression.
Consider the scenario where we have one desired source only

and interferers. We have and
(33) is now

(34)

We see from (34) that the upper bound of depends on
three factors: the reverberation condition , the number of
interference sources , and the number of microphones .
When and are fixed, if the length of the room impulse re-
sponse increases, this indicates that the environment is more
reverberant and the dereverberation problem will become more
difficult, so we have to increase to compensate for the ad-
ditional reflections. In case that and remain the same, but
the number of interference sources increases, this implies that
we have more interferers to cope with so we have to use a larger

1There is no distinction here between the interference and desired sources.
By extracting the signal of interest s (k) from the rest, the algorithm will see
the other desired sources as interferences. We assume that all sources are active
at the same time; if it is not the case, we will be in a situation where we have
more microphones than sources.
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. Now, suppose that and remain the same, if we in-
crease the number of microphones, this will allow us to use a
larger value for . We should, however, make a distinction
between this case and the former two situations. When we have
more microphones, we achieve more realizations of the source
signals. So we can increase to augment the speech-derever-
beration and interference-suppression performance. But in the
former two situations, we would expect some degree of perfor-
mance degradation since the problem becomes more difficult to
solve as and increase.

D. Minimum Variance Distortionless Response Approach

The minimum variance distortionless response (MVDR)
method, due to Capon [5], is a particular case of the LCMV1.
In the original formulation of MVDR, the observation signals
were assumed free of reverberation, so it applies only one con-
straint to the direct path of the desired source. In the presence
of reverberation, the constraint for MVDR should be modified
as follows:

(35)

where is the th column of the matrix . The aim of
this constraint is to align the desired source signal at the
output of the beamformer. Hence, in the MVDR approach, we
have the following optimization problem:

subject to (36)

whose solution is

(37)

The minimum required length for the filters is
. In this case, the performance of the MVDR beamformer is

similar to that of the classical delay-and-sum beamformer. As
is increased compared to , the signal of interest will be

still aligned at the output of the beamformer, while other signals
will tend to be attenuated.

This method may be the most useful in practice, since it does
not require the full knowledge of the impulse responses but only
the relative delays among microphones. However, an adaptive
implementation of the MVDR may cancel the desired signal
[36].

IV. EXPERIMENTS

In this section, we will study the effect of filter length on
beamforming performance and compare different algorithms
via simulations in realistic acoustic environments.

A. Experimental Setup

The experiments were conducted with the acoustic impulse
responses measured in the varechoic chamber at Bell Laborato-
ries [37]. The chamber is a rectangular room, which measures
6.7 m long by 6.1 m wide by 2.9 m high and is

Fig. 6. Layout of the experimental setup in the varechoic chamber (coordinate
values measured in millimeters). The three sources are placed, respectively, at
(3337, 1438, 1600), (1337, 2938, 1600), and (5337, 2938, 1600). The four mi-
crophones in the linear array are located, respectively, at (2437, 5600, 1400),
(2537, 5600, 1400), (2637, 5600, 1400), and (2737, 5600, 1400).

Fig. 7. One measured impulse response from s (k) to microphone 1.

equipped with 368 electronically controlled panels. Each panel
consists of two perforated sheets whose holes, if aligned, ex-
pose sound absorbing material (fiberglass) behind, but if shifted
to misalign, form a highly reflective surface. Every panel can
be controlled individually so that the holes on a particular panel
are either fully open (absorbing state) or fully closed (reflective
state). As a result, a total of 2 different room characteristics
can be generated by varying the binary states of the 368 panels
in different combination [38]. For a detailed description about
the varechoic chamber and how the reverberation time is con-
trolled, see [37] and [38].

