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Abstract

Noise reduction, which aims at extracting the clean speech from noisy observations, has plenty of applications. It has attracted a con-
siderable amount of research attention over the past several decades. Although many methods have been developed, the most widely used
one, by far, is the optimal linear filtering technique, which achieves clean speech estimate by passing the noisy observation through an
optimal linear filter/transformation. The representative algorithms of this include Wiener filtering, spectral restoration, subspace method,
etc. Many experiments have been carried out, from various points of view, to show that the optimal filtering technique can reduce the
level of noise that is present in the speech signal and improve the corresponding signal-to-noise ratio (SNR). However, there is not much
theoretical justification so far for the noise reduction and SNR improvement. This paper attempts to provide a theoretical analysis on the
performance (including noise reduction, speech distortion, and SNR improvement) of the optimal filtering noise-reduction techniques
including the time-domain causal Wiener filter, the subspace method, and the frequency-domain subband Wiener filter. We show that
the optimal linear filter, regardless of how we delineate it, can indeed reduce the level of noise (but at a price of attenuating the desired
speech signal). Most importantly, we prove that the a posteriori SNR (defined after the optimal filtering) is always greater than, or at least
equal to the a priori SNR, which reveals that the optimal linear filtering technique is indeed able to make noisy speech signals cleaner. We
will also discuss the bounds for noise reduction, speech distortion, and SNR improvement.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Since we live in a natural environment where noise is
inevitable and ubiquitous, speech signals can seldom be
recorded in pure form and are generally contaminated by
acoustic background noise. As a result, the microphone
signals have to be ‘‘cleaned up’’ with digital signal process-
ing tools before they are stored, transmitted, or played out.

The cleaning process, which is often referred to as either
noise reduction or speech enhancement, can be achieved in
many different ways, such as beamforming, adaptive can-
cellation, temporal filtering, spatial–temporal filtering,
etc. The most widely used technique thus far, however, is
the single-channel optimal linear filtering approach, which
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achieves clean speech estimate by passing the noisy obser-
vation through an optimal linear filter/transformation. A
variety of such algorithms have been developed. They prin-
cipally fall into one of the following four categories: Wiener

filter, spectral restoration, subspace method, and parametric

method.

Wiener filter: This method restores the desired speech
signal by passing the noisy speech through a finite
impulse response (FIR) filter whose coefficients are esti-
mated by minimizing the mean square error (MSE)
between the clean speech and its estimate (Widrow
and Stearns, 1985). The Wiener filter can also be delin-
eated in the frequency domain, resulting in various
derivative techniques such as spectral subtraction (Boll,
1979; McAulay and Malpass, 1980; Lim, 1983; Lim and
Oppenheim, 1979), parametric Wiener filter (Lim and
Oppenheim, 1979; Vary, 1985; Etter and Moschytz,
1994; Chen et al., 2003; Diethorn, 2004), etc.
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Spectral restoration: In the frequency domain, a speech
signal can be factorized into spectral amplitude and
phase components. From perceptual point of view, the
former is considerably more important than the latter
(Lim and Oppenheim, 1979; Vary, 1985; Wang and
Lim, 1982). Therefore the spectral-restoration technique
recovers only the spectral amplitude (or spectral enve-
lope) of the clean speech from that of the corrupted
speech while neglecting the phase corruption (Ephraim
and Malah, 1984, 1985; Virag, 1999; Chang and
O’Shaughnessy, 1991).
Signal subspace: This method decomposes the vector
space of the noisy speech into two orthogonal subspaces
using the Karhunen–Loève transform (KLT): one is
composed of both speech and noise and the other con-
sists of noise component only. This is possible because
it has been proven that the clean speech can be described
with a low-rank model. After decomposition, the speech
signal is estimated by removing the noise subspace, and
cleaning the speech-plus-noise subspace (Ephraim and
Van Trees, 1995; Dendrinos et al., 1991; Hansen, 1997;
Lev-Ari and Ephraim, 2003; Rezayee and Gazor, 2001;
Mittal and Phamdo, 2000; Hu and Loizou, 2003).
Parametric method: It is well known that a speech signal
can be modelled as an autoregressive (AR) process.
Therefore, noise reduction can be formulated as a
parameter estimation problem with its objective to esti-
mate the AR model parameters of the clean speech from
the noisy observations (Paliwal and Basu, 1987; Gibson
et al., 1991; Gannot et al., 1998).

Although so many optimal filtering algorithms have
been developed for noise reduction, there has been remark-
ably little (if any) theoretical analysis of their performance.
The reason may be attributed to the difficulty in quantizing
the combinatorial effect between noise reduction and
speech distortion. Most existing performance studies have
been experimental, including: (1) ranking the mean opinion
scores, (2) examining the SNR improvements, (3) inspect-
ing the speech spectrograms, and (4) comparing the noise
levels before and after the application of an algorithm.
While the results are very helpful for us to understand
how the algorithms behave in the specified conditions,
the experimental evaluation alone is not enough to justify
the algorithms. A more thorough theoretical analysis is
important and imperative. Recently, we performed some
analysis of the time-domain Wiener filter and proved that,
as long as we have an accurate estimate of the statistics of
the noisy speech and the noise signal, SNR improvement is
guaranteed, no matter whether the noise is white or colored
(Chen et al., 2006; Benesty et al., 2005). This paper presents
our continued efforts on this topic. The main contribution
of this paper is a theoretical analysis on the performance
of the optimal [from the minimum-mean-square error
(MMSE) sense] filtering techniques including the time-
domain causal, the frequency-domain noncausal, and the
constrained (subspace) Wiener filters. We show that the
optimal filter, regardless of how we delineate it, can indeed
reduce the level of noise. Most importantly, we prove that
the a posteriori SNR is always greater than, or at least
equal to the a priori SNR, provided that the statistics of
the noisy speech and noise signals are accurately estimated.
Also discussed are the lower and upper bounds for noise
reduction, speech distortion, and SNR improvement.

