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1 Université du Québec, INRS-EMT, 800 de la Gauchetière Ouest, Suite 6900, Montréal, Québec, Canada H5A 1K6
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The Capon algorithm, which was originally proposed for wavenumber estimation in array signal processing, has become a powerful
tool for spectral analysis. Over several decades, a significant amount of research attention has been devoted to the estimation of
the Capon spectrum. Most of the developed algorithms thus far, however, rely on the direct computation of the inverse of the
input correlation (or covariance) matrix, which can be computationally very expensive particularly when the dimension of the
matrix is large. This paper deals with fast and efficient algorithms in computing the Capon spectrum. Inspired from the recursive
idea established in adaptive signal processing theory, we first derive a recursive Capon algorithm. This new algorithm does not
require an explicit matrix inversion, and hence it is more efficient to implement than the direct-inverse approach. We then develop
a fast version of the recursive algorithm based on techniques used in fast recursive least-squares adaptive algorithms. This new
fast algorithm can further reduce the complexity of the recursive Capon algorithm by an order of magnitude. Although our focus
is on the Capon spectral estimation, the ideas shown in this paper can also be generalized and applied to other applications. To
illustrate this, we will show how to apply the recursive idea to the estimation of the magnitude squared coherence function, which
plays an important role for problems like time-delay estimation, signal-to-noise ratio estimation, and doubletalk detection in echo
cancellation.

Copyright © 2007 Jacob Benesty et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Spectral estimation, which endeavors to determine the spec-
tral content of a signal from a finite set of measurements,
plays a major role in signal processing. It has a wide variety of
applications in diversified fields such as radar, sonar, speech,
communications, to name a few. Over the last century, a sig-
nificant amount of research attention has been devoted to
developing techniques for high performance spectral estima-
tion. Some good reviews of such efforts can be found in [1–
3]. Broadly, the developed techniques can be classified into
two categories: nonparametric and parametric methods. The
former is based on the concept of bandpass filtering. The lat-
ter assumes a model for the data, and the spectral estimation
is then formulated into a problem of estimating the parame-
ters in the assumed model. If the model fits the data well, the
latter can yield more accurate spectral estimate than the for-
mer. In practice, however, the assumed model may not satisfy
the data due to the lack of some a priori knowledge. In this
case, the parametric method may suffer significant perfor-
mance degradation and may even lead to biased estimation.
Consequently, the nonparametric approach is still of great

interest, and continues to be the focus of considerable stud-
ies, thanks to its robustness.

Among the numerous nonparametric techniques that
were developed, the periodogram and Capon are perhaps the
two most well-known approaches which have been widely
used in various applications. The periodogram is essentially
a discrete Fourier transform of the input data. It can be con-
sidered as a filter bank approach, which uses bandpass fil-
ters whose transfer functions are given by the discrete Fourier
matrix.

In contrast to the periodogram, which uses signal-
independent bandpass filters, the Capon method uses adap-
tive bandpass filters, where each filter is designed as selec-
tive as it can be according to the signal characteristics. This
technique, also known as minimum variance distortionless
response (MVDR), was originally proposed for frequency-
wavenumber estimation in the late 1960s [4–6]. It has then
been extensively studied in the literature and adopted for
many applications such as spectral analysis [1–3, 7–12],
beamforming [13–19], direction-of-arrival (DOA) estima-
tion [20], speech analysis [21–24], and so forth. Since it uses
data-dependent bandpass filters, the Capon approach can
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yield a higher spectral resolution than the periodogram, and
therefore has been preferably used in various problems.

Many algorithms have been proposed in the literature to
compute the Capon spectrum (see, e.g., [1–3, 25]). Most of
these are block techniques: they first estimate the correlation
(covariance) matrix of the signal when a block of measure-
ments are available; the spectrum is then estimated based
on inverting the correlation (covariance) matrix. Due to the
high computational cost involved in the matrix inversion,
such block approaches are computationally very expensive,
particularly when the dimension of the matrix is large. This
problem can become even more serious in applications like
speech communication where a spectrum estimate has to be
obtained every few milliseconds.

Recently, many efforts have been made to develop more
efficient algorithms to compute the Capon spectrum [25–
32]. One way of doing this is to borrow the well-established
recursive idea from adaptive signal processing techniques
and formulate the Capon approach into a recursive structure
[33, 34], thereby, avoiding the direct computation of the in-
verse matrix. This is indeed the choice that we have taken
in this paper, where a recursive Capon algorithm is derived,
which obtains the inverse spectrum of the input signal on
a sample-by-sample basis. This new algorithm does not re-
quire an explicit matrix inversion, and is, therefore, more
efficient to implement than the direct-inverse approach. To
further reduce the complexity and make the recursive Capon
algorithm even more computationally efficient, a fast version
of the recursive algorithm is developed, based on techniques
used in fast recursive least-squares adaptive algorithms. We
show that this new fast algorithm can reduce the complexity
by an order of magnitude.

Although the main focus of this paper is on efficient
computation of the Capon spectrum, the ideas shown here
can also be generalized and applied to other applications.
To illustrate this, we discuss how to extend the recur-
sive Capon algorithm to the estimation of the magnitude
squared coherence (MSC) function, which is very useful
in practice [35, 36]. The most common way to estimate
MSC is by Welch’s method [37]. We will show how the
Capon principle can be extended here for the derivation
of a new estimation algorithm. Compared with Welch’s
method, this new algorithm can yield more accurate MSC
estimates.