The layout of the experimental setup is illustrated in Fig. 6,
where a linear array which consists of four omni-directional mi-
crophones were employed with their positions being, respec-
tively, at (2437, 5600, 1400), (2537, 5600, 1400), (2637, 5600,
1400), and (2737, 5600, 1400). We have three sources in the
sound field: one target (a signal from a male speaker) is
located at (3337, 1438, 1600), and two interferers (two signals
from a female speaker), and , are placed at (1337,
2938, 1600) and (5337, 2938, 1600), respectively. The objective
of this study is to investigate how the desired signal can
be dereverberated and the two interference sources, and

, can be suppressed or canceled when four microphones
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Fig. 8. Time sequence and the corresponding spectrogram of (a) the desired source signal s (k) (from a male speaker) and (b) the output of microphone 1, i.e.,
x (k).

are used. For ease of analysis, we neglect the ambient noise ef-
fect. The reverberation is controlled such that is approx-
imately equal to 0.35 s. To make the experiments repeatable,
the impulse response from each source to each microphone was
measured (the impulse response was first measured at 48 kHz
and then downsampled to 8 kHz). As an example, Fig. 7 plots
an impulse response measured from to the first micro-
phone. These measured impulse responses will be treated as the
true ones in our experiments.

B. Experimental Results

To visualize the performance of different beamforming
algorithms, we first conduct a simple experiment where all
the impulse responses are truncated to only 64 points (the
zeros shared by all the impulse responses at the beginning
are also removed). All three source signals are prerecorded
speech sampled at 8 kHz, where is from a male speaker
and both and are from the same female speaker.
The waveform and spectrogram of the first 5 s of are
shown in Fig. 8(a). The microphone outputs are obtained by
convolving the three source signals with the corresponding
impulse responses. Fig. 8(b) plots the first 5 s of the signal
observed at the first microphone.

To extract , we need to estimate the filter. This would
require knowledge about the impulse responses from the three
sources to the four microphones. In this experiment, we assume
that the impulse responses are known a priori, so the results in
this case demonstrate the upper limit of each algorithm for a
given condition. Another parameter that has to be determined is
the length of the filter, i.e., . Throughout the text, we have
analyzed the bounds of for different algorithms. In this ex-
periment, is chosen as its maximum value that can be taken
according to (12), (20), (25), and (33) and is set to be the same
for all the algorithms. Note that with this optimum choice of ,
the LS and LCMV2 methods will produce the same results be-
cause under this condition the pseudoinverse in the LS method
is equal to the exact inverse in the LCMV2 approach. In addi-
tion, we already see from Section III that LCMV2 and MINT

are the same. The outputs of different beamformers are plotted
in Fig. 9.

Comparing Figs. 9 and 8 reveals that both the LS and LCMV2
(MINT) approaches have achieved almost perfect interference
suppression and speech dereverberation. However, the outputs
of LCMV1 and GSC still consist of a small amount of inter-
ference signals. Apparently, LCMV1 and GSC are less effec-
tive than the LS and LCMV2 (MINT) techniques in terms of
interference suppression. This is understandable since LCMV1
and GSC employ only the channel information from the de-
sired source to the microphones while both the LS and LCMV2
(MINT) techniques use not only the impulse responses from the
desired source but also those from all the interferers. In addition,
we see that MVDR is inferior to all the other studied techniques
in performance. This result is not surprising since MVDR poses
less constraints than the other techniques.

To quantitatively assess the performance of interference sup-
pression and speech dereverberation, we now evaluate two cri-
teria, namely signal-to-interference ratio (SIR) and speech spec-
tral distortion. For the notion of SIR, see [35], [39]. In this study,
though we have sources, our interest is in extracting only the
target signal, i.e., the first source , so the average input SIR
at microphone is defined as

(38)

The overall average input SIR is then given by

(39)

The output SIR is defined using the same principle but the
expression will be slightly more complicated. For a concise
presentation, we denote the impulse response of the equivalent
channel between the th source and the beamforming output
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Fig. 9. Time sequence and the corresponding spectrogram of different beamforming algorithms, where L = 64 and L = 189 for all the algorithms. Note that
under this condition, the LS, LCMV2, and MINT methods are theoretically the same.

as , which can be expressed as

(40)

where is the filter between microphone and the beam-
forming output, and is the impulse response between
source and microphone . The output SIR can then be
written as

(41)

If we express both and in decibels, the difference
between the two reflects the performance of interference sup-
pression.