2. Signal model and problem formulation

The noise-reduction problem considered in this paper is
to recover a speech signal of interest x(n) from the noisy
observation

yðnÞ ¼ xðnÞ þ vðnÞ; ð1Þ

where v(n) is the unwanted additive noise, which is assumed
to be a zero-mean random process (white or colored) and
uncorrelated with x(n). This signal model can also be
formulated in other forms. For example, in vector/matrix
form, it is written as

yðnÞ ¼ xðnÞ þ vðnÞ; ð2Þ

where

yðnÞ ¼ ½ yðnÞ yðn� 1Þ � � � yðn� Lþ 1Þ �T

is a vector consisting of the L most recent samples of the
noisy speech signal, superscript T denotes transpose of a
vector or a matrix, and x(n) and v(n) are defined in a similar
way to y(n). In this case, the noise-reduction problem is for-
mulated as one of estimating x(n) from the observation
y(n).

If applying the L-point discrete Fourier transform
(DFT) to both sides of (2), we have the following relation-
ship in the frequency domain:

Y ðn; jxkÞ ¼ X ðn; jxkÞ þ V ðn; jxkÞ; ð3Þ

where

Y ðn; jxkÞ ¼
XL�1

l¼0

wðlÞyðn� Lþ lþ 1Þe�jxk l

is the short-time DFT of the noisy speech at time instant n,
xk = 2pk/L, k = 0,1, . . . ,L � 1, w(l) is a window function
(e.g. Hamming window, Hann window) applied to the
frame signal for better spectral estimation, and X(n, jxk)
and V(n, jxk) are the short-time DFTs for the clean speech
and the noise signal, defined in a similar way to Y(n, jxk).
Based on this relationship, the noise-reduction problem
can be expressed in the frequency domain as one of esti-
mating X(n, jxk) from Y(n, jxk).

3. Time-domain causal Wiener filter and its performance

The Wiener filter is one of the most fundamental
approaches for noise reduction, which can be formulated
either in the time or in the frequency domains. In the
time-domain Wiener filter, an estimate of the clean speech
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is obtained by passing the noisy signal y(n) through a tem-
poral filer, i.e.,

x̂ðnÞ ¼ hTyðnÞ; ð4Þ

where

h ¼ h0 h1 � � � hL�1½ �T

is an FIR filter of length L. The MSE criterion is then writ-
ten as

J xðhÞ , Ef½xðnÞ � x̂ðnÞ�2g ¼ Ef½xðnÞ � hTyðnÞ�2g; ð5Þ

where E{Æ} denotes mathematical expectation. It is immedi-
ately seen that the objective of noise reduction is to find the
optimal h that minimizes Jx(h). Mathematically, the opti-
mal filter can be described as

ho ¼ arg min
h

J xðhÞ: ð6Þ

Differentiating Jx(h) with respect to h and equating the
result to zero, we can find the solution to (6), which is
known as the Wiener–Hopf equations

Ryho ¼ ryx; ð7Þ

where

Ry , EfyðnÞyTðnÞg ð8Þ
is the correlation matrix of the observed signal y(n) and

ryx , EfyðnÞxðnÞg ð9Þ

is the cross-correlation vector between the noisy and clean
speech signals. It is seen from (7) that we need to know
both Ry and ryx in order to compute the Wiener filter ho.
The correlation matrix Ry can be directly estimated from
the observation signal y(n). However, x(n) is unobservable;
as a result, an estimation of ryx may seem difficult to ob-
tain. But since speech and noise are uncorrelated, we have

ryx ¼ EfyðnÞxðnÞg ¼ EfyðnÞ½yðnÞ � vðnÞ�g
¼ E½yðnÞyðnÞ� � E½vðnÞvðnÞ� ¼ ryy � rvv: ð10Þ

Now ryx depends on two correlation vectors: ryy and rvv.
The vector ryy, which is also the first column of Ry, can
be estimated from y(n). The vector rvv can be estimated dur-
ing intervals where the speech signal is absent. As a result,
the Wiener–Hopf equations given in (7) can be rewritten as

Ryho ¼ ryy � rvv: ð11Þ

If we assume that the matrix Ry is full rank, which is
the case in most practical situations, the Wiener filter is
obtained by solving either (7) or (11), i.e.,

ho ¼ R�1
y ryx ¼ R�1

y ryy � R�1
y rvv: ð12Þ

Now we are ready to check whether the Wiener filter can
actually reduce the level of noise as we expected. Substitut-
ing ho into (4), we can derive the power of the estimated
clean speech signal with the optimal Wiener filter,
Efx̂2
oðnÞg ¼ EfhT

o yðnÞyTðnÞhog
¼ EfhT

o xðnÞxTðnÞho þ hT
o vðnÞvTðnÞhog

¼ hT
o Rxho þ hT

o Rvho; ð13Þ

where Rx and Rv are, respectively, the correlation matrices
of the clean speech and the noise signal, defined in a similar
way to Ry. It is seen that there are two terms in the right-
hand side of (13), where hT

o Rxho represents the power of the
clean speech filtered by the Wiener filter and hT

o Rvho is the
residual noise.

In order to check whether the Wiener filter can reduce
noise, we evaluate the noise-reduction factor (Chen et al.,
2006), which is defined as the ratio between the power of
the original noise and that of the residual noise. As seen
from (13), the residual noise power is hT

o Rvho. The power
of the original noise can be computed as

r2
v ¼ E½v2ðnÞ� ¼ E½hT

1 vðnÞvTðnÞh1� ¼ hT
1 Rvh1; ð14Þ

where h1 ¼ 1 0 � � � 0½ �T. Therefore, the noise-reduc-
tion factor for the Wiener filter can be written as

nnrðhoÞ ¼
hT

1 Rvh1

hT
o Rvho

: ð15Þ

Substituting ho ¼ R�1
y ryx ¼ R�1

y rxx ¼ R�1
y Rxh1 into (15), we

obtain

nnrðhoÞ ¼
hT

1 Rvh1

hT
1 RxR

�1
y RvR

�1
y Rxh1

; ð16Þ

which is a function of all the three correlation matrices Rx,
Rv, and Ry. Using generalized eigenvalule decomposition
(Fukunaga, 1990), we can decompose the three correlation
matrices into the following form:

Rx ¼ BTKB;

Rv ¼ BTB;

Ry ¼ BT½I þ K�B;
ð17Þ

where B is an invertible square matrix, and

K ¼ diag k1 k2 � � � kL½ � ð18Þ

is a diagonal matrix with k1 P k2 P � � �P kL P 0. Substi-
tuting (17) into (16), we obtain

nnrðhoÞ ¼
PL

i¼1b2
i1PL

i¼1
k2

i

ð1þkiÞ2
b2

i1

; ð19Þ

where bi1, i = 1, . . . ,L, forms the first column of B and sat-
isfies

PL
i¼1b2

i1 ¼ r2
v .