This paper is organized as follows. Section 2 revisits the
Capon spectral estimator and shows how this approach is
related to the periodogram. Even though this result is well-
known and obvious, it is always interesting to present this
link from another perspective. In Section 3, we present a way
to recursively estimate the Capon inverse spectrum at time
n from its estimate at time n − 1. We will see how this re-
cursion depends on the Kalman gain vector. In Section 4,
we derive a fast algorithm, based on linear prediction tech-
niques, to compute the recursive Capon inverse spectrum. In
Section 5, we develop another interesting way to estimate the
coherence function thanks to the Capon method. Section 6
presents some simulations and finally we draw our conclu-
sions in Section 7.

2. CAPON SPECTRAL ESTIMATOR OVERVIEW

Before discussing the recursive and fast recursive Capon al-
gorithms, let us briefly revisit the Capon spectral estimator.
The Capon method for spectral estimation is based on a fil-
terbank decomposition: the spectrum of a signal is estimated
in each band by a simple filter design subject to some con-
straints [4, 6]. Let x(n) be a zero-mean random process with
a power spectral density (PSD) Sxx(ω), where ω(0 ≤ ω < 2π)
is the angular frequency. Consider a complex-valued band-
pass finite impulse response (FIR) filter

hk =
[
hk,0 hk,1 · · · hk,L−1

]T
, (1)

where L is the order of the filter and superscript T denotes
the transpose of a vector or a matrix. If we pass x(n) through
this filter, the output of the filter at time n can be written as

yk(n) = hH
k x(n), (2)

where H indicates conjugate transpose, and

x(n) =
[
x(n) x(n− 1) · · · x(n− L + 1)

]T
(3)

is a vector containing the L most recent samples of the obser-
vation signal x(n). It follows immediately that

E
[∣∣yk(n)

∣∣2
]
= E

[∣∣hH
k x(n)

∣∣2
]
= hH

k Rxx hk, (4)

where E[·] denotes the mathematical expectation, and

Rxx = E
[

x(n)xH(n)
]

(5)

is the covariance matrix of x(n).
To find the Capon filter, we need to minimize (4) subject

to the constraint that the filter has unity frequency response
at ω = ωk = 2πk/K , that is,

hC
k = arg min

hk

hH
k Rxx hk (6)

subject to

Hk
(
ωk
)=

L−1∑

l=0

hk,l exp
(− jωkl

)= fHk hk = hH
k fk=1, (7)

where

fk =
[

1 exp
(
jωk
) · · · exp

[
j(L− 1)ωk

]]T
. (8)

This optimization problem can also be formulated as the
finding of a filter that minimizes the following cost function:

Jk = hH
k Rxx hk + μ

[
1− hH

k fk
]
, (9)
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where μ is a Lagrange multiplier. The solution to this is given
by [4, 6]

hC
k =

R−1
xx fk

fHk R−1
xx fk

. (10)

Substituting (10) into (4) yields

E
[∣∣yk(n)

∣∣2
]
= 1

fHk R−1
xx fk

. (11)

This is the power of x(n) in the passband of the Capon filter
centered on ωk. The spectrum Sxx(ω) at frequency ωk can
then be determined as

Sxx
(
ωk
) = c

fHk R−1
xx fk

, (12)

where the factor c is added for properly scaling the Capon
power estimator to obtain the spectral density. The scaling
factor is typically determined based on the filter bandwidth.
It can be seen from (10) that the Capon filter is data depen-
dent, so the scaling factor may not necessarily be data and
frequency independent. Many methods have been developed
for determining the scaling factor c, and the most accurate
one is the method provided in [38]. However, since our fo-
cus in this paper is on fast computation of Capon algorithm
rather than the Capon spectral estimator itself, we take the
simplest method given in [3] and set c = K , where K is the
number of bandpass filters. For a good detailed discussion
on this issue, the reader is invited to consult the papers by
Lagunas et al. [38, 39].

From the previous analysis, we see that as long as R−1
xx

exists, we can compute the spectrum of x(n) through (12).
In practice, the covariance matrix Rxx has to be estimated.
Suppose that we replace the expectation operation in (4) by
the exponentially weighted sample average. We then have

n∑

m=0

λn−m
∣∣yk(m)

∣∣2 =
n∑

m=0

λn−m
∣∣hH

k x(m)
∣∣2

= hH
k R̂xx(n)hk,

(13)

where λ (0 < λ < 1) is a forgetting factor and

R̂xx(n) =
n∑

m=0

λn−mx(m)xH(m) (14)

is an estimate of the covariance matrix of x(n). Following the
same procedure from (4) to (12), we can obtain, respectively,
an estimate of the Capon filter and spectrum at frequency ωk

and time n as

ĥC
k (n) = R̂−1

xx (n)fk
fHk R̂−1

xx (n)fk
, (15)

Ŝxx
(
ωk,n

) = (1− λ)K

fHk R̂−1
xx (n)fk

. (16)

We deduce from (15) and (16) that

K(1− λ)R̂xx(n)ĥC
k (n) = Ŝxx

(
ωk ,n

)
fk. (17)

Taking into account all frequencies ωk, k = 0, 1, . . . ,K−1, we
can write (17) into the following general form:

K(1− λ)R̂xx(n)Ĥ(n) = FŜxx
(
ωk,n

)
, (18)

where

Ĥ(n) =
[

ĥC
0 (n) ĥC

1 (n) · · · ĥC
K−1(n)

]
,

F =
[

f0 f1 · · · fK−1

]
,

Ŝxx
(
ωk,n

) = diag
{
Ŝxx
(
ω0,n

)
, Ŝxx

(
ω1,n

)
, . . . , Ŝxx

(
ωK−1,n

)}
.