To evaluate speech dereverberation, we investigate the
Itakura–Saito (IS) distortion measure, which performs a com-
parison of spectral envelopes [autoregressive (AR) parameters]
between the clean and the processed speech. For a detailed
description of the IS distance, we refer to [40], [41]. Studies

have shown that the IS measure is highly correlated (0.59) with
subjective quality judgements [42]. A recent report reveals
that the difference in mean opinion score (MOS) between two
processed speech signals would be less than 1.6 if their IS
measure is less than 0.5 for various codecs [43]. Many other
reported experiments confirmed that two spectra would be
perceptually nearly identical if their IS distance is less than 0.1.
All this evidence indicates that the IS distance is a reasonably
good objective measure of speech quality. In our experiment,
the IS measure is calculated between and ;
therefore, it evaluates the amount of reverberation present in the
estimated speech signal after beamforming. The smaller the IS
distance, the more effective will be the beamforming algorithm
in dereverberation.

Table I summarizes the experimental results, where the
source signals are the same as used in the previous experiment.
Many observations can be made from this table. First of all,
as the length of the impulse responses, i.e., , increases, the
maximum achievable (with the maximum ) gain in SIR
decreases. This occurs to all the algorithms. For example, when

, the LCMV1 algorithm improves SIR from 9.23 dB
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TABLE I
PERFORMANCE OF INTERFERENCE SUPPRESSION AND SPEECH DEREVERBERATION USING DIFFERENT BEAMFORMING

ALGORITHMS WHERE THE MIMO IMPULSE RESPONSES ARE KNOWN A PRIORI

TABLE II
PERFORMANCE OF INTERFERENCE SUPPRESSION AND SPEECH DEREVERBERATION USING DIFFERENT BEAMFORMING

ALGORITHMS WHERE THE CHANNEL IMPULSE RESPONSES ARE ESTIMATED USING A BLIND TECHNIQUE

(input SIR) to 17.99 dB (output SIR). The gain is approximately
27 dB. When is increased to 256, the maximum SIR gain
with the same technique is only 16 dB. This result should not
come as surprise. As increases, each microphone receives
more reflections (with longer delays) from both the desired
and interference sources. As a result, the received speech
becomes more distorted and the estimation problem becomes
more difficult. Second, in the ideal condition where impulse
responses are known and is set to its maximum value, both
the LS and LCMV2 (MINT) techniques can achieve almost
perfect interference suppression and speech dereverberation.
The SIR gains are more than 100 dB and the IS distances are
approximately zero. Similar to the LS and LCMV2 (MINT)
methods, the LCMV1 and GSC can also perform perfect speech
dereverberation, but their interference suppression performance
is limited. The reason behind this has been explained earlier on.
Briefly, it is because LCMV1 and GSC did not use the channel
information from the interferers to the microphones. Third,
in each reverberant condition (a fixed ), if we reduce the
length of the filter, the amount of interference suppression