Also with the matrix decomposition in (17), the SNR of
the observation signal can be expressed as

SNR ¼ E½x2ðnÞ�
E½v2ðnÞ� ¼

r2
x

r2
v

¼ hT
1 Rxh1

hT
1 Rvh1

¼
PL

i¼1kib
2
i1PL

i¼1b2
i1

: ð20Þ
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Using (20), we can rewrite (19) as

nnrðhoÞ ¼
1

SNR
�
PL

i¼1kib
2
i1PL

i¼1
k2

i

ð1þkiÞ2
b2

i1

¼ 1

SNR
�
PL

i¼1
ð1þkiÞ2

ð1þkiÞ2
kib

2
i1PL

i¼1
k2

i

ð1þkiÞ2
b2

i1

¼ 1

SNR
�
PL

i¼1
kiþk3

i

ð1þkiÞ2
b2

i1PL
i¼1

k2
i

ð1þkiÞ2
b2

i1

þ 2

24 35: ð21Þ

Using the fact that ki þ k3
i P k3

i , we easily deduce from (21)
that

nnrðhoÞP
1

SNR
�
PL

i¼1
k3

i

ð1þkiÞ2
b2

i1PL
i¼1

k2
i

ð1þkiÞ2
b2

i1

þ 2

24 35: ð22Þ

With some algebra, we can prove the following inequality
(see Appendix by setting l = 1 and qi = bi1 or follow the
Appendix in Chen et al. (2006))PL

i¼1
k3

i

ð1þkiÞ2
b2

i1PL
i¼1

k2
i

ð1þkiÞ2
b2

i1

P
PL

i¼1kib
2
i1PL

i¼1b2
i1

¼ SNR; ð23Þ

where equality holds if and only if all the ki’s corresponding
to nonzero bi1 are equal, where i = 1,2, . . . ,L. It follows
immediately that:

nnrðhoÞP
SNRþ 2

SNR
: ð24Þ

The right-hand side of (24) is always greater than 1 since
SNR is nonnegative. This shows that noise reduction is al-
ways feasible with the Wiener filter. It can be checked from
(24) that the lower bound of the noise-reduction factor is a
monotonically decreasing function of the SNR. It ap-
proaches to infinity when SNR comes close to 0 and draws
near to 1 as SNR approaches infinity. This indicates that
more noise reduction can be achieved with the Wiener filter
as the SNR decreases, which is, of course, desirable since as
SNR drops, there will be more noise to be eliminated.

Now let us examine the speech distortion. Similarly, we
borrow the concept of speech-distortion index from Chen
et al. (2006), which is defined as the attenuation in speech
power relative to the power of the original clean speech.
The power of the clean speech can be computed through
E½x2ðnÞ� ¼ E½hT

1 xðnÞxTðnÞh� ¼ hT
1 Rxh1. The attenuation of

speech power due to the Wiener filter can be computed
as ðh1 � hoÞTRxðh1 � hoÞ. As a result, the speech-distortion
index for the Wiener filter is written as

usdðhoÞ ¼
h1 � hoð ÞTRx h1 � hoð Þ

hT
1 Rxh1

: ð25Þ

Since Rx is positive semi-definite, we obviously have

usdðhoÞP 0: ð26Þ
In most noisy conditions, h1 � ho will neither be equal to
the zero vector, nor will it be in the null space of Rx. This
means we usually have usd(ho) > 0. So, speech distortion is
unavoidable with the Wiener filter.

The upper bound of the speech-distortion index can
be derived using the eigenvalue decomposition given in
(17). As a matter of fact, substituting (17) into (25), we
obtain

usdðhoÞ ¼
PL

i¼1
ki

ð1þkiÞ2
b2

i1PL
i¼1kib

2
i1

6

PL
i¼1

ki
1þ2ki

b2
i1PL

i¼1
kiþ2k2

i
1þ2ki

b2
i1

6
1

2 � SNRþ 1
;

ð27Þ

where we have used the following inequality:PL
i¼1

k2
i

1þ2ki
b2

i1PL
i¼1

ki
1þ2ki

b2
i1

P
PL

i¼1kib
2
i1PL

i¼1b2
i1

¼ SNR: ð28Þ

This inequality can be proved by the induction (following
the same analysis steps shown in Appendix).

From the previous analysis, we see that while noise
reduction is feasible with the Wiener filter, speech attenua-
tion is also unavoidable. In general, the more the noise is
reduced, the more the speech is attenuated. A key question
is whether the Wiener filter can improve SNR. To answer
this question, we give the following proposition.