(19)

For K = L, F is the Fourier matrix and FHF = KI so
F−1 = (1/K)FH . We then obtain the following interesting de-
composition:

FH R̂xx(n)Ĥ(n) = 1
1− λ

Ŝxx
(
ωk,n

)
. (20)

For a stationary signal, R̂xx(n) → 1/(1− λ)Rxx when n → ∞,
where Rxx, the true covariance matrix, is Toeplitz, and ex-
pression (20) becomes

FHRxx Ĥ = Ŝxx
(
ωk
)
. (21)

Now suppose K → ∞. In this case, a Toeplitz matrix is
asymptotically equivalent to a circulant matrix if its elements
are absolutely summable [40], which is usually the case in
most applications. Hence, we can decompose Rxx as

F−1Rxx F = Ŝxx
(
ωk
) = FHRxx

F
K
. (22)

Identifying (21) with (22), we see that Ĥ = (1/K)F. As a re-
sult, for a stationary signal, the Capon approach is asymptot-
ically equivalent to the periodogram. The difference between
the periodogram and Capon approaches can be viewed as the
difference between the eigenvalue decompositions of circu-
lant and Toeplitz matrices. While it is data independent for a
circulant matrix, the unitary eigenvector matrix for a Toeplitz
matrix is data dependent.

From (16), we find another interesting way to write (20),

diag−1{F−1R̂−1
xx (n)F

} = 1
1− λ

Ŝxx
(
ωk,n

)
, (23)

where F−1R̂−1
xx (n)F is a diagonal matrix if and only if R̂xx(n)

is a circulant matrix.

3. A RECURSIVE COMPUTATION OF THE
INVERSE SPECTRUM

The estimation of the Capon spectrum using (16) requires
the computation of the inverse of the covariance matrix,
which can be computationally very expensive. The aim of this
section is to develop a recursion for the Capon algorithm so
that the spectrum can be estimated more efficiently.

The covariance matrix of the signal x(n) can be com-
puted recursively,

R̂xx(n) = λR̂xx(n− 1) + x(n)xH(n). (24)
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By using the matrix inversion lemma [33], R̂−1
xx (n) can also

be computed recursively:

R̂−1
xx (n) = λ−1R̂−1

xx (n− 1)− λ−2ϕ(n)g′(n)g′H(n), (25)

where g′(n) = R̂−1
xx (n − 1)x(n) is the a priori Kalman gain

vector and

ϕ(n) = λ

λ + xH(n)R̂−1
xx (n− 1)x(n)

. (26)

The a posteriori Kalman gain vector g(n) = R̂−1
xx (n)x(n) is

related to g′(n) by [41]

g(n) = λ−1ϕ(n)g′(n). (27)

Now, if we pre- and post-multiply both sides of (25) by fHk
and fk, respectively, and with the help of (16), we get

(1− λ)K

Ŝxx
(
ωk,n

) = λ−1(1− λ)K

Ŝxx
(
ωk,n− 1

) − λ−2ϕ(n)
∣∣fHk g′(n)

∣∣2
, (28)

hence,

Ŝ−1
xx

(
ωk,n

) = λ−1Ŝ−1
xx

(
ωk,n− 1

)− λ−2ϕ′(n)
∣∣vg,k(n)

∣∣2
,
(29)

where

ϕ′(n) = (1− λ)−1K−1ϕ(n),

vg,k(n) = fHk g′(n).
(30)

Expression (29) shows how the inverse spectrum of the
signal x(n) at frequency ωk and time n can be computed re-
cursively from its value at time n−1, when a new data sample
is available. This inverse spectrum depends on the a priori
Kalman gain vector g′(n). Algorithm 1 summarizes this re-
cursive algorithm where E0 is the signal energy.

It can be seen from (29) that the estimation of the in-
verse Capon spectrum requires the computation of one inner
product. The corresponding complexity is proportional to
KL. ForK = L, this complexity is proportional to L2, which is
quite high for practical applications. A natural question then
arises: can we further reduce the number of operations of the
recursive Capon algorithm or ideally make this number lin-
ear with respect to L? In the next section, we will discuss an
efficient recursive Capon algorithm.

4. A FAST RECURSIVE ALGORITHM

In this section, we are going to show that the inner product
vg,k(n) = fHk g′(n) can be computed recursively with a couple
of multiplications only at each iteration, instead of L. As a
result, the complexity of the entire algorithm will be reduced
significantly since vg,k(n) has to be evaluated K times for ev-
ery time sample n.

Initialization

fk =
[
1 exp

(
jωk

) · · · exp
[
j(L− 1)ωk

]]T
,

R̂−1
xx (0) = E−1

0 I, positive diagonal,

Ŝ−1
xx

(
ωk , 0

) = L

E0(1− λ)K
, ∀k.

Kalman gain estimation

g′(n) = R̂−1
xx (n− 1)x(n),

ϕ(n) = λ

λ + xH(n)g′(n)
,

R̂−1
xx (n) = λ−1R̂−1

xx (n− 1)− λ−2ϕ(n)g′(n)g′H(n),

ϕ′(n) = ϕ(n)
(1− λ)K

.

Inv. spect. estimation

k = 0, 1, . . . ,K − 1,
vg,k(n) = fHk g′(n),

Ŝ−1
xx

(
ωk ,n

) = λ−1Ŝ−1
xx (ωk ,n− 1)− λ−2ϕ′(n)

∣∣vg,k(n)
∣∣2

.