decreases significantly for all the methods except MVDR. For
example, for , when , the LCMV1 yields
an output SIR of 17.99 dB. The corresponding SIR gain is
27 dB. But when is reduced to 50, the output SIR is only
-8 dB, and the SIR gain is only 1 dB. Therefore, if we want
a reasonable amount of interference suppression, the filter
should be set to a long enough value. However, the length of
this filter is upper bounded, as we explained in Section III. In
addition, we see from Table I that IS distances obtained by the
LS, LCMV1, LCMV2 (MINT), and GSC methods are close to
zero, indicating that these techniques have accomplished good
speech dereverberation. This coincides with the theoretical
analysis made throughout the text. Finally, it is remarkable to
see that, in terms of interference rejection, the MVDR method
is very robust to the changes of both and . When is
small, this method can even achieve more interference suppres-
sion than the other four approaches. However, the IS measures
with this method are very large. Therefore, we may have to use
dereverberation techniques in order to further reduce speech
distortion.
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In the previous experiments, we assumed that the impulse
responses were known a priori. In real applications, it is very
difficult if not impossible to know the true impulse responses.
Therefore, we have to estimate such information based on the
data observed at microphones. In our application scenario, the
source signals are generally not accessible, so the estimation of
channel impulse responses have to be done in a blind manner.
However, blind identification of a MIMO system is a very diffi-
cult problem and no effective solution is available thus far, par-
ticularly for acoustic applications. Fortunately, in natural com-
munication environments, not all the sources are active at the
same time. In many time periods, the observation signal is oc-
cupied by a single source exclusively. If we can detect those
periods, the MIMO identification problem can be converted to
SIMO identification problem in each time period. This is as-
sumed to be the case in our study and the channel impulse re-
sponses are estimated using the techniques developed in [35].
After the estimation of channel impulse responses, we can re-
cover the desired source signals by beamforming. The results
for this experiment are shown in Table II where we studied two
situations. While in the first one, we assume that we know the
length of the true impulse responses during blind channel iden-
tification, in the second case, the length of the modelling filter,
i.e., , during blind channel identification is set to less than

. Evidently, the second case is more realistic since in reality
the real impulse responses can be very long, but we cannot use
a very long modeling filter due to many practical limitations.

Comparing Tables II and I, one can see when , all the
techniques suffer some but not significant performance degra-
dation. However, if is less than , which is true in most
real applications, the LS and LCMV2 (MINT) suffer significant
performance degradation in both interference suppression and
speech dereverberation. The reason may be explained as fol-
lows. In our case, we truncated the impulse response to either
64 or 128 points. Due to the strong reverberation, the tail of the
truncated impulse responses consists of significant energy. As
a result, dramatic errors were introduced during channel iden-
tification when decreasing . This in turn degrades the per-
formance of beamforming. However, comparing with the LS
and LCMV2 (MINT), we see that the LCMV1 and GSC suffer
some but not serious deterioration. We also noticed a very in-
teresting property of the MVDR approach from Table II that its
performance does not deteriorate much as decreases. This
robust feature is due to the fact that MVDR poses less con-
straints than the other studied methods. However, as we noticed
before, MVDR suffers dramatic signal distortion, as indicated
by its large IS distances. So further dereverberation techniques
may have to be considered after the MVDR processing.

V. CONCLUSION

Microphone array beamforming is a very challenging
problem. Most existing algorithms exhibit very limited perfor-
mance in real acoustic environments. The reasons behind this
are multiple. The main one is due to the reverberation effect,
which has not been fully taken into account in the current
techniques. In this paper, we developed a general framework
for microphone array beamforming, in which beamforming

is treated as a MIMO signal processing problem. Under this
general framework, we analyzed the lower and upper bounds
for the length of the beamforming filter, which in turn show
the performance bounds of beamforming in terms of speech
dereverberation and interference suppression. We addressed
the connection between beamforming and the MINT, which
was originally developed to achieve the exact inverse filtering
of the room acoustics. We also discussed the intrinsic rela-
tionships among the most classical beamforming techniques
and explained, from the channel condition point of view, what
the necessary conditions are for the different beamforming
techniques to work. As expected, both the theoretical analysis
and experimental results showed that the impulse responses
from the desired sources as well as the interferers have to be
employed in order to achieve good interference suppression
and speech dereverberation. In practice, however, the true
impulse responses are in general not accessible. Therefore, we
have to estimate them via either blind or nonblind techniques.
If the estimated channel impulse responses approximate the
true ones, beamforming may not suffer much performance
degradation. However, if the channel estimates are inaccu-
rate, the performance of interference suppression and speech
dereverberation may deteriorate dramatically. The degree of
performance degradation varies from algorithm to algorithm.
Therefore, great care has to be taken when we select beam-
forming algorithms.
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