Proposition 1. With the Wiener filter given in (7) and (12),

the a posteriori SNR (defined after the Wiener filter) is

always greater than or at least equal to the a priori SNR.
Proof. If the noise v(n) is zero, we already see that the Wie-
ner filter has no effect on the speech signal. Now we con-
sider the case where noise is not zero. The a priori SNR
can be written as

SNR ¼ E½x2ðnÞ�
E½v2ðnÞ� ¼

r2
x

r2
v

¼ hT
1 Rxh1

hT
1 Rvh1

: ð29Þ

Substituting (17) into (29), we can rewrite SNR as

SNR ¼ hT
1 BTKBh1

hT
1 BTBh1

¼
PL

i¼1kib
2
i1PL

i¼1b2
i1

: ð30Þ

From (13), we can write the a posteriori SNR as

SNRo ¼
hT

o Rxho

hT
o Rvho

: ð31Þ

Substituting ho ¼ R�1
y Rxh1 into (31), we obtain

SNRo ¼
hT

1 RxR
�1
y RxR

�1
y Rxh1

hT
1 RxR

�1
y RvR

�1
y Rxh1

: ð32Þ

Applying the matrix decomposition given in (17), we de-
duce that

SNRo ¼
PL

i¼1
k3

i

ðkiþ1Þ2 b2
i1PL

i¼1
k2

i

ðkiþ1Þ2 b2
i1

: ð33Þ
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It follows, then, that

SNRo

SNR
¼
PL

i¼1b2
i1 �
PL

i¼1
k3

i

ðkiþ1Þ2 b2
i1PL

i¼1kib
2
i1 �
PL

i¼1
k2

i

ðkiþ1Þ2 b2
i1

: ð34Þ

Following the proof given in Appendix, if setting l = 1 and
qi = bi1, we haveXL

i¼1

b2
i1 �
XL

i¼1

k3
i

ðki þ 1Þ2
b2

i1 P
XL

i¼1

kib
2
i1 �
XL

i¼1

k2
i

ðki þ 1Þ2
b2

i1;

ð35Þ

where equality holds if and only if all the ki’s corresponding
to the nonzero bi1’s (for i = 1,2, . . . ,L) are equal. It follows
immediately that:

SNRo P SNR: ð36Þ

That completes the proof of the proposition. Therefore, we
see that, with the application of the time-domain Wiener
filter, we are able to increase SNR of the observed signal.
In other words, the Wiener filter can make the noisy speech
cleaner. h
4. Subspace method and its performance

Similar to the Wiener filter, the subspace approach is
also a linear optimal estimator from the MMSE sense.
The difference between the two is that the former is
deduced from an unconstrained optimization problem
while the latter is derived from a constrained optimization
one.

With the signal model given in (2), an estimate of the
clean speech can be obtained by applying a linear transfor-
mation to the noisy speech vector, i.e.,

x̂ðnÞ ¼ HyðnÞ; ð37Þ

where H is a matrix of size L · L. The error signal obtained
by this estimation is written as

eðnÞ , x̂ðnÞ � xðnÞ ¼ HyðnÞ � xðnÞ
¼ ðH � IÞxðnÞ þHvðnÞ ¼ exðnÞ þ evðnÞ; ð38Þ

where

exðnÞ ¼ ðH � IÞxðnÞ ð39Þ

and

evðnÞ ¼ HvðnÞ ð40Þ

represents, respectively, the speech distortion due to the lin-
ear transformation and the residual noise. It is immediately
seen that there are three criteria to estimate the optimal H

1. Minimizing the energy of e(n).
2. Minimizing the energy of ev(n) but maintaining the

speech distortion less than a certain level.
3. Minimizing the energy of ex(n) while maintaining the

residual noise energy less than a certain threshold.
The first case leads to the Wiener solution, which is similar
to the time-domain Wiener filter discussed in Section 3. The
second criterion is rarely used in practice because the
resulting estimator produces nonstationary residual noise
(due to the nonstationarity of speech signals), which is usu-
ally intolerable to human perception system. The third case
leads to the so-called subspace method.

Mathematically, the optimal linear transformation in
the subspace technique can be described as

Ho ¼ arg min
H

trfE½exðnÞeT
x ðnÞ�g

subject to trfE½evðnÞeT
v ðnÞ�g 6 Lr2: ð41Þ

If we use a Lagrange multiplier to adjoin the constraint to
the cost function, (41) can be rewritten as

Ho ¼ arg min
H

LðH ; lÞ; ð42Þ

with

LðH ; lÞ ¼ trfE½exðnÞeT
x ðnÞ�g þ lðtrfE½evðnÞeT

v ðnÞ�g � Lr2Þ
¼ tr½ H � Ið ÞRxðH � IÞT� þ l½trðHRvH

TÞ � Lr2�;
ð43Þ

where Rx and Rv are the correlation matrices of the clean
speech and noise respectively, and l > 0 is the Lagrange
multiplier. Using the fact that

o

oH
trðRxHÞ ¼

o

oH
trðHRxÞ ¼ RT

x ¼ Rx; ð44Þ

o

oH
trðHRxH

TÞ ¼ 2HRx; ð45Þ

o

oH
trðHRvH

TÞ ¼ 2HRv; ð46Þ

we can readily deduce

o

oH
LðH ; lÞ ¼ 2HRx � 2Rx þ 2lHRv: ð47Þ

Equating the right-hand side of (47) to zero, we obtain the
solution to (42)

Ho ¼ Rx½Rx þ lRv��1
; ð48Þ

where l satisfies the following equation:

trfRx½Rx þ lRv��1
Rv½Rx þ lRv��1

Rxg ¼ Lr2: ð49Þ

To implement the optimal transformation, (48) is often
simplified by using either eigenvalue decomposition
(Ephraim and Van Trees, 1995; Dendrinos et al., 1991;
Hansen, 1997; Lev-Ari and Ephraim, 2003; Rezayee and
Gazor, 2001; Mittal and Phamdo, 2000), or generalized
eigenvalue decomposition (Hu and Loizou, 2003). In the
latter case, substituting (17) into (48), we can rewrite the
optimal transformation as

Ho ¼ BTK½Kþ lI �B�T : ð50Þ

Therefore, the estimation of the clean speech can be decou-
pled into three steps: applying the transformation B�T

to the noisy signal, modifying the noisy signal in the
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transformed domain by a gain function K[K + lI], and
applying BT to transform the modified components back
to the original domain.

Another interesting interpretation of (50) is to divide the
vector space into two subspaces: the speech subspace corre-
sponding to all the ki’s for ki > 0 and the noise subspace
associated with all ki’s for ki = 0. Suppose that the dimen-
sion of the speech subspace is M. We then can rewrite (50)
as

Ho ¼ BT RM�M 0M�K

0K�M 0K�K

� �
B�T; ð51Þ

where K = L �M is the order of the noise subspace and

R ¼ diag
k1

k1 þ l
;

k2

k2 þ l
; . . . ;

kM

kM þ l

� �
is a diagonal matrix. We now clearly see that the noise
reduction with the subspace method is achieved by nulling
the noise subspace and cleaning the speech-plus-noise
subspace.