Algorithm 1: A recursive Capon inverse spectral estimator.

4.1. A fast algorithm based on linear prediction

It is well known that the a priori Kalman gain vector of order
L + 1 can be computed in two different ways [41]:

g′l (n) =
[

g′(n)
0

]
+

eb(n)
Eb(n− 1)

[
−b(n− 1)

1

]

=
[

0
g′(n− 1)

]
+

ea(n)
Ea(n− 1)

[
1

−a(n− 1)

]
,

(31)

where a(n) and b(n) are, respectively, the forward and back-
ward predictors of order L, ea(n) and eb(n) are the a priori
forward and backward prediction error signals, and Ea(n)
and Eb(n) are the forward and backward prediction error en-
ergies.

Consider the following vector of length L + 1:

fl,k =
[

1 exp
(
jωk
) · · · exp

(
jωkL

)]T

=
[

fTk exp
(
jωkL

)]T =
[

1 exp
(
jωk
)

fTk
]T

.
(32)

If we pre-multiply both sides of (31) by fHl,k, we obtain the
recursion

vg,k(n) = exp
(− jωk

)
vg,k(n− 1)

− eb(n)
Eb(n− 1)

[
exp

(− jωkL
)− vb,k(n− 1)

]

+
ea(n)

Ea(n− 1)

[
1− exp

(− jωk
)
va,k(n− 1)

]
,

(33)

where

va,k(n− 1) = fHk a(n− 1),

vb,k(n− 1) = fHk b(n− 1).
(34)
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In order for (33) to be efficient, (34) need to be computed re-
cursively. This can be easily done thanks to the update equa-
tions of the forward and backward predictors

a(n) = a(n− 1) +
e∗a (n)

α(n− 1)
g′(n− 1),

b(n) = b(n− 1) +
e∗b (n)
α(n)

g′(n),
(35)

where the superscript ∗ is the complex conjugate operator
and α(n) = λ/ϕ(n). Now, if we pre-multiply both sides of
(35) by fHk , we deduce the two recursions

va,k(n) = va,k(n− 1) +
e∗a (n)

α(n− 1)
vg,k(n− 1),

vb,k(n) = vb,k(n− 1) +
e∗b (n)
α(n)

vg,k(n).
(36)

The two previous expressions should be used in (33). There-
fore, the inner product vg,k(n) can be estimated with roughly
six complex multiplications, instead of L. Algorithm 2 shows
an example of a fast recursive Capon inverse spectral estima-
tor.

4.2. Complexity analysis

Now let us compare the computational complexity of the
direct-inverse, the recursive, and the fast recursive Capon
algorithms. Here the computational complexity is evalu-
ated in terms of the number of real-valued multiplica-
tions/divisions required for the implementation of each
algorithm. The number of additions/subtractions are ne-
glected because they are much quicker to compute in most
generic hardware platforms. We assume that complex-valued
multiplications are transformed into real-valued multipli-
cations. The multiplication between a real and complex
numbers requires 2 real-valued multiplications. The mul-
tiplication between two complex numbers needs 4 real-
valued multiplications. The division between a complex
number and a real number requires 2 real-valued multipli-
cations.

Suppose that the observation signal is real-valued and
a spectral estimate has to be made every N samples. The
direct-inverse approach achieves the spectral estimate in two
steps. It first computes the signal correlation matrix accord-
ing to (14). This step requires N(L2 + L) multiplications.
It then estimates the Capon spectrum using (16). If we as-
sume that the inverse of the correlation matrix is computed
through LU decomposition, which requires L3 − L multipli-
cations [42], it is trivial to show that the second step involves
L3−L+K(2L2 +4L+1) multiplications. We deduce the grand
total, for estimating the inverse spectrum by direct-inverse
method, of L3 + (N + 2K)L2 + (N + 4K − 1)L+K multiplica-
tions.

For the recursive algorithm, the inverse spectrum de-
pends on the a priori Kalman gain vector g′(n), which
can be computed at each iteration, using linear prediction
techniques, as shown in Algorithm 2. This step involves
16L + 15 multiplications. Equation (29), which requires the

Initialization

g′(0) = a(0) = b(0) = 0,
α(0) = λ,
Ea(0) = E0, positive constant,
Eb(0) = E0λ−L,
va,k(0) = vb,k(0) = vg,k(0) = 0, ∀k,

S−1
xx

(
ωk , 0

) = L

E0(1− λ)K
, ∀k.

Prediction

ea(n) = x(n)− aH(n− 1)x(n− 1),

α1(n) = α(n− 1) +

∣∣ea(n)
∣∣2

Ea(n− 1)
,

[
t(n)
m(n)

]
=
[

0
g′(n− 1)

]
+

[
1

−a(n− 1)

]
ea(n)

Ea(n− 1)
,

Ea(n) = λ
[
Ea(n− 1) +

∣∣ea(n)
∣∣2

α(n− 1)

]
,

a(n) = a(n− 1) + g′(n− 1)
e∗a (n)

α(n− 1)
,

eb(n) = x(n− L)− bH(n− 1)x(n),
g′(n) = t(n) + b(n− 1)m(n),
α(n) = α1(n)− e∗b (n)m(n),

Eb(n) = λ
[
Eb(n− 1) +

∣∣eb(n)
∣∣2

α(n)

]
,

b(n) = b(n− 1) + g′(n)
e∗b (n)
α(n)

,

ϕ′(n) = ϕ(n)
(1− λ)K

.