Now we are ready to check whether the optimal linear
transformation given in (50) is able to reduce the level of
noise. Let us again examine the noise-reduction factor.
From the previous analysis, we see that the power of the
original noise is tr{Rv}/L. The residual noise power can
be written as trfE½evðnÞeT

v ðnÞ�g=L. Therefore, the noise-
reduction factor for the subspace method can be written as

nnrðHoÞ ¼
trfRvg

trfE½evðnÞeT
v ðnÞ�g

: ð52Þ

Substituting (50) into ev(n) = Hov(n), we can obtain

trfE½evðnÞeT
v ðnÞ�g ¼ trfRx½Rx þ lRv��1

Rv½Rx þ lRv��1
Rxg:
ð53Þ

Following the matrix-decomposition procedure given in
(17), we easily deduce that

trfRvg ¼ trfBTBg ¼ trfBBTg ¼
XL

i¼1

XL

j¼1

b2
ij; ð54Þ

and

trfE½evðnÞeT
v ðnÞ�g ¼ trfBTK½Kþ lI ��2

KBg

¼ trfK½Kþ lI ��2
KBBTg

¼
XL

i¼1

k2
i

ðki þ lÞ2
XL

j¼1

b2
ij: ð55Þ

Therefore, we have

nnrðHoÞ ¼
PL

i¼1

PL
j¼1b2

ijPL
i¼1

k2
i

ðkiþlÞ2
PL

j¼1b2
ij

: ð56Þ

Since l > 0 and ki P 0 for i = 1,2, . . . ,L, it is obvious that

nnrðHoÞ > 1: ð57Þ
This shows that noise reduction is always feasible with the
subspace method.

Since the energy of the speech distortion ex(n) is always
greater than zero, the power of the clean speech is also
attenuated when we reduce the noise with the subspace
method. We then ask the same question about SNR as
we did for the Wiener filter: can the subspace method
improve SNR? To answer this question, we give the follow-
ing proposition.

Proposition 2. With the linear transformation given in (48),
if the noise v(n) is not zero and l > 0, then the a posteriori

SNR with the subspace method is always greater than or at

least equal to the a priori SNR.

Proof. If the noise is zero, we can easily check that the
optimal transformation matrix Ho will be the identity
matrix so it will not change the input speech. If noise is
not zero, according to the signal model given in (2), the a

priori SNR can be written as

SNR ¼ trfRxg
trfRvg

: ð58Þ

After applying the linear transformation Ho, the a posteri-

ori SNR can be expressed as

SNRo ¼
trfE½HoxðnÞxTðnÞHT

o �g
trfE½HovðnÞvTðnÞHT

o �g
¼ trfHoRxH

T
og

trfHoRvH
T
og
: ð59Þ

It follows then,

SNRo

SNR
¼ trfRvgtrfHoRxH

T
og

trfRxgtrfHoRvH
T
og

¼ trfRvgtrfRx½Rx þ lRv��1
Rx½Rx þ lRv��1

Rxg
trfRxgtrfRx½Rx þ lRv��1

Rv½Rx þ lRv��1
Rxg

:

ð60Þ
Following the matrix-decomposition procedure given in
(17) and using some simple algebra, we can deduce that

SNRo

SNR
¼ trfBTBgtrfBTKðKþ lIÞ�1

KðKþ lIÞ�1
KBg

trfBTKBgtrfBTKðKþ lIÞ�2
KBg

¼ trfBBTgtrfKðKþ lIÞ�1
KðKþ lIÞ�1

KBBTg
trfKBBTgtrfKðKþ lIÞ�2

KBBTg

¼
PL

i¼1

PL
j¼1b2

ij �
PL

i¼1

PL
j¼1

k3
i

ðkiþlÞ2 b2
ijPL

i¼1

PL
j¼1kib

2
ij �
PL

i¼1

PL
j¼1

k2
i

ðkiþlÞ2 b2
ij

:

ð61Þ

Now if following the proof given in Appendix (setting
q2

i ¼
PL

j¼1b2
ij), we can showXL

i¼1

XL

j¼1

b2
ij �
XL

i¼1

XL

j¼1

k3
i

ðki þ lÞ2
b2

ij

P
XL

i¼1

XL

j¼1

kib
2
ij �
XL

i¼1

XL

j¼1

k2
i

ðki þ lÞ2
b2

ij: ð62Þ
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It follows immediately that

SNRo P SNR; ð63Þ
with equality if and only if k1 = k2 = � � � = kL. Note that
this condition is the same as that obtained previously for
the Wiener filter, which should not come as a surprise since
both techniques are formulated in a similar way.

From the previous, we see that SNRo depends not only
on the speech and noise characteristics, but also on the
value of l. With some algebra, it can be shown that

lim
l!0

SNRo ¼ lim
l!0

PL
i¼1

PL
j¼1

k3
i

ðkiþlÞ2 b2
ijPL

i¼1

PL
j¼1

k2
i

ðkiþlÞ2 b2
ij

¼ SNR; ð64Þ

which is the lower bound of the a posteriori SNR. When l
! +1, we see that ki + l! l. Therefore,

lim
l!þ1

SNRo ¼
PL

i¼1

PL
j¼1k

3
i b2

ijPL
i¼1

PL
j¼1k

2
i b2

ij

6

XL

i¼1

ki; ð65Þ

which is the upper bound of the a posteriori SNR. h
5. Frequency-domain noncausal Wiener filter and its

performance

The Wiener filter can also be formulated in the fre-
quency domain. One way to derive such a filter is to trans-
form the time-domain filter into the frequency domain
using the so-called overlap-add technique. In this case,
the time-domain Wiener filter and its frequency-domain
counterpart have exactly the same performance. More
often, however, the frequency-domain Wiener filter is for-
mulated by directly estimating the clean speech spectrum
from the noisy speech spectrum. The resulting frequency-
domain Wiener filter differs in two aspects from the time-
domain Wiener filter: first, the former is a causal filter,
while the latter can be a noncausal one; second, the former
is a full-band technique, while the latter is a subband tech-
nique, where each subband filter is independent on the fil-
ters of other frequency bands. Therefore, the results
achieved from the time-domain full-band Wiener filter
may not be applicable to such a frequency-domain sub-
band Wiener filter. It is necessary that we perform some
study of the subband Wiener filter.