Inv. spect. estimation

k = 0, 1, . . . ,K − 1,

va,k(n− 1) = va,k(n− 2) +
e∗a (n− 1)
α(n− 2)

vg,k(n− 2),

vb,k(n− 1) = vb,k(n− 2) +
e∗b (n− 1)
α(n− 1)

vg,k(n− 1),

vg,k(n) = exp
(− jωk

)
vg,k(n− 1)

− eb(n)
Eb(n− 1)

[
exp

(− jωkL
)− vb,k(n− 1)

]

+
ea(n)

Ea(n− 1)

[
1− exp

(− jωk

)
va,k(n− 1)

]
,

Ŝ−1
xx

(
ωk ,n

) = λ−1Ŝ−1
xx

(
ωk ,n− 1

)− λ−2ϕ′(n)
∣∣vg,k(n)

∣∣2
.

Algorithm 2: A fast recursive Capon inverse spectral estimator.

calculation of one inner product, involves (2L+4)K multipli-
cations for estimating the inverse spectra for all frequencies
ωk, k = 0, 1, . . . ,K − 1. The total cost for N samples is, there-
fore, N(2LK + 16L + 4K + 15) multiplications.

The fast recursive algorithm also requires computation of
the a priori Kalman gain vector g′(n), which involves 16L+15
multiplications. But this technique can estimate the inverse
spectrum with only 20K multiplications after knowing the
Kalman gain vector. The total complexity for N samples is,
therefore, N(16L + 15 + 20K).

If we assume N = L = K , the computational complexi-
ties for the direct-inverse, recursive, and fast recursive Capon
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Figure 1: Comparison of computational complexity among the
direct-inverse, the recursive, and the fast recursive Capon algo-
rithms for different L’s in the condition where N = L = K .
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Figure 2: Inverse spectrum of a white Gaussian signal with σ2
x =

1, L = K = 100, λ = 1 − 1/(5L), and N = 1000. (a) Recursive
algorithm. (b) Fast recursive algorithm.

algorithms are, respectively, 4L3 + 5L2, 2L3 + 20L2 + 15L, and
36L2 + 15L multiplications. Figure 1 plots these results as a
function of L. As can be seen clearly, The recursive algorithm
is computationally less expensive than the direct-inverse ap-
proach and the fast recursive algorithm is much more effi-
cient than both the recursive and the direct inverse approach.

4.3. Discussion on the bias removal

Having discussed the complexity issue, we now examine the
error-propagation effect, another important problem that
needs much attention when any fast algorithm is devel-
oped.

From Algorithm 2, we see that the proposed fast algo-
rithm requires two initializations. One is for the inverse spec-
trum [Ŝ−1

xx (ωk, 0)]. The other is for the prediction error en-
ergies [Ea(0) and Eb(0), which are involved in the efficient
computation of the Kalman gain vector], which in turn is
used to estimate the inverse spectrum. Both initializations
depend on the energy (E0) of the signal x(n). Because of
this interlink process and the fact that the two initializa-
tions are not perfectly synchronized, one interesting phe-
nomenon appears during the update: a bias is introduced
in the inverse spectrum estimation, which grows with the
time index n. As an example, we illustrate this phenomenon
with a zero-mean white Gaussian signal x(n) with a vari-
ance of σ2

x = 1, L = K = 100, λ = 1 − 1/(5L), and
for N = 1000. Figure 2 shows the estimates of the inverse
spectrum with the recursive [Figure 2(a)] and fast recur-
sive [Figure 2(b)] algorithms. We can notice that the two
inverse spectra are identical but the y-axis scale is differ-
ent. This difference is due to the bias. Therefore, inverting
the estimate obtained with the fast recursive algorithm will
give a wrong result for the spectrum estimation of the signal
x(n).

From the recursive expression of the inverse spectrum
given in (29), we have

Ŝ−1
xx

(
ωk,n

) = λ−1Ŝ−1
xx

(
ωk,n− 1

)− λ−2ϕ′(n)
∣∣vg,k(n)

∣∣2

= λ−2Ŝ−1
xx

(
ωk,n−2

)− λ−3ϕ′(n− 1)
∣∣vg,k(n−1)

∣∣2

− λ−2ϕ′(n)
∣∣vg,k(n)

∣∣2
.

(37)

Continuing this recursion, we deduce that

Ŝ−1
xx

(
ωk,n

)

= Lλ−n

(1− λ)KE0
− λ−2

n−1∑

m=0

λ−mϕ′(n−m)
∣∣vg,k(n−m)

∣∣2
.

(38)

The first term of the right-hand side of the previous equation
depends on the initialization E−1

0 . The second term depends
on E0 as well; but with the fast algorithm, this dependency
diminishes as n gets larger. Therefore, the overall bias in the
inverse spectrum is from the first term. Now suppose that we
initialize the inverse spectrum with E1 = E0 − δ (where δ is
a small positive number and δ � E1). Replacing E0 in (38)
with E1 and using the approximation 1/(1−δ/E0) ≈ 1+δ/E0,
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we get the corresponding spectrum estimate,

S̃−1
xx

(
ωk,n

) = Lλ−n

(1− λ)KE0
+

δLλ−n

(1− λ)KE2
0

− λ−2
n−1∑

m=0

λ−mϕ′(n−m)
∣∣vg,k(n−m)

∣∣2

= δLλ−n

(1− λ)KE2
0

+ Ŝ−1
xx

(
ωk,n

)

= Δb(n) + Ŝ−1
xx

(
ωk,n

)
.

(39)

The term Δb(n) represents the bias which grows exponen-
tially with n. Expression (39) shows very clearly that even a
very small mismatch between E0 and E1 (or equivalently a
very small δ) will introduce an avoidable bias. Obviously, a
technique is needed to remove it.

According to (39), we have

1
K

K−1∑

k=0

Ŝxx
(
ωk,n

) = 1
K

K−1∑

k=0

[
S̃−1
xx

(
ωk,n

)− Δb(n)
]−1

= (1− λ)
n∑

m=0

λn−m
∣∣x(m)

∣∣2 = σ2
x (n),

Δb(n) < min
k

S̃−1
xx

(
ωk,n

)
.

(40)

By taking into account the information from the two previ-
ous expressions, the following simple iterative algorithm:

e(n, i) = K

L
− 1

Kσ2
x (n)

K−1∑

k=0

[
S̃−1
xx

(
ωk,n

)− Δb(n, i− 1)
]−1

,

Δb(n, i) = Δb(n, i− 1) +
0.1

σ2
x (n)

e(n, i),

(41)

with Δb(n, 0) = mink S̃−1
xx (ωk,n)−1/σ2

x (n), finds the bias with
less than 100 iterations. Let us take again the example given
at the beginning of this section. Figure 3 shows the spec-
trum estimated with the recursive algorithm [Figure 3(a)]
and the spectrum estimated with the fast recursive algorithm
[Figure 3(b)] after the bias was removed with the proposed
iterative method. From this example, it is clear that the ob-
tained solution is quite satisfactory.

5. MAGNITUDE SQUARED COHERENCE FUNCTION
ESTIMATION WITH THE CAPON METHOD

The aforementioned recursive and fast recursive ideas can
also be generalized and applied to other applications. For ex-
ample, we extend in this section the recursive idea to the esti-
mation of the magnitude squared coherence function, which
plays an important role for problems like time-delay estima-
tion, signal-to-noise ratio estimation, and doubletalk detec-
tion in echo cancellation.

We assume here that we have two zero-mean random
signals x1(n) and x2(n) with respective spectra Sx1x1 (ω,n)
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Figure 3: Spectrum of a white Gaussian signal with σ2
x = 1, L =

K = 100, λ = 1 − 1/(5L), and N = 1000. (a) Recursive algorithm.
(b) Fast recursive algorithm after bias removal.

and Sx2x2 (ω,n). As explained in Section 2, we can design two
Capon bandpass filters,

ĥC
p,k(n) =

R̂−1
xpxp(n)fk

fHk R̂−1
xpxp(n)fk

, p = 1, 2, (42)

to find the spectra of x1(n) and x2(n) at frequency ωk and at
time n:

Ŝxpxp
(
ωk,n

) = (1− λ)K

fHk R̂−1
xpxp(n)fk

, p = 1, 2, (43)

where

R̂xpxp(n) =
n∑

m=0

λn−mxp(m)xH
p (m) (44)

is an estimate of the covariance matrix of the signal xp(n) and

xp(m)=
[
xp(m) xp(m−1) · · · xp(m−L+1)

]T
, p=1, 2.

(45)

Let y1,k(n) and y2,k(n) be the respective outputs of the

filters ĥC
1,k(n) and ĥC

2,k(n). The cross-spectrum between x1(n)
and x2(n) at frequency ωk is [38, 43, 44]

Ŝx1x2

(
ωk,n

) = K(1− λ)
n∑

m=0

λn−my1,k(m)y∗2,k(m). (46)

Similarly,

Ŝx2x1

(
ωk,n

) = K(1− λ)
n∑

m=0

λn−my2,k(m)y∗1,k(m)

= Ŝ∗x1x2

(
ωk,n

)
.

(47)
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Now if we develop (46), we get

Ŝx1x2

(
ωk,n

) = K(1− λ)hH
1,k(n)R̂x1x2 (n)h2,k(n), (48)

where

R̂x1x2 (n) =
n∑

m=0

λn−mx1(m)xH
2 (m) (49)

is an estimate of the cross-correlation matrix between x1(n)
and x2(n). Replacing (42) in (48), we obtain

Ŝx1x2

(
ωk,n

) = K(1− λ)
fHk R̂−1

x1x1
(n)R̂x1x2 (n)R̂−1

x2x2
(n)fk[

fHk R̂−1
x1x1

(n)fk
][

fHk R̂−1
x2x2

(n)fk
] ,

(50)

which does not depend on ĥC
p,k(n); hence,

∣∣Ŝx1x2

(
ωk,n

)∣∣2=K2(1−λ)2

∣∣fHk R̂−1
x1x1

(n)R̂x1x2 (n)R̂−1
x2x2

(n)fk
∣∣2

[
fHk R̂−1

x1x1
(n)fk

]2[
fHk R̂−1

x2x2
(n)fk

]2 .

(51)

The magnitude squared coherence (MSC) function be-
tween two signals x1(n) and x2(n) is estimated as

γ̂2
x1x2

(
ωk,n

) =
∣∣Ŝx1x2

(
ωk,n

)∣∣2

Ŝx1x1

(
ωk,n

)
Ŝx2x2

(
ωk,n

) . (52)

Plugging (43) and (51) into (52), we obtain the MSC estimate

γ̂2
x1x2

(
ωk,n

) =
∣∣fHk R̂−1

x1x1
(n)R̂x1x2 (n)R̂−1

x2x2
(n)fk

∣∣2

[
fHk R̂−1

x1x1
(n)fk

][
fHk R̂−1

x2x2
(n)fk

] . (53)

There are two extreme cases:

(i) x1(n) = x2(n) = x(n) (the two signals are perfectly
correlated). In this case, it is easy to verify from (53)
that γ̂2

x1x2
(ωk,n) = 1, for all k,n.