Given the signal model in (3), the frequency-domain
subband Wiener filter is derived by the following criterion
(Wiener, 1949):

H oðjxkÞ ¼ arg min
HðjxkÞ

EfjX ðjxkÞ � HðjxkÞY ðjxkÞj2g: ð66Þ

It can be easily deduced that,

H oðjxkÞ ¼
E½jX ðjxkÞj2�
E½jY ðjxkÞj2�

¼ P xðxkÞ
P yðxkÞ

; ð67Þ

where P xðxkÞ ¼ 1
L E½jX ðjxkÞj2� and P yðxkÞ ¼ 1

L E½jY ðjxkÞj2�
are the power spectral densities (PSDs) of x(n) and y(n)
respectively. It can be seen from this expression that the
frequency-domain Wiener filter Ho(jxk) is positive and real
valued. Therefore, it only modifies the magnitude of the
noisy speech spectra, while leaves the phase components
unchanged. Since Ho(jxk) is real valued, we shall, from
now on, drop the symbol j from its expression, which
should not introduce any confusion.

The optimal estimate of the clean speech spectrum,
using Ho(xk), isbX oðjxkÞ ¼ H oðxkÞY ðjxkÞ

¼ H oðxkÞX ðjxkÞ þ H oðxkÞV ðjxkÞ: ð68Þ

Applying the inverse DFT (IDFT) to (68), we can obtain
the optimal estimate of the speech samples x̂oðnÞ.

The power of the estimated clean speech can be evalu-
ated according to the Parseval’s relation, i.e.,

E½x̂2
oðnÞ� ¼

XL�1

k¼0

1

L
E½jbX oðjxkÞj2� ¼

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P yðxkÞ: ð69Þ

Since speech and noise are uncorrelated, we have

P yðxkÞ ¼ P xðxkÞ þ P vðxkÞ; ð70Þ
where Pv(xk) is the PSD of v(n). Substituting (70) into (69),
we deduce that

E½x̂2
oðnÞ� ¼

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P xðxkÞ þ
XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞ; ð71Þ

which is the sum of two terms. The first one is the power of
the filtered clean speech and the second one is the power of
the residual noise.

Now let us examine the noise-reduction performance.
The power of the noise in the observation signal
can be computed as

PL�1
k¼0P vðxkÞ. From (71), one can

see that the power of the residual noise signal isPL�1
k¼0

P 2
xðxkÞ

P 2
y ðxkÞ

P vðxkÞ. So the noise-reduction factor of the fre-

quency-domain Wiener filter is written as

nnr½HðxkÞ� ¼
PL�1

k¼0P vðxkÞPL�1
k¼0

P 2
x ðxkÞ

P 2
y ðxkÞ

P vðxkÞ
: ð72Þ

Since P 2
xðxkÞ 6 P 2

yðxkÞ, we easily verify that

nnr½HðxkÞ�P 1: ð73Þ
This indicates that the Wiener filter can reduce the noise le-
vel (unless there is no noise at all). Similarly, we can verify
that the power of the filtered clean speech is always less than
the power of the original clean speech. So the frequency-
domain Wiener filter, just like its time-domain counterpart,
also reduces noise at a price of attenuating the clean speech.
It is key to know, then, whether this Wiener filter can im-
prove SNR. We have the following proposition.

Proposition 3. With the Wiener filter given in (71), the a

posteriori SNR (defined after the Wiener filter) is always

greater than or at least equal to the a priori SNR.
Proof. If there is no noise at all, we see that the Wiener fil-
ter has no effect on SNR. Now we consider the generic case
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where noise is not zero. In the frequency domain, the a pri-

ori SNR can be expressed as

SNR ¼
PL�1

k¼0P xðxkÞPL�1
k¼0P vðxkÞ

: ð74Þ

Similarly, we can write, after the Wiener filtering, the a pos-

teriori SNR according to (71), as

SNRo ¼

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P xðxkÞ

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞ
: ð75Þ

It follows immediately that

SNRo

SNR
¼

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P xðxkÞ
XL�1

k¼0
P vðxkÞ

XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞ
XL�1

k¼0
P xðxkÞ

: ð76Þ

Now let denote

/ðxkÞ ¼
XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P xðxkÞ
" #

�
XL�1

k¼0

P vðxkÞ

�
XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞ
" #

�
XL�1

k¼0

P xðxkÞ:

It follows immediately that

/ðxkÞ ¼
XL�1

k¼0

XL�1

j¼0

P 3
xðxkÞ

P 2
yðxkÞ

P vðxjÞ

�
XL�1

k¼0

XL�1

j¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞP xðxjÞ

¼
XL�1

k¼0

XL�1

j¼0

P 2
xðxkÞ

P 2
yðxkÞ

½P xðxkÞP vðxjÞ � P vðxkÞP xðxjÞ�

¼
XL�1

k¼0

XL�1

j>k

P 2
xðxkÞ

P 2
yðxkÞ

� P 2
xðxjÞ

P 2
yðxjÞ

" #
� ½P xðxkÞP vðxjÞ � P vðxkÞP xðxjÞ�: ð77Þ

Using (70), we can derive /(xk) as

/ðxkÞ ¼
XL�1

k¼0

XL�1

j>k

P xðxkÞ
P yðxkÞ

þ P xðxjÞ
P yðxjÞ

� �
� P xðxkÞ

P yðxkÞ
� P xðxjÞ

P yðxjÞ

� �
½P xðxkÞP vðxjÞ � P vðxkÞP xðxjÞ�

¼
XL�1

k¼0

XL�1

j>k

1

P yðxkÞP yðxjÞ
P xðxkÞ
P yðxkÞ

þ P xðxjÞ
P yðxjÞ

� �
� ½P xðxkÞP vðxjÞ � P vðxkÞP xðxjÞ�2: ð78Þ

Since Px(xk) P 0, Pv(xk) P 0, and Py(xk) P 0, it is easy to
see that the right-hand side of (78) is greater than, or at
least equal to 0. Therefore, we have
XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P xðxkÞ
XL�1

k¼0

P vðxkÞP
XL�1

k¼0

P 2
xðxkÞ

P 2
yðxkÞ

P vðxkÞ
XL�1

k¼0

P xðxkÞ;

which means that

SNRo

SNR
P 1:

As a result,

SNRo P SNR;

where we see from (78) that equality is attained if and only
if P xðx0Þ

P vðx0Þ
¼ P xðx1Þ

P vðx1Þ
¼ � � � ¼ P xðxL�1Þ

P vðxL�1Þ
. In other words, the fre-

quency-domain Wiener filter will be able to increase SNR
unless all the subband SNRs are equal, which is under-
standable. When all the subband SNRs are equal, it means
that both speech and noise have the same PSD under the
given resolution condition. In this case, the Wiener filter
is not able to distinguish noise from speech and, as a result,
not able to increase SNR. Otherwise, the subband Wiener
filter can improve SNR. That completes the proof. h
6. Experiments

Throughout the text, we have shown by theoretical anal-
ysis that the optimal linear filtering techniques including
the time-domain Wiener filter, the subspace method, and
the frequency-domain Wiener filter, can indeed reduce
the level of noise that is present in the speech signal and
improve the corresponding SNR, regardless of whether
the noise is white or colored. In this section, we will vali-
date the analysis through experiments.

The first experiment is to investigate the SNR behavior
of the time-domain Wiener filter. But before doing this, we
must implement such a filter, which involves estimation of
the correlation matrix Ry, and the two correlation vectors
ryy and rvv. In our experiment, we approximate the mathe-
matical expectation by the exponentially weighted sample
average, and the correlation matrix and vectors at time n

are estimated as follows:

bRyðnÞ ¼
Xn

m¼0

an�myðmÞyTðmÞ ¼ abRyðn� 1Þ þ yðnÞyTðnÞ;

r̂yyðnÞ ¼
Xn

m¼0

an�myðmÞyðmÞ ¼ ar̂yyðn� 1Þ þ yðnÞyðnÞ;

r̂vvðnÞ ¼
Xn

m¼0

an�mvðmÞvðmÞ ¼ ar̂vvðn� 1Þ þ vðnÞvðnÞ;

ð79Þ
where a (0 < a < 1) is a forgetting factor. In our experi-
ment, a is chosen as a function of the filter length L, i.e.,
a = 1 � 1/(9L).

Note that in order to compute r̂vvðnÞ, we will need to
obtain an estimate of the noise signal v(n). The most pop-
ular method for this is to design a voice activity detector
(VAD) and estimate noise in the regions where speech is
absent. This method works reasonably well in high SNR
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conditions and when noise is stationary. But when SNR is
low or the noise characteristics change over time (even
slowly), the noise estimate obtained during the absence of
speech may not represent the noise in the presence of
speech. To avoid explicit speech/non-speech detection
and take into account some non-stationarity of the noise,
several other estimation techniques were developed, includ-
ing the minimum statistics method (Martin, 2001), the
quantile method (Hirsch and Ehrlicher, 1995; Stahl et al.,
2000), and the sequential estimation (Diethorn, 2004) etc.
In this experiment, instead of using the estimated noise,
we assume that the noise signal is known a priori since
our concern is on the SNR behavior of the Wiener filter
rather than the implementation of the Wiener filter itself.

The results of this experiment are shown in Figs. 1 and
2, where the clean speech used is a prerecorded speech sig-
nal (from a female speaker) that is sampled at 8 kHz and
lasts about 3 min. Noise is then added to the signal at an
SNR of 10 dB. Three noise signals are used: computer gen-
erated White Gaussian noise, a babbling noise signal
recorded in a New York Stock Exchange (NYSE) room,
and a car noise signal recorded in a Volvo car running at
55 miles/h on a highway with all its windows closed.

We see from Fig. 1 that the a posteriori SNR is from 2 to
several decibels higher than the a priori SNR. This justifies
the analysis shown in Section 3. It is also seen from this fig-
ure that the a posteriori SNR increases monotonically with
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Fig. 1. The a posteriori SNR as a function of L: SNR = 10 dB.
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Fig. 2. The a posteriori SNR versus the a priori SNR: L = 20.
the filter length L. Therefore, a longer filter should be
applied if we expect more noise reduction. However, as
the filter length increases, the complexity of the algorithm,
the amount of speech distortion, and the estimation vari-
ance of the correlation matrix/vectors, they all will increase
at the same time. In addition, we see that SNRo increases
with L but with a slower rate for L larger than about 12.
Taking all these factors into account, we suggest to set L

between 10 and 30 for 8-kHz sampling rate, which is rea-
sonable for most applications.

When L is fixed, but we change SNR from �10 dB to
30 dB, it can be seen that less SNR improvement is
achieved for high SNR conditions. This is, of course,
understandable. When SNR increases, the speech becomes
less noisy, so there is less noise to be reduced. If SNR
approaches infinity, the a posteriori SNR would be the
same as the a priori SNR. In all the conditions, we see that
the a posteriori SNR is always greater than the correspond-
ing a priori SNR. This again verifies the analysis given in
Section 3.

In the second experiment, we study the SNR behavior of
the subspace method. Again, we assume that the noise sig-
nal is known a priori and we estimate the two correlation
matrices Rx and Rv in the same manner as we estimate
Ry in (79). The results for this experiments are plotted in
Figs. 3 and 4.
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Fig. 3. The a posteriori SNR as a function of L: SNR = 10 dB.
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Fig. 4. The a posteriori SNR as a function of l: L = 20.
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Similar to the previous experiment, one can see from
Fig. 3 that when the a priori SNR is fixed, the a posteriori

SNR increases monotonically with the dimension of the
optimal transformation Ho. Therefore, if more SNR
improvement is expected, we should use a transform with
a larger dimension L. But when we increase L, we also raise
the computational complexity and boost the speech distor-
tion at the same time. Normally, like in the Wiener filter, L

should be set between 15 and 30 for 8-kHz sampling rate. It
is also seen from Fig. 3 that SNRo is always higher than
SNR, which validates the analysis shown in Section 4.