(ii) R̂x1x2 (n) = 0 (the two signals are completely uncorre-
lated), we have γ̂2

x1x2
(ωk,n) = 0, for all k,n.

Expression (53) requires an arithmetic complexity pro-
portional to L2K for all K frequencies and at each time in-
stant n. This complexity can be reduced if (53) is computed
recursively. For the two terms in the denominator, recur-
sions can be derived in a similar way to the one developed in
Section 3. A recursive expression for the term in the numera-
tor is a little bit less obvious to obtain and several steps are
necessary. We first define the normalized cross-correlation
matrix as

R̂n,x1x2 (n) = R̂−1
x1x1

(n)R̂x1x2 (n)R̂−1
x2x2

(n). (54)

Replacing the recursions,

R̂xixp(n) = λR̂xixp(n− 1) + xi(n)xH
p (n), i, p = 1, 2, (55)

in (54) and after some simple manipulations, we find

R̂n,x1x2 (n) = λ−1[I− λ−1ϕ1(n)g′1(n)xH
1 (n)

]

×R̂n,x1x2 (n− 1)
[

I− λ−1ϕ2(n)x2(n)g′H2 (n)
]

+ λ−2ϕ1(n)ϕ2(n)g′1(n)g′H2 (n)

= λ−1R̂n,x1x2 (n− 1)− g′1(n)vH
n,x1

(n)

− vn,x2 (n)g′H2 (n) + β′n(n)g′1(n)g′H2 (n),

(56)

where

g′p(n) = R̂−1
xpxp(n− 1)xp(n), p = 1, 2,

ϕp(n) = λ

λ + xH
p (n)g′p(n)

, p = 1, 2,

vn,x1 (n) = λ−2ϕ1(n)R̂H
n,x1x2

(n− 1)x1(n),

vn,x2 (n) = λ−2ϕ2(n)R̂n,x1x2 (n− 1)x2(n),

βn(n) = xH
1 (n)R̂n,x1x2 (n− 1)x2(n),

β′n(n) = λ−2[λ−1βn(n) + 1
]
ϕ1(n)ϕ2(n).

(57)

Define the variable

ζ
(
ωk,n

) = fHk R̂−1
x1x1

(n)R̂x1x2 (n)R̂−1
x2x2

(n)fk

= fHk R̂n,x1x2 (n)fk.
(58)

If we pre- and post-multiply both sides of (56) by fHk and fk,
respectively, we get

ζ
(
ωk,n

) = λ−1ζ
(
ωk,n− 1

)− [fHk g′1(n)
][

vH
n,x1

(n)fk
]

− [fHk vn,x2 (n)
][

g′H2 (n)fk
]

+ β′n(n)
[

fHk g′1(n)
][

g′H2 (n)fk
]
.

(59)

Compared to (58), where products of matrices and vec-
tors are required, the previous expression manipulates inner
products only.

Algorithm 3 summarizes this recursive algorithm for the
estimation of the MSC function with the Capon approach.
The overall complexity, for all K frequencies, is proportional
to L2 + KL at each time sample n. For L = K , we see that we
decreased this complexity by a factor of L.

6. EXPERIMENTS

Throughout the text, we have developed a recursive and a fast
version of the recursive algorithm for estimating the Capon
spectrum. In both cases, the spectral components are initial-
ized equally across all the frequency bands. For signals with
white spectrum, it has already been demonstrated that the
fast algorithm (may require bias removal) can compute the
Capon spectrum accurately and efficiently. To further verify
the fast algorithm and the effect of the initialization condi-
tion on the spectral estimation, we give another example of
applying the fast recursive algorithm to estimate the PSD of
an ARMA process. The ARMA process is given by [2]

x(n) = −2.760x(n− 1) + 3.809x(n− 2)− 2.654x(n− 3)

+ 0.924x(n− 4) + u(n)− 0.900u(n− 1)

+ 0.810u(n− 2),
(60)
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Initialization

fk =
[
1 exp

(
jωk

) · · · exp
[
j(L− 1)ωk

]]T
,

R̂−1
xpxp (0) = E−1

p I, p = 1, 2,

R̂x1x2 (0) = R̂n,x1x2 (0) = 0,
σp
(
ωk , 0

) = E−1
p L, p = 1, 2, ∀k,

ζ
(
ωk , 0

) = 0, ∀k.
Correlation estimation

g′p(n) = R̂−1
xpxp (n− 1)xp(n), p = 1, 2,

ϕp(n) = λ

λ + xH
p (n)g′p(n)

, p = 1, 2,

vn,x1 (n) = λ−2ϕ1(n)R̂H
n,x1x2

(n− 1)x1(n),

vn,x2 (n) = λ−2ϕ2(n)R̂n,x1x2 (n− 1)x2(n),
βn(n) = xH

1 (n)R̂n,x1x2 (n− 1)x2(n),
β′n(n) = λ−2

[
λ−1βn(n) + 1

]
ϕ1(n)ϕ2(n),

R̂−1
xpxp (n) = λ−1R̂−1

xpxp (n− 1)

−λ−2ϕ(n)g′p(n)g′Hp (n), p = 1, 2,

R̂n,x1x2 (n) = λ−1R̂n,x1x2 (n− 1)− g′1(n)vH
n,x1

(n)
−vn,x2 (n)g′H2 (n) + β′n(n)g′1(n)g′H2 (n).

MSC estimation

k = 0, 1, . . . ,K − 1,
σp
(
ωk ,n

) = λ−1σp
(
ωk ,n− 1

)

−λ−2ϕp(n)
∣∣fHk g′p(n)

∣∣2
, p = 1, 2,

ζ
(
ωk ,n

) = λ−1ζ
(
ωk ,n− 1

)− [fHk g′1(n)
][

vH
n,x1

(n)fk
]

−[fHk vn,x2 (n)
][

g′H2 (n)fk
]

+β′n(n)
[

fHk g′1(n)
][

g′H2 (n)fk
]
,

γ̂2
x1x2

(
ωk ,n

) =
∣∣ζ(ωk ,n

)∣∣2

σ1
(
ωk ,n

)
σ2
(
ωk ,n

) .

Algorithm 3: An MSC estimation based on the Capon method.

where u(n) is a real white Gaussian noise with variance σ2
u =

1.
The true PSD of this ARMA process and the correspond-

ing PSD estimates obtained with the Capon method using
both the direct inverse and fast algorithms (initialization of
the fast algorithm is based on the signal energy E0. In our
case, the estimated E0 is 130.0. Bias removal is used) are plot-
ted in Figure 4. The simulation conditions are L = K = 100,
λ = 1 − 1/(5L), and N = 2000. It is clearly seen that the fast
algorithm, same as the direct inverse method, can estimate
the PSD correctly.

In the second experiment, we would like to compare the
MSC function estimated with our approach and with the
MATLAB “cohere” function, which uses the Welch averaged
periodogram method [37]. Let us consider the illustrative ex-
ample of two signals x1(n) and x2(n) [44]:

x1(n) = w1(n) + cos
(
2πΩ11n

)
+ cos

(
2πΩ12n

)
,

x2(n) = w2(n) + cos
[
2π
(
Ω21n + φ1

)]
+ cos

[
2π
(
Ω22 + φ2

)]
,

(61)

where w1(n) and w2(n) are two independent white Gaussian
random processes with zero mean and unit variance. The
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Figure 4: True and estimated power spectral densities for an ARMA
process. Conditions of simulations: L = K = 100, λ = 1 − 1/(5L),
and N = 2000.
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Figure 5: Estimation of the magnitude squared coherence function
using both the Welch and the proposed approaches. Conditions of
simulations: L = K = 100, N = 1024, and λ = 1− 1/(5L).

phases φ1 and φ2 in the signal x2(n) are random. We con-
sider two cases. In the first one, we chose Ω11 = Ω21 = 0.15
and Ω12 = Ω22 = 0.18. In this situation, the theoretical co-
herence between these two signals should be equal to 1 at
the two frequencies 0.15 and 0.18 and 0 at the others. For
both the Welch and the developed new algorithms we took
N = 1024 samples. The window length is L = K = 100,
and λ = 1 − 1/(5L). Figure 5 gives the MSC estimated using
the MATLAB and new methods, respectively. It is clearly seen
from the results that the estimation of the coherence function
with the new algorithm is much closer to its theoretical val-
ues.

For the second case, we choose Ω11 = Ω21 = 0.15, Ω12 =
0.18, and Ω22 = 0.185. So the theoretical coherence between
x1(n) and x2(n) should be equal to 1 at Ω11 = Ω21 = 0.15 and
0 at the other frequencies. In this experiment, we assume that
the observation data sequence is short, say, N = 256 samples.
For both the Welch and the new algorithms, we set L = 50,
K = 100, and λ = 1−1/(5L). The result is shown in Figure 6.
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Figure 6: Estimation of the magnitude squared coherence function
using both the Welch and the proposed approaches. Conditions of
simulations: L = 50, K = 100, N = 256, and λ = 1− 1/(5L).

Again we see that the estimation of the coherence function
with the new algorithm is more accurate.

7. CONCLUSIONS

The Capon algorithm has become a powerful tool for spectral
analysis and many other applications. Over several decades,
a significant amount of research attention has been devoted
to the estimation of the Capon spectrum. Most of the devel-
oped algorithms thus far, however, rely on the direct com-
putation of the inverse of the input correlation (or covari-
ance) matrix. If the length of the Capon filter is L, the com-
plexity of the direct-inverse approach is on the order of L3.
Such a high computational load makes the Capon algorithm
difficult to implement in applications like speech commu-
nication where a spectral estimate has to be obtained every
few milliseconds. In this paper, we derived a recursive Capon
algorithm. This algorithm does not require an explicit ma-
trix inversion, and hence is more efficient to implement than
the direct-inverse approach. However, its complexity is still
on the order of L3. In order to further reduce the complex-
ity and make the recursive Capon algorithm more computa-
tionally efficient, a fast version of the recursive algorithm was
developed, based on the techniques used in the fast recur-
sive least-squares adaptive algorithms. We showed that this
new fast algorithm can reduce the complexity by an order
of magnitude. Although we focused on the Capon spectral
estimation, the ideas shown in this paper can also be gener-
alized and applied to other applications. As an example, we
extended the recursive idea to the estimation of the magni-
tude squared coherence (MSC) function, resulting in a new
MSC estimator, which can achieve a higher estimation accu-
racy than the widely used Welch method.
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