Another parameter that plays a critical role in the sub-
space method is the Lagrange multiplier l. In Section 4,
we have shown that if the a priori SNR is fixed, the a pos-
teriori SNR is a monotonically increasing function of the
variable l. When l! 0, the a posteriori SNR will
approach the a priori SNR. When l! +1, the a posteriori

SNR will approach its upper bound given in (65). This is
justified by the results shown in Fig. 4. In real applications,
the selection of l should depend on system’s expectation
between noise reduction and speech distortion. If more
noise reduction is expected, we should select a large l.
On the other hand, if speech distortion is a big concern,
then we should choose a small l. If we set l = 1, then
the subspace method will be similar to the time-domain
Wiener filter.

The third experiment pertains to the frequency-domain
Wiener filter. Similar to the previous experiments, we
neglect the noise-estimation process and assume the noise
signal is known a priori. In order to estimate the Wiener
filter according to (67), we partition the noisy speech y(n)
into overlapping frames. The frame size in this experiment
is L = 64 (samples), and the overlapping factor is 75%.
Each frame is then transformed via a DFT into a block
of L spectral samples. Successive frames of spectral samples
form a two-dimensional matrix denoted by Yt(jxk), where
subscript t is the frame index and denotes the time dimen-
sion. The power spectra of the noisy signal at time t is esti-
mated as
bP y;tðxkÞ ¼ bbP y;t�1ðxkÞ þ ð1� bÞjY tðjxkÞj2=L; ð80Þ
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Fig. 5. The a posteriori SNR versus the a priori SNR: L = 64, 75%
overlap.
where b is a coefficient to control the time constant of the
single-pole recursion. In our experiment, b = 0.9. The noise
power spectra are estimated in a similar manner, and the
Wiener filter is computed according to (67). The experi-
mental results are plotted in Fig. 5. We see that the a pos-

teriori SNR is always larger than the a priori SNR, which
justifies the analysis shown in Section 5.
7. Conclusion and discussion

The problem of noise reduction has attracted a consid-
erable amount of research attention over the past several
decades. The most widely used approach, thus far, is the
optimal linear filtering technique, which achieves clean
speech estimate by passing the noisy speech through an
optimal linear filter/transformation. While many efforts
were made to evaluate how this technique can perform in
simulated as well as real noise environments, most existing
performance studies have been experimental, which do not
provide us with a unified understanding of the performance
behavior of the technique. Therefore, more thorough anal-
ysis is indispensable.

This paper provided a theoretical analysis on the noise
reduction, speech distortion, and SNR behavior of the
optimal linear filtering techniques including the time-
domain causal Wiener filter, the subspace method, and
the frequency-domain noncausal Wiener filter. It showed
that the optimal linear filter, regardless of how we delineate
it, can indeed reduce the level of noise. Most importantly, it
proved that, with the optimal linear filter, the a posteriori
SNR is always greater than, or at least equal to the a priori

SNR, which concludes that the optimal linear filtering tech-
nique is able to make noisy speech signals cleaner. While
the a posteriori SNR is lower bounded to the a priori

SNR, its upper limit depends on the distinction between
noise and speech statistics, which was also discussed in
the paper. In order to validate the analysis, we carried
out a series of experiments using the simulated white
Gaussian noise as well as some noise signals recorded in
real situations. Theoretical and experimental results agreed
very well.

Notice that during the theoretical analysis, we assumed
that we knew the second order statistics (covariance matri-
ces, correlation vectors, and power spectral densities) of the
noisy speech and the noise signal. In real application, how-
ever, they are not known a priori and have to be estimated.
Any deviation of the estimate from its true value may cause
some performance degradation. As how the optimal
filtering technique is sensitive to the estimation error of
the signal statistics, this is worthy of further research
attention.
Appendix

Lemma. With ki (i = 1,2, . . . ,L and k1 P k2 P � � �P kL P
0) being defined in (17) and l > 0, we have
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XL

i¼1

k3
i

ðki þ lÞ2
q2

i

" #
�
XL

i¼1

q2
i P

XL

i¼1

k2
i

ðki þ lÞ2
q2

i

" #
�
XL

i¼1

kiq2
i ;

ð81Þ

where qi can be any real number.

Proof. This inequality can be proofed by way of induction.

• Basic step: If L = 2,X2

i¼1

k3
i

ðki þ lÞ2
q2

i

" #
�
X2

i¼1

q2
i ¼

k3
1

ðk1 þ lÞ2
q4

1 þ
k3

2

ðk2 þ lÞ2
q4

2

þ k3
1

ðk1 þ lÞ2
þ k3

2

ðk2 þ lÞ2

" #
q2

1q2
2:

Since k1 P k2 P 0, it is trivial to show that

k3
1
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þ k3

2

ðk2 þ lÞ2
P
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þ k1k
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;

where ‘‘=’’ holds when k1 = k2. ThereforeX2

i¼1

k3
i

ðki þ lÞ2
q2

i

" #
�
X2

i¼1

q2
i P
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1
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q4

1 þ
k3
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¼
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i
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i
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�
X2

i¼1

kiq2
i ;

so the property is true for L = 2, where ‘‘=’’ holds when
k1 = k2 or at least one of q1 and q2 is equal to 0.

• Inductive step: Assume that the property is true for
L = n, i.e.,Xn

i¼1

k3
i
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i
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�
Xn

i¼1

q2
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Xn
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�
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i :

We must prove that it is also true for L = n + 1. As a
matter of fact,Xnþ1

i¼1
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Using the induction hypothesis, and also the fact that
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we obtain
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i ; ð83Þ

where ‘‘=’’ holds when all the ki’s corresponding to non-
zero qi are equal, where i = 1,2, . . . ,n + 1. That completes
the proof. h